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Motivation

Spatiotemporal data

Due to the proliferation of data sets that are indexed in both space and
time, spatiotemporal models have received an increased attention in the
literature.

Maximum temperature data - Spanish Basque Country (67 stations)
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Motivation

Example

31 time points (july 2006)
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Motivation

Typical problem

Given: observations Z(si, tj) at a finite number locations si, i = 1, . . . , I
and time points tj, j = 1, . . . , J.

Desired: predictive distribution for the unknown value Z(s0, t0) at the
space-time coordinate (s0, t0).

Focus: continuous space and continuous time which allow for prediction
and interpolation at any location and any time.

Z(s, t), (s, t) ∈ D× T, where D ⊆ <d, T ⊆ <
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Motivation

General modeling formulation

The uncertainty of the unobserved parts of the process can be expressed
probabilistically by a random function in space and time:

{Z(s, t); (s, t) ∈ D× T}.

We need to specify a valid covariance structure for the process.

C(s1, s2; t1, t2) = Cov(Z(s1, t1),Z(s2, t2))
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Motivation

Non-gaussian spatiotemporal models

But building adequate models for these processes is not an easy task.

One observation of the process⇒ simplifying assumptions:
I Stationarity: Cov(Z(s1, t1),Z(s2, t2)) = C(s1 − s2, t1 − t2)
I Isotropy: Cov(Z(s1, t1),Z(s2, t2)) = C(||s1 − s2||, |t1 − t2|)
I Separability: Cov(Z(s1, t1),Z(s2, t2)) = Cs(s1, s2)Ct(t1, t2)
I Gaussianity: The process has finite dimensional Gaussian distribution.

Models based on Gaussianity will not perform well (poor predictions) if
I the data are contaminated by outliers;
I there are regions with larger observational variance;

Dec, 2008 7/ 37



Outline Introduction Spatiotemporal modeling Simulation Results Temperature data

Motivation

Non-gaussian spatiotemporal models

But building adequate models for these processes is not an easy task.

One observation of the process⇒ simplifying assumptions:
I Stationarity: Cov(Z(s1, t1),Z(s2, t2)) = C(s1 − s2, t1 − t2)
I Isotropy: Cov(Z(s1, t1),Z(s2, t2)) = C(||s1 − s2||, |t1 − t2|)
I Separability: Cov(Z(s1, t1),Z(s2, t2)) = Cs(s1, s2)Ct(t1, t2)
I Gaussianity: The process has finite dimensional Gaussian distribution.

Models based on Gaussianity will not perform well (poor predictions) if
I the data are contaminated by outliers;
I there are regions with larger observational variance;

Dec, 2008 7/ 37



Outline Introduction Spatiotemporal modeling Simulation Results Temperature data

Motivation

Non-gaussian spatiotemporal models

But building adequate models for these processes is not an easy task.

One observation of the process⇒ simplifying assumptions:
I Stationarity: Cov(Z(s1, t1),Z(s2, t2)) = C(s1 − s2, t1 − t2)
I Isotropy: Cov(Z(s1, t1),Z(s2, t2)) = C(||s1 − s2||, |t1 − t2|)
I Separability: Cov(Z(s1, t1),Z(s2, t2)) = Cs(s1, s2)Ct(t1, t2)
I Gaussianity: The process has finite dimensional Gaussian distribution.

Models based on Gaussianity will not perform well (poor predictions) if
I the data are contaminated by outliers;
I there are regions with larger observational variance;

Dec, 2008 7/ 37



Outline Introduction Spatiotemporal modeling Simulation Results Temperature data

Motivation

Non-gaussian spatiotemporal models

But building adequate models for these processes is not an easy task.

One observation of the process⇒ simplifying assumptions:
I Stationarity: Cov(Z(s1, t1),Z(s2, t2)) = C(s1 − s2, t1 − t2)
I Isotropy: Cov(Z(s1, t1),Z(s2, t2)) = C(||s1 − s2||, |t1 − t2|)
I Separability: Cov(Z(s1, t1),Z(s2, t2)) = Cs(s1, s2)Ct(t1, t2)
I Gaussianity: The process has finite dimensional Gaussian distribution.

Models based on Gaussianity will not perform well (poor predictions) if
I the data are contaminated by outliers;
I there are regions with larger observational variance;

Dec, 2008 7/ 37



Outline Introduction Spatiotemporal modeling Simulation Results Temperature data

Motivation

Example

Maximum temperature data - Spanish Basque Country
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For this reason, we consider spatiotemporal processes with heavy tailed
finite dimensional distributions.
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We will consider processes that are

stationary

isotropic

nonseparable

non-Gaussian
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Nonseparable models

Continuous mixture

Idea: Continuous mixture of separable covariance functions [Ma, 2002].

