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Introduction
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Spatiotemporal data

@ Due to the proliferation of data sets that are indexed in both space and
time, spatiotemporal models have received an increased attention in the
literature.
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Spatiotemporal data

@ Due to the proliferation of data sets that are indexed in both space and
time, spatiotemporal models have received an increased attention in the
literature.

e Maximum temperature data - Spanish Basque Country (67 stations)
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Example

31 time points (july 2006)
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Introduction
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Typical problem

e Given: observations Z(s;, #;) at a finite number locations s;, i = 1,...,1
and time points 4, j = 1,...,/J.
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e Given: observations Z(s;, #;) at a finite number locations s;, i = 1,...,1
and time points 4, j = 1,...,/J.

@ Desired: predictive distribution for the unknown value Z(so, #o) at the
space-time coordinate (s, fp).
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Introduction
00@000

Typical problem

e Given: observations Z(s;, #;) at a finite number locations s;, i = 1,...,1
and time points 4, j = 1,...,/J.

@ Desired: predictive distribution for the unknown value Z(so, #o) at the
space-time coordinate (s, fp).

e Focus: continuous space and continuous time which allow for prediction
and interpolation at any location and any time.

Z(s,1), (s,f) e D x T, where D C R? T C R
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Introduction
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General modeling formulation

@ The uncertainty of the unobserved parts of the process can be expressed
probabilistically by a random function in space and time:

{Z(s,1); (s,t) € D x T}.
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Introduction
000®00

General modeling formulation

@ The uncertainty of the unobserved parts of the process can be expressed
probabilistically by a random function in space and time:

{Z(s,1); (s,1) € D x T}.

@ We need to specify a valid covariance structure for the process.

C(S] , 82511, 1‘2) = COV(Z(Sl,Il),Z(Sz, 2‘2))
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Non-gaussian spatiotemporal models

@ But building adequate models for these processes is not an easy task.
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Non-gaussian spatiotemporal models

@ But building adequate models for these processes is not an easy task.

@ One observation of the process = simplifying assumptions:
» Stationarity: Cov(Z(s1,4),Z(s2,12)) = C(s1 — $2,11 — 1)
» Isotropy: Cov(Z(s1,11),Z(s2,12)) = C(||s1 — 82|, |1 — 12])
» Separability: Cov(Z(sy,1),Z(s2,1)) = Cs(s1,52)Ci(t1,12)

» Gaussianity: The process has finite dimensional Gaussian distribution.
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Non-gaussian spatiotemporal models

@ But building adequate models for these processes is not an easy task.

@ One observation of the process = simplifying assumptions:
» Stationarity: Cov(Z(s1,4),Z(s2,12)) = C(s1 — $2,11 — 1)
» Isotropy: Cov(Z(s1,11),Z(s2,12)) = C(||s1 — 82|, |1 — 12])
» Separability: Cov(Z(sy,1),Z(s2,1)) = Cs(s1,52)Ci(t1,12)

» Gaussianity: The process has finite dimensional Gaussian distribution.

@ Models based on Gaussianity will not perform well (poor predictions) if
> the data are contaminated by outliers;

» there are regions with larger observational variance;
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Example

@ Maximum temperature data - Spanish Basque Country
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Example
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@ For this reason, we consider spatiotemporal processes with heavy tailed
finite dimensional distributions.
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Spatiotemporal modeling

We will consider processes that are
@ stationary
@ isotropic
@ nonseparable

@ non-Gaussian
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Spatiotemporal modeling
[ 1e}

Continuous mixture

@ Idea: Continuous mixture of separable covariance functions [Ma, 2002].
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Outline

Continuous mixture

@ Idea: Continuous mixture of separable covariance functions [Ma, 2002].

o It takes advantage of the well known theory developed for purely spatial
and purely temporal processes.

Nonseparable model
Z(s,1) = Zi(s5; U)Zy(1; V) (D)

(U, V) is a bivariate random vector with correlation c.
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Outline Introduction

Continuous mixture

@ Idea: Continuous mixture of separable covariance functions [Ma, 2002].

o It takes advantage of the well known theory developed for purely spatial
and purely temporal processes.

Nonseparable model
Z(s,1) = Zi(s; U) (8, V) (1)
(U, V) is a bivariate random vector with correlation c.

Unconditional covariance
Clovt) = [ Cilsu)CaltsndF(uy) @)

C(s, ) is valid and nonseparable.
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Spatiotemporal modeling
oce

In particular, if C;(s;u) = oy exp{—~1(s)u} and C»(t;v) = oy exp{—2(t)v}
and U = Xp + X; and V = X + X», where X; has finite moment generating
function M;, then
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Spatiotemporal modeling
oce

In particular, if C;(s;u) = oy exp{—~1(s)u} and C»(t;v) = oy exp{—2(t)v}
and U = Xp + X; and V = X + X», where X; has finite moment generating
function M;, then

Proposition

C(s,1) = 0" Mo(—(m(s) +72(1))) Mi(=m(5)) Ma(=72(1)), (s,0) EDXT, (3

where 7 (s) and ~,(¢) are spatial and temporal variograms.

