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What is a computer model?

Computer model is a mathematical representation η(·) of a
complex physical system implemented in a computer.
We need Computer models when real experiments are very
expensive or even implossible to be “done” (e.g. Nuclear
experiments)
Computer models have an important role in almost all fields of
science and technology

System Biology models (Rotavirus outbreaks)
Cosmological models (Galaxy formation)
Climate models* (Global warming)
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C-GOLDSTEIN Model

C-GOLDSTEIN is a simplified* climate model
Sea surface temperature
ocean salinity and ocean temp at different depths in the ocean
area of sea ice
thickness of sea ice
atmospheric CO2 concentrations
...

Large number of outputs (Both time series and field data)
Several inputs (e.g. model resolution, initial conditions)
Each run takes about an hour on the Linux Boxes at NOC
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Computer models can be very expensive

IBM supercomputers used for climate and weather forecasts

One single run of the computer model can take a lot of time
Most of analyses need several runs
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Emulating a computer model

η(·) is considered an unknown function

Emulator is a predictive function for the computer model outputs
Assumptions for the computer model:

Deterministic single-output model η(·) η : X ∈ <p → <
Relatively ”Smooth” function

Statistical Emulator is an stochastic representation of our
judgements about the computer model η(·).
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Gaussian Process Emulator

Gaussian process emulator:

η(·)|β, σ2, ψ ∼ GP (m0(·),V0(·, ·)) ,

where

m0(x) = h(x)Tβ

V0(x,x′) = σ2C(x,x′;ψ)

Prior distribution for (β, σ2, ψ)

Conditioning on some training data

yk = η(xk), k = 1, . . . ,n
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Gaussian Process Emulator

Predictive Gaussian Process Emulator

η(·)|y,X, ψ ∼ Student-Process (n − q,m1(·),V1(·, ·)) ,

where

m1(x) = h(x)T β̂ + t(x)T A−1(y− Hβ̂),

V1(x , x ′) = σ̂2
[
C(x , x ′;ψ)− t(x)T A−1t(x ′) +

(
h(x)− t(x)T A−1H

)
× (HT A−1H)−1

(
h(x ′)− t(x ′)T A−1H

)T
]
.
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Toy Example

η(·) is a two-dimensional known function
GP emulator:

η(·)|β, σ2, ψ ∼ GP
(

h(·)Tβ, σ2C(x,x′;ψ)
)
,

h(x) = (1,x)T

C(x,x′) = exp

[
−
∑

k

(
xk − x′k
ψk

)2
]

p(β, σ2, ψ) ∝ σ−2
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MUCM Topics

Design for Computer models
Emulation (Multiple output emulation, Dynamic emulation)
UA/SA - Uncertainty and Sensitivity Analyses
Calibration (Bayes Linear and Full Bayesian approaches)
Diagnostics and Validation
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Diagnostics and Validation

Every emulator should be validated
Non-valid emulators can induce wrong conclusions
There is little research into validating emulators
Validation generally means: “the emulator predictions are close
enough to the simulator outputs”.
We want to take account all the uncertainty associated with the
emulator.
“Do the choices that I have made, based on my knowledge of this
simulator, appear to be consistent with the observations?”
Choices for the Gaussian process emulator:

Normality
Stationarity
Correlation parameters
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Validating a GP Emulator

Our diagnostics should be based on a set of new runs of the
simulator

Why? Because predictions at observed input points are perfect.
Validation data (y∗,X∗) : y∗k = η(xk

∗), k = 1, . . . ,m

Simulator and the predictive emulator outputs are compared

Numerical diagnostics
Graphical diagnostics
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Numerical diagnostics

Individual predictive errors

DI
i (y
∗) =

(y∗i −m1(x∗i ))√
V1(x∗i ,x

∗
i )

However, the DI(y∗)s are correlated:

DI(η(X∗)) ∼ Student-tm(n − q,0,C1(X∗))

Mahalanobis distance

DMD(y∗) = (y∗ −m1(X∗))
T V1(X∗)−1 (y∗ −m1(X∗))

(n − q)

m(n − q − 2)
DMD(η(X∗)) ∼ Fm,n−q
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Numerical diagnostics

Pivoted Cholesky errors

DPC(y∗) = (G−1)T (y∗ −m1(X∗))

where V1(X∗) = GTG, and G = PRT .
Properties:

DPC(y∗)T DPC(y∗) = DMD(y∗)
Var(DPC(η(X)) = I
Invariant to the data order
Pivoting order given by P has an intuitive explanation
Each DPC(y∗) associated with a validation element
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Graphical diagnostics

Some possible Graphical diagnostics:

Individual errors against emulator’s predictions
Problems on mean function, non-stationarity
Errors againts the pivoting order
Poor estimation of the variance, correlation parameters
QQ-plots of the uncorrelated standardized errors
Non-normality, Local fitting problems or non-stationarity
Individual or (pivoted) Cholesky errors against inputs
Non-stationarity, pattern not included in the mean function
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Example: Nuclear Waste Repository

Source: http://web.ead.anl.gov/resrad/

RESRAD is a computer model designed to estimate radiation
doses and risks from RESidual RADioactive materials.
Output: 10,000 year time series of the release of contamination in
drinking water (in millirems)
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Example: Nuclear Waste Repository
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Output - Log of maximal dose
of radiation in drinking water
27 inputs
Training data: n = 190∗(900)

Validation data: m = 69∗(300)
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Graphical Diagnostics: Individual errors
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Graphical Diagnostics: Individual errors
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Graphical Diagnostics: Correlated errors
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DMD(y∗) = 58.96 and the 95% CI is (47.13; 104.70)
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Graphical Diagnostics: Correlated errors
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Example: Nilson-Kuusk model

Nilson-Kuusk model is a plant canopy reflectance model.
For interpretation of remote sensoring data
For determination of agronomical and phytometric parameters

The Nilson-Kuusk model is a single output model with 5 inputs
The training data contains 150 points
The validation data contains 100 points
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Graphical Diagnostics - Individual Errors
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Graphical Diagnostics - Uncorrelated Errors
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DMD(y∗) = 750.237 and the 95% CI is (69.0, 142.6)
Indicating a conflict between emulator and simulator.
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Graphical Diagnostics - Input 5
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Actions for the Kuusk emulator

The mean function h(·) = (1,x, x2
5 , x

3
5 , x

4
5 )

Log transformation on outputs
“new” dataset for validation
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Individual errors
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Uncorrelated Errors
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DMD(y∗) = 63.873 and the 95% CI is ( 32.582, 79.508)
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Conclusions

Emulation is important when the computer model is expensive.
Validating the emulator is necessary before using it for analyses
using tyhe emulator as a surrogate of the computer model.
Our diagnostics are useful tools inside the validation process.

Thank you!
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