It takes advantage of the well known theory developed for purely spatial
and purely temporal processes.

Nonseparable model

Z(s, t) = Z1(s; U)Z2(t; V) (1)

(U,V) is a bivariate random vector with correlation c.

Unconditional covariance

C(s, t) =
∫

C1(s; u)C2(t; v)dF(u, v) (2)

C(s, t) is valid and nonseparable.
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Nonseparable models

In particular, if C1(s; u) = σ1 exp{−γ1(s)u} and C2(t; v) = σ2 exp{−γ2(t)v}
and U = X0 + X1 and V = X0 + X2, where Xi has finite moment generating
function Mi, then

Proposition

C(s, t) = σ2M0(−(γ1(s) + γ2(t))) M1(−γ1(s)) M2(−γ2(t)), (s, t) ∈ D× T, (3)

where γ1(s) and γ2(t) are spatial and temporal variograms.

For instance, γ1(s) = ||s/a||α and γ2(t) = |t/b|β .

Notice that c = corr(U,V) measures separability and c ∈ [0, 1].

See [Fonseca and Steel, 2008] for more details.
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Heavy tailed processes

Mixing in space and time

We consider the process

Z̃(s, t) = Z̃1(s; U)Z̃2(t; V), (4)

Mixing in space

Z̃1(s; U) =
√

1− τ 2 Z1(s; U)√
λ1(s)

+ τ
ε(s)√
h(s)

(5)

Mixing in time

Z̃2(t; V) =
Z2(t; V)√
λ2(t)

(6)
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Heavy tailed processes

Process λ1(s)

Mixing in space

Z̃1(s; U) =
√

1− τ 2 Z1(s; U)√
λ1(s)

+ τ
ε(s)√
h(s)

λ1(s) accounts for regions in space with larger observational variance.

λ1(s) needs to be correlated to induce m.s. continuity of Z̃1(s; U), this is
equivalent to E[λ−1/2

1 (si)λ
−1/2
1 (si′)]→ E[λ−1

1 (si)] as si → si′ .

This is satisfied by λ1(s) = λ, ∀s⇒ student-t process. But is does not
account for regions with larger variance.

This is also satisfied by the glg process where {ln(λ1(s)); s ∈ D} is a
gaussian process with mean −ν

2 and covariance structure νC1(.).
[Palacios and Steel, 2006]
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Heavy tailed processes

Process h(s)

Mixing in space

Z̃1(s; U) =
√

1− τ 2 Z1(s; U)√
λ1(s)

+ τ
ε(s)√
h(s)

h(s) accounts for traditional outliers (different nugget effects).

We consider the detection of outliers jointly in the estimation procedure
and the variable hi = h(si), i = 1, . . . , I are considered latent variables

Their posterior distribution indicate outlying observations (hi close to 0).

We consider
I log(hi) ∼ N(−νh/2, νh).
I hi ∼ Ga(1/νh, 1/νh).
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Heavy tailed processes

Process λ2(t)

Mixing in time

Z̃2(t; V) =
Z2(t; V)√
λ2(t)

λ2(t) accounts for sections in time with larger observational variance.

This can be seen as a way to adress the issue of volatility clustering,
which is common in finantial time series data.

We consider the log gaussian process where {ln(λ2(t)); t ∈ T} is a
gaussian process with mean −ν2

2 and covariance structure ν2C2(.).
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We consider the log gaussian process where {ln(λ2(t)); t ∈ T} is a
gaussian process with mean −ν2

2 and covariance structure ν2C2(.).
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Heavy tailed processes

Predictions

(λ1i, hi, λ2j) are considered latent variables and sampled in our MCMC
sampler.

Given (λ1i, hi, λ2j) the process is gaussian and we can predict at
unobserved locations and time points.

We compare the predictive performance using proper scoring rules
[Gneiting and Raftery, 2008]:

I LPS(p, x) = −log(p(x))
I IS(q1, q2; x) = (q2 − q1) + 2

ξ (q1 − x)I(x < q1) + 2
ξ (x− q2)I(x > q2). We

use ξ = 0.05 resulting in a 95% credible interval.
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Data

This data set has I = 30 locations and J = 30 time points generated from
a Gaussian model with no nugget effect (τ 2 = 0).

The covariance model is nonseparable Cauchy (Xi ∼ Ga(λi, 1),
i = 0, 1, 2) in space and time with c = 0.5.