For instance, i (s) = ||s/a||* and v,(¢) = |t/b|".

Dec, 2008 11/ 37



Spatiotemporal modeling
oce

In particular, if C;(s;u) = oy exp{—~1(s)u} and C»(t;v) = oy exp{—2(t)v}
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Spatiotemporal modeling
oce

In particular, if C;(s;u) = oy exp{—~1(s)u} and C»(t;v) = oy exp{—2(t)v}
and U = Xp + X; and V = X + X», where X; has finite moment generating
function M;, then

Proposition

C(s,1) = 0" Mo(—(m(s) +72(1))) Mi(=m(5)) Ma(=72(1)), (s,0) EDXT, (3

where 7 (s) and ~,(¢) are spatial and temporal variograms.

For instance, i (s) = ||s/a||* and v,(¢) = |t/b|".
Notice that ¢ = corr(U, V) measures separability and ¢ € [0, 1].

See [Fonseca and Steel, 2008] for more details.
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Outline Introduction Spatiotemporal modeling

Mixing in space and time

We consider the process

Z(s,1) = Z|(s; U) Za(1; V), 4)
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Outline Introduction Spatiotemporal modeling Simulation Results

Mixing in space and time

We consider the process

Z(s,1) = Z|(s; U) Za(1; V), 4)

Mixing in space

Z\(s;U) = V1 - 24 U) +7 <(s) S)
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Outline Introduction Spatiotemporal modeling Simulation Results Temperature data

Mixing in space and time
We consider the process

Z(s,1) = Z|(s; U) Za(1; V), 4)

Mixing in space

Zi(s;U) = V1 - 24 U) +7 <(s) S)

Ai(s) h(s)
Mixing in time
~ Zz([; V)
Zh(t;V) = 6
2(ta ) Az(l‘) (6)
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Outline Introduction Spatiotemporal modeling Simulation Results

Process A;(s)

Mixing in space

Zi(s;U) = mzl{s; U) g e(s)
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Outline Introduction Spatiotemporal modeling Simulation Results

Process A;(s)

Mixing in space

Zi(s;U) = mzl{s; U) g e(s)

@ )\ (s) accounts for regions in space with larger observational variance.
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Outline Introduction Spatiotemporal modeling Simulation Results

Process A;(s)

Mixing in space

Z(5:U) = V1= 228l )

)\1(3) h(S

@ )\ (s) accounts for regions in space with larger observational variance.

@ \;(s) needs to be correlated to induce m.s. continuity of Z; (s; U), this is

equivalent to E[/\_l/z(si))\]_l/z(s,-/)] — E[N'(s1)] as s; — sir.
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Process A;(s)

Mixing in space

Z(5:U) = V1= 228l )

)\1(3) h(S

@ )\ (s) accounts for regions in space with larger observational variance.

@ \;(s) needs to be correlated to induce m.s. continuity of Z; (s; U), this is
equivalent to E[/\_l/z(si))\]_l/z(s,-/)] — E[N'(s1)] as s; — sir.

o This is satisfied by A;(s) = A, Vs = student-t process. But is does not
account for regions with larger variance.
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Outline Introduction Spatiotemporal modeling Simulation Results Temperature dat:

0008000

Process A;(s)

Mixing in space

Z(5:U) = V1= 228l )

)\l(s) h(s)

@ )\ (s) accounts for regions in space with larger observational variance.

@ \;(s) needs to be correlated to induce m.s. continuity of Z; (s; U), this is
equivalent to E[/\_l/z(si))\l_l/z(s,-/)] — E[N'(s1)] as s; — sir.

o This is satisfied by A;(s) = A, Vs = student-t process. But is does not
account for regions with larger variance.

@ This is also satisfied by the glg process where {in(A;(s));s € D} isa
gaussian process with mean —% and covariance structure vC(.).
[Palacios and Steel, 2006]
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Process h(s)

Mixing in space

Z(s0) = VI— 228l | o)

@ /(s) accounts for traditional outliers (different nugget effects).
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Process h(s)

Mixing in space

Z(s0) = VI— 228l | o)

@ /(s) accounts for traditional outliers (different nugget effects).

@ We consider the detection of outliers jointly in the estimation procedure
and the variable h; = h(s;),i = 1,...,I are considered latent variables
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0O000e00

Process h(s)

Mixing in space

@ /(s) accounts for traditional outliers (different nugget effects).

