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Abstract

We propose a model-based geostatistical approach to deal with regionalized composi-
tions. We combine the additive-log-ratio transformation with multivariate geostatistical
models whose covariance matrix is adapted to take into account the spurious correlation
induced by the compositional structure. Such specification allow the usage of standard
likelihood methods for parameters estimation. For spatial prediction we combined a back-
transformation with the Gauss-Hermite method to approximate the conditional expectation
of the compositions. We analyse particle size fractions of the top layer of a soil for agronomic
purposes which are typically expressed as proportions of sand, clay and silt. Additionally a
simulation study assess the small sample properties of the maximum likelihood estimator.

1 Introduction

Compositional data are vectors of proportions, specifying fractions of a whole whose elements
typically sum to one or 100%. Given the nature of this data, the direct application of usual
statistical techniques based on the Gaussian multivariate distribution on the composition values
is not suitable. As pointed by Aitchison (1986), the constant sum constraints not only invalidate
the assumption that our response variables are drawn from unbounded random processes, but
also induce spurious negative correlations between response variables.

Compositional data are frequent in earth sciences, such as, in mineralogy, agronomy, geo-
chemistry and hydrology. In such applications, not rarely, compositions are recorded along with
their spatial locations, and spatial patterns are of interest, characterizing what is called regional-
ized compositions (Pawlowsky, 1989). Models accounting for spatial patterns should account for
both, the spurious correlation induced by the composition structure and the spatial correlation
at a suitable scale.

Practical analysis of compositional data is, in general, based on the seminal work of Aitchison
(1982) and the comprehensive monograph by Aitchison (1986). The R package compositions
(van ver Boogaart and Tolosana-Delgado, 2006) provides a complete toolbox for analysis of
independent compositional data (van den Boogaart and Tolosana-Delgado, 2013).

The literature about regionalized compositions is concentrated around the contributions of
Pawlowsky (Pawlowsky, 1989; Pawlowsky and Burger, 1992; Pawlowsky et al., 1995) and its
applications (Odeh et al., 2003; Lark and Bishop, 2007). The monograph Pawlowsky and Olea
(2004) presents the state of the art for the analysis of regionalized compositional data. Tjelmeland
and Lund (2003) proposed a model-based approach for the analysis of spatial compositional data



under the Bayesian framework. Other developments and references can be found in Pawlowsky-
Glahn et al. (2015).

The Pawlowsky’s (Pawlowsky and Olea, 2004) approach can be summarized in three steps:
(i) given a vector of B regionalized compositions apply the additive-log-ratio transformation
(Aitchison, 1986). (ii) for the transformed vector use the orthodox cokriging approach (Wacker-
nagel, 1998). (iii) adopt an unbiased back-transformation to predict the compositions back on the
original compositional scale. Examples this approach with emphasis on step (iii) can be found
in Lark and Bishop (2007). The Pawlowsky’s approach uses traditional geostatistical techniques
with parameter estimation based on the variogram and cross-variogram methods. Alternatively,
a model-based geostatistical approach (Diggle et al., 1998) can be considered, allowing the adop-
tion of likelihood based or Bayesian statistical methods for estimation and prediction, inheriting
related properties of consistency, asymptotic normality and efficiency.

We adopt the model-based approach to deal with regionalized compositions. Following
Pawlowsky’s approach, we apply the additive-log-ratio transformation to obtain transformed
response variables, for which we specify a common spatial component multivariate geostatistical
model (Diggle and Ribeiro Jr, 2007) with additional terms to take into account the spurious
correlation induced by the compositional structure. For estimation of the model parameters we
adopt the maximum likelihood method. For spatial prediction, we adopt the approach proposed
by Pawlowsky and Olea (2004) combining a back-transformation and the Gauss-Hermite method
to approximate the conditional expectation of the compositions. We also obtain simulations of
the predictive distributions. Our approach produce predictions satisfying the required constant
sum constraints and has interpretable parameters in the scale of the transformed response vari-
ables. We apply our model to analyse a data set about the distribution of mineral particles in the
soil. We also present a simulation study to verify the small sample properties of the maximum
likelihood estimator.