We contaminated this data set with different kinds of ”outliers” in order
to see the performance of the proposed models in each situation.
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Spatial domain
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The proposal for λ1i, hi, i = 1, . . . , I in the MCMC sampler is
constructed by dividing the observations in blocks defined by position in
the spatial domain.
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Data 1

Description and BF

One location was selected at random (location 7) and a random
increment from Unif(1.0, 1.5) times the standard deviation was added to
each observation for this location for the first 20 time points.

The logarithm of the BF using Shifted-Gamma (λ = 0.98) estimators:
nug. h (lognormal) h (gamma) λ1 λ1 & h (lognormal)

Gaussian -1 101 98 78 109
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Data 1

Estimated correlation function - t0 = 1
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Data 1

Nongaussian model with λ1
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Data 1

Nongaussian model with h (lognormal)
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Data 1

Nongaussian model with λ1 and h
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Data 2

Description and BF

A region was selected and an increment from Unif(0.5, 1.5) times the
standard deviation was added to each observation for the first 10 time
points.
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The logarithm of the BF using Shifted-Gamma (λ = 0.98) estimators:
nug. h (lognormal) h (gamma) λ1 λ1 & h (lognormal)

Gaussian 44 70 72 75 110
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Data 2

Nongaussian model with λ1 and h
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Data 2

Data 2∗ - Description and BF

A region of the spatial domain was selected (locations 4, 16, 21 and 27)
and the same random increment from Unif(0.5, 1.5) times the standard
deviation was added to each observation for the first 10 time points.

The logarithm of the BF using Shifted-Gamma (λ = 0.98) estimators:
nug. h (lognormal) h (gamma) λ1 λ1 & h (lognormal)

Gaussian -2 -4 -4 24 20
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Data 3

Description and BF

The observations at time points 11 to 15 were contaminated by adding a
random increment from Unif(0.5, 1.5) times the standard deviation to
each observation for all spatial locations.

The logarithm of the BF using Shifted-Gamma (λ = 0.98) estimators:
nug. h (lognormal) λ1 λ2 λ1&λ2 λ1&λ2&h

Gaussian 18 44 28 76 112 111
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Data 3

Nongaussian models
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(a) Model with lognormal h(s). (b) Model with lognormal h(s) and λ1(s).

Dec, 2008 28/ 37



Outline Introduction Spatiotemporal modeling Simulation Results Temperature data

Data 3

Nongaussian model with λ1 and λ2
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Non-gaussian spatiotemporal modeling

Data
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Non-gaussian spatiotemporal modeling

Model

Mean function:

µ(s, t) = δ0 + δ1s1 + δ2s2 + δ3h + δ4t + δ5t2

Cauchy covariance function: Xi ∼ Ga(λi, 1)

C(s, t) =
(

1
1 + ||s/a||α

)λ1
(

1
1 + |t/b|β

)λ2
(

1
1 + ||s/a||α + |t/b|β

)λ0

λ1 = λ2 = 1 and c = λ0/(1 + λ0).
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Non-gaussian spatiotemporal modeling

Likelihood

In order to calculate the likelihood function we need to invert a matrix
with dimension 2077× 2077.

We approximate the likelihood by using conditional distributions.

We consider a partition of Z into subvectors Z1, ...,Z31 where
Zj = (Z(s1, tj), . . . ,Z(s67, tj))′ and we define Z(j) = (Zj−L+1, ...,Zj).
Then

p(z|φ) ≈ p(z1|φ)
31∏

j=2

p(zj|z(j−1), φ). (7)

This means the distribution of Zj will only depend on the observations in
space for the previous L time points.

In this application we used L = 5 to make the MCMC feasible.
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Results

Bayes Factor

h λ1 λ1 & h λ2 λ2 & h λ1 & λ2 λ1, h & λ2

Shifted gamma 172 148 345 138 279 417 547

Table: The natural logarithm of the Bayes factor in favor of the model in the column
versus Gaussian model using Shifted-Gamma (λ = 0.98) estimator for the predictive
density of z.
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Results

Model with h and λ2
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Results

Predicted temperature at the out-of-sample stations
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Results

Model comparison

model Average width ĪS LPS
Gaussian 3.78 4.35 103.81

h 3.83 4.34 102.04
λ1 3.74 4.36 105.09

λ1 & h 3.75 4.48 103.79
λ2 3.73 3.94 87.33

λ2 & h 3.73 3.87 86.57
λ1 & λ2 4.51 4.65 85.89
λ1, h & λ2 3.84 4.02 83.78
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Results
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