@ We consider the detection of outliers jointly in the estimation procedure
and the variable h; = h(s;),i = 1,...,I are considered latent variables

@ Their posterior distribution indicate outlying observations (#; close to 0).
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Outline Introduction Spatiotemporal modeling

0O000e00

Process h(s)

Mixing in space

Z(s0) = VI— 228l | o)

@ /(s) accounts for traditional outliers (different nugget effects).

@ We consider the detection of outliers jointly in the estimation procedure
and the variable h; = h(s;),i = 1,...,I are considered latent variables

@ Their posterior distribution indicate outlying observations (#; close to 0).

@ We consider
> log(hi) ~ N(=v3/2,v).
> b~ Ga(l/v, 1/vy).
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Outline Y git Spatiotemporal modeling
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Process \;(7)

Mixing in time
- Z(1;V)

Z(HV) = /0

@ )\ (t) accounts for sections in time with larger observational variance.
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Process \;(7)

Mixing in time
~ ZH(tV
2 vy = 281
V210
@ )\ (t) accounts for sections in time with larger observational variance.

@ This can be seen as a way to adress the issue of volatility clustering,
which is common in finantial time series data.
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Outline i Spatiotemporal modeling
0000080

Mixing in time
- Z(1;V)

Z(HV) = /0

@ )\ (t) accounts for sections in time with larger observational variance.

@ This can be seen as a way to adress the issue of volatility clustering,
which is common in finantial time series data.

e We consider the log gaussian process where {In(X2(7));2 € T}is a

%)

gaussian process with mean —%' and covariance structure 12 C(.).
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Spatiotemporal modeling
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Predictions

® (A, hi, Aoj) are considered latent variables and sampled in our MCMC
sampler.
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Predictions

® (A, hi, Aoj) are considered latent variables and sampled in our MCMC
sampler.

e Given (\y;, by, )\zj) the process is gaussian and we can predict at
unobserved locations and time points.

@ We compare the predictive performance using proper scoring rules
[Gneiting and Raftery, 2008]:
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Predictions

® (A, hi, Aoj) are considered latent variables and sampled in our MCMC
sampler.

e Given (\y;, by, )\zj) the process is gaussian and we can predict at
unobserved locations and time points.

@ We compare the predictive performance using proper scoring rules
[Gneiting and Raftery, 2008]:

> LPS(p,x) = —log(p(x))

Dec, 2008 16/ 37



Spatiotemporal modeling
oooo0e

Predictions

® (A, hi, Aoj) are considered latent variables and sampled in our MCMC
sampler.

e Given (\y;, by, )\zj) the process is gaussian and we can predict at
unobserved locations and time points.

@ We compare the predictive performance using proper scoring rules
[Gneiting and Raftery, 2008]:
» LPS(p,x) = —log(p(x))
> 18(q1,92:%) = (@2 — q1) + E(q1 —0)I(x < q1) + E(x — g2)I(x > g2). We
use £ = 0.05 resulting in a 95% credible interval.
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Simulation Results

Data

@ This data set has I = 30 locations and J = 30 time points generated from
a Gaussian model with no nugget effect (2 = 0).
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Simulation Results

Data

@ This data set has I = 30 locations and J = 30 time points generated from
a Gaussian model with no nugget effect (2 = 0).

@ The covariance model is nonseparable Cauchy (X; ~ Ga(\;, 1),
i =0,1,2) in space and time with ¢ = 0.5.
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Simulation Results

Data

@ This data set has I = 30 locations and J = 30 time points generated from
a Gaussian model with no nugget effect (2 = 0).

@ The covariance model is nonseparable Cauchy (X; ~ Ga(\;, 1),
i =0,1,2) in space and time with ¢ = 0.5.

@ We contaminated this data set with different kinds of “outliers” in order
to see the performance of the proposed models in each situation.
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Spatial domain
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Simulation Results

Spatial domain
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@ The proposal for \y;, h;, i = 1,...,1in the MCMC sampler is
constructed by dividing the observations in blocks defined by position in
the spatial domain.
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Simulation Results
©0000

Description and BF

@ One location was selected at random (location 7) and a random
increment from Unif(1.0, 1.5) times the standard deviation was added to
each observation for this location for the first 20 time points.
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Simulation Results
©0000

Description and BF

@ One location was selected at random (location 7) and a random
increment from Unif(1.0, 1.5) times the standard deviation was added to
each observation for this location for the first 20 time points.