Section 2 presents the compositional geostatistical model along with the estimation and spa-
tial prediction procedures. In Section 3 we apply the proposed model to analyse a real data
set. Section 4 presents a simulation study. Finally, Section 5 provides some discussions and
recommendations for future works. We provide the R code and data set in the supplementary
material.

2 The geostatistical compositional model

In this section we describe the geostatistical compositional model as an extension of the bivariate
Gaussian common component geostatistical model (Diggle and Ribeiro Jr, 2007). Let X (u) be an
n x B matrix of regionalized compositions at spatial locations u = (uy,...,u,) " i.e., X;(u;) >0
and Zle X;(u;) =1fori=1,...,n. Let Y(u) denote an n x (B — 1) matrix of transformed
regionalized compositions obtained by the application of the additive-log-ratio transformation
on each row of X (u). Furthermore, let Y(u) = (Yi(uw)',...,Yp_1(u)")" be the n(B —
1) x 1 stacked vector of transformed regionalized compositions by columns. The geostatistical
compositional model assumes that Y(u) is multivariate Gaussian distributed with vector of mean

n= (Dl,BlT, ceey DB,lﬁgfl)T and covariance matrix 3 given by the components,
Cov(Y,(ui); Yr(ui) = 07 +77,  Cov(¥Yo(ui); Yo(uir)) = o7 p(u, 9), 1)
and
Cov(Y ,(u;); Y (i) = 0pop I (i, i) + 1070 I3(i, 1), (2)

where the indicator functions Iy and I3 are defined by
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respectively. Based on this specification the r** component of the transformed regionalized
compositions is given by
Y. (u;)) = DB, +0,Sui;¢) + 1.2, (3)

where r = 1,..., B—1. The model consists of the sum of fixed effects D, 3,, spatially correlated
S(u;; ¢) and uncorrelated 7. Z random effects. These effects are specified by Equation (1). The
parameters 72 are sometimes called nugget effect. The n x p design matrix D, contains values
of p covariates and 3, is a p x 1 vector of regression parameters.

The spatial random effect S(u;;¢) is a unit variance Gaussian random field (GRF) with
correlation function p(u; ¢) where p € R is a valid correlation function parametrized by ¢ with
d being the dimension of the spatial domain. We assume in particular correlation functions for
spatially continuous process depending only on Euclidean distance u = ||u; — u;/|| between pair
of points. Popular choices are the exponential, Matérn and spherical. At last, Equation (2)
describes the cross-covariance structure composed by a spatial component and a term inducing
the spurious correlation, measured by the parameters p,... It is important to highlight that
the range parameter is assumed common for all components of the transformed regionalized
compositions.

2.1 Estimation and Inference

In this section we describe the likelihood approach used to estimate the model parameters.
We divide the set of parameters into two subsets, 8 = (BT,)\T)T. In this notation B =
(BIT, ey ,8;71)—'— denotes a P x 1 vector containing all regression parameters. Similarly, we
let A= (0f,...0% 1,78, ..., TA_1,0.P1,-- -, P(B—1)(B—2)/2)  be a @ x 1 vector of all covariance
parameters. We use the convention to stack the spurious correlation parameters p,,. by columns.
For a vector of observed transformed regionalized compositions Y (u), the log-likelihood function
is given by,

(n(B—1))
2

1 1 _
10; Y(u)) = — In(2m) — 5 In|Z] = S (V(u) ~ DB) =7 (YV(u) - DB).  (4)
The maximum likelihood estimator is obtained by the maximization of the log-likelihood function
(4) with respect to the parameter vector @ whose components are orthogonal. For the regression

parameters we can obtain a closed-form,

B=(D'S'D)"H(DTEY(u)). (5)

For the covariance parameters we adopt the BFGS algorithm as implemented in the R (R Core
Team, 2015) function optim() for numerical maximization of the profile log-likelihood function
obtained by substituting (5) in the expression (4). The algorithm requires the calculation of the
score function, first derivative of (4) with respect to the covariance parameters either numerically
or analytically. We opt to compute the score function analytically obtaining

NG Y(w) _ 1. <21§i> _ l(y(u) -Dp)" (
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where gTi denotes the partial derivative of 3 with respect to the element A, for ¢ = 1,...,Q.
Such derivatives are easily computed using matrix calculus (Wand, 2002).



Let 6 be the maximum likelihood estimator of @. Then the asymptotic distribution of 0 is
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where I5(3) = DT 3D and Ix () are the Fisher information matrices for 8 and A, respectively. Tt
is not possible to obtain a closed-form for I)\(j\). Thus, we replace it by the observed information
matrix obtained numerically using the Richardson method as implemented in the R package
numDeriv (Gilbert and Varadhan, 2012).

We shall show in Section 4 through of simulation studies that often this type of asymptotic
result does not work well for covariance parameters. In the context of geostatistical analysis
of compositional data we are particularly interested in the covariance parameters. Thus, we
recommend to use the profile likelihood approach to compute confidence intervals for covariance
parameters, mainly when analysing small or medium sized data sets. Details about how to
implement profile likelihood computations in R can be found in Bolker (2012).

2.2 Spatial prediction

In this section we describe the spatial prediction in the context of geostatistical compositional
models. The objective is to predict the values of Yy (u) additional random variables at any arbi-
trary spatial locations ug within the study region. The best linear unbiased predictor of Vo (uo)
is the conditional expectation of Yy(ug)|Y(u) whose expression is presented in Equation (8)
along with the expression for the conditional covariance. We suppress the spatial indexes for
convenience.

E()|Y) = EQb) + y,»E55,(Y — E()), Cov(MolY) = Zyoy, — Ty E3p vy, (8)

In practice, the unknown parameters in the expectation and covariance structures are replaced by
the maximum likelihood estimates. Note that from this procedure we obtain predictions for the
stacked regionalized transformed compositions at non-observed spatial locations wg. The next
objective is to back-transform these predictions to the original composition scale i.e., the unit
simplex. For a single spatial location, let py- and 3y be the expectation and covariance matrix of
the additive-log-ratio transformed variable Y obtained by Equation (8). The probability density
function of X is given by

B

B -1
F) = (2) 2 (2| xp { =S @IFX) — ) B () - i) (Hxi) e

where alr(X) denotes the additive-log-ratio transformation applied on the vector of compositions
X. The Equation (9) is recognizable as the multivariate Gaussian distribution with an additional
term, which is the Jacobian of the back-transformation (Pawlowsky and Olea, 2004). An unbiased
predictor of X is obtained by computing the expectation of X i.e.,

B(X) = / X f(X)dX, (10)

we adopt the Gauss Hermite method to solve the intractable integral. Basically, the Gauss
Hermite method changes the intractable integral by a weighted finite sum,
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where K is the number of points used for the approximation, G are roots of the Hermite poly-
nomial Hx(G)(i =1 < 2,..., K) and w; are weights given by,

L
- KP[Hk (G

Wy

The Gauss Hermite method is easily implemented in R, as the function gauss.quad() from pack-
age statmod (Smyth et al., 2013) provides the weights and the Gauss Hermite points. Pawlowsky
and Olea (2004) show that the auxiliary function f(G) required in Equation (11) is given by,

[(G) =777 agl(V2R G + py), (12)

where agl denotes the additive generalized logistic (back-transformation) and R denotes the
Cholesky decomposition of Xy . More details can be found in Odeh et al. (2003).

An alternative approach is obtained by Monte Carlo simulations of the predictive distribution.
For estimated py and ¥y simulating values from this multivariate Gaussian distribution is
straightforward. We denote simulated values by Y ;. We apply the back-transformation on the
simulated values to obtain values X . An unbiased predictor of X is the sample mean of X.
An appealing feature is that prediction of other quantities of interest, linear and non-linear can
be also obtained applying the functional of interest to the simulated values.