@ The logarithm of the BF using Shifted-Gamma (A = 0.98) estimators:
‘ nug. A (lognormal) A (gamma) A; A; & & (lognormal)
Gaussian | -1 101 98 78 109
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Simulation Results
0®000

Estimated correlation function - 7y = 1

(a) Gaussian (b) Nongaussian with \;

(c) Nongaussian with 2 and A\;  (d) Gaussian (Uncontaminated data)
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Simulation Results
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Nongaussian model with \;
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Simulation Results
000®0

Nongaussian model with 4 (lognormal)
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Simulation Results
ooooe

Nongaussian model with \; and A

Variance
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(a) Variance for each location. (b) Nugget for each location.
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©) Mini=1,...,30. ) hi,i=1,...,30.
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Simulation Results
®00

Description and BF

@ A region was selected and an increment from Unif(0.5, 1.5) times the
standard deviation was added to each observation for the first 10 time
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Simulation Results
®00

Description and BF

@ A region was selected and an increment from Unif(0.5, 1.5) times the
standard deviation was added to each observation for the first 10 time
points.
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@ The logarithm of the BF using Shifted-Gamma (A = 0.98) estimators:
‘ nug. A (lognormal) h(gamma) A; A & & (lognormal)
Gaussian | 44 70 72 75 110
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Simulation Results
oceo

Nongaussian model with \; and A

Variance
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(a) Variance for each location. (b) Nugget for each location.
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Simulation Results
ocoe

Data 2* - Description and BF

@ A region of the spatial domain was selected (locations 4, 16, 21 and 27)
and the same random increment from Unif(0.5, 1.5) times the standard
deviation was added to each observation for the first 10 time points.
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Simulation Results
ocoe

Data 2* - Description and BF

@ A region of the spatial domain was selected (locations 4, 16, 21 and 27)
and the same random increment from Unif(0.5, 1.5) times the standard
deviation was added to each observation for the first 10 time points.

@ The logarithm of the BF using Shifted-Gamma (A = 0.98) estimators:
‘ nug. A (lognormal) A (gamma) A; A; & & (lognormal)
Gaussian | -2 -4 -4 24 20
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Simulation Results
®00

Description and BF

@ The observations at time points 11 to 15 were contaminated by adding a
random increment from Unif(0.5, 1.5) times the standard deviation to
each observation for all spatial locations.
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Simulation Results
®00

Description and BF

@ The observations at time points 11 to 15 were contaminated by adding a
random increment from Unif(0.5, 1.5) times the standard deviation to
each observation for all spatial locations.

@ The logarithm of the BF using Shifted-Gamma (A = 0.98) estimators:
‘ nug. A (lognormal) A; Ay A& A& &h
Gaussian ‘ 18 44 28 76 112 111
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Simulation Results
oceo

Nongaussian models
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(a) Model with lognormal %(s).  (b) Model with lognormal A(s) and A (s).
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Simulation Results
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Nongaussian model with \; and \,
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Temperature data
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Data
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Temperature data
oeo

Model

@ Mean function:

,u(s, t) = 0o + 0151 + 02852 + O3h + 4t + 55t2

Dec, 2008 RIVRYS



Temperature data
oeo

Model

@ Mean function:
,u(s, t) = 0o + 0151 + 02852 + O3h + 4t + 55t2

e Cauchy covariance function: X; ~ Ga(\;, 1)

o= (1 T Hi/ana)M (1 T |1t/b5>/\2 <1 AT rr/bw)Ao

)\1 :)\zzlandC:)\o/(l—l-)\o).
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Temperature data
ooe

Likelihood

@ In order to calculate the likelihood function we need to invert a matrix
with dimension 2077 x 2077.

@ We approximate the likelihood by using conditional distributions.

@ We consider a partition of Z into subvectors Zy, ..., Z3; where
Zj = (Z(s1,1),- -, Z(se7, 1)) and we define Z(;) = (Z_11, -, Z)).
Then
31
p(2l) = p(zile) [ [ p(zilzg-1): 6)- (7
=2
@ This means the distribution of Z; will only depend on the observations in
space for the previous L time points.
@ In this application we used L = 5 to make the MCMC feasible.
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Temperature data
©0000

Bayes Factor

R M M&h N M&h M&XN A REN
Shifted gamma | 172 148 345 138 279 417 547

Table: The natural logarithm of the Bayes factor in favor of the model in the column
versus Gaussian model using Shifted-Gamma (A = 0.98) estimator for the predictive
density of z.

Dec, 2008 RRIRYS



Temperature data
0®000

Model with # and )\,

o’t’/h
20
I
o’t’/h
3
I
=_— oo
——

LML LR R R AR AR R RN R RN AR RRRRARRRR AR AR
13 5 7 9 11 13 15 17 19 21 23 25 27 29 31 147 11 16 21 26 31 36 41 46 51 56 61 66

@) o?(1 —7%)/ . (b) o*7%/h.
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Predicted temperature at the out-of-sample stations
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Model comparison

model Average width IS LPS

Gaussian 3.78 4.35 103.81
h 3.83 434 102.04

Al 3.74 436 105.09
M&h 3.75 448 103.79
Ao 3.73 394 87.33

M &h 3.73 3.87 86.57
A& 4.51 4.65 85.89
AL, h& Xy 3.84 4.02 83.78
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