3 Data analysis

In this section we report analysis of particle size fractions of sand, silt and clay measured at
an experimental plot within the Areao experimental farm belonging to the Escola Superior de
Agricultura Luiz de Queiroz, Piracicaba, Sao Paulo State, Brazil. The soil was sampled in the
soil layer of 0 to 20 centimetres at 82 points and on a regular grid with 20 metres spacing,
Figure 1 shows the data as a ternary diagram along with histograms for each component of the
composition.
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Figure 1: Histograms and ternary diagram of particle size fractions.

The silt fractions have smaller values and variability whereas clay is the predominant compo-
nent with the largest variability. This example illustrates a fairly common situation in agriculture



where the application of geostatistical compositional model is required. The distribution of min-
eral particles between size fractions typically sand, silt and clay affects many properties of the
soil, such as water relations, chemistry, organic carbon dynamics and mechanical properties. In
general the main goal this type of spatial analysis is to predict the particle size fractions of the soil
at a grid covering the area to define areas for possible different management practices. Interest
can be in mean values, maximums and minimums as well as exceedance of critical values.

We computed the additive-log-ratio transform of sand and silt contents, with clay, the most
abundant content, as the denominator of the ratio. For the transformed regionalized compositions
we fitted the geostatistical compositional model with exponential correlation function. Parameter
estimates, standard errors (SE) and asymptotic 95% confidence intervals are shown in Table 1.

Table 1: Parameter estimates, standard errors (SE) and asymptotic 95% confidence intervals.

Parameter Estimate SE 2.5% 97.5%
51 —0.7864 0.2561 —1.2883 —0.2845
Bo —0.7943 0.0694 —0.9304 —0.6583
o1 0.4705 0.1827 0.1125 0.8285
D) 0.1168 0.0690 —0.0185 0.2520
1 0.2838 0.0491 0.1875 0.3800
To 0.2619 0.0220 0.2187 0.3050
10) 81.4365 80.4313 —76.2059 239.0789
p 0.9589 0.0559 0.8492 1.0685

Results on Table 1 show that the variability of the first transformed component is larger than
of the second. The spurious correlation is large and the proportion of variability attributed to
the spatial effect is larger for the first component. The value of the common range parameter
ngS = 81.43 indicates the presence of spatial structure, although the asymptotic confidence interval
include artefactual negative values. Artefactual negative values are also included in the confidence
interval for oo. It is a well-known result that, in general, the asymptotic result (7) does not work
well for covariance parameters, specially with small data sets, such are the data considered here.
We recommend to use the profile likelihoods to quantify the uncertainty associated with these
estimates. Figure 2 shows profile likelihoods expressed in terms of the square root of the profile
deviances for the covariance parameters in the geostatistical compositional model considered
here.
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Figure 2: Profile likelihoods for covariance parameters.

The plots in Figure 2 are compatible with a quadratic profile likelihood except for the range
parameter ¢ that show a heavy right tail. The results confirm the worth of the spatial effect.
Based on the fitted model and using the two methods described in Section 2.2 we perform the
spatial prediction of the compositions. Maps of predicted values are shown in Figure 3.
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Figure 3: Prediction maps of particle size fraction of clay, silt and sand by Gauss Hermite and
simulation methods.



In general the results returned by the two approaches agree. Predictions based on simulations
are a noisy version of the ones obtained with the Gauss-Hermite method. The predictions are
reasonable since they agree with the exploratory analysis presented in Figure 1.

The results obtained by Monte Carlo methods are reassuring in the sense they validate the
integral approximations. Furthermore, they allow for computing not only predicted means and
variances but also general predictands which otherwise would be prohibited by analytical meth-
ods. A typical example is the prediction of non-linear functions of the underlying fields. In order
to illustrate this fact, we show in Figure 4 the prediction maps of maximum and minimum values
for the soil fractions. Such quantities can be even more important than the means for defining
soil classifications and management.
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Figure 4: Prediction maps of maximum and minimum values of particle size fraction of clay, silt
and sand.

4 Simulation study

We now turn to a simulation study to evaluate the bias and coverage rate of the maximum likeli-
hood estimators in the context of geostatistical compositional models. We consider compositions
with B = 3 components along with two sample size n = 100 and n = 250. We show results for
data simulated on a regular grid within the unit squared and adopting the exponential correlation
function. We also consider three parameter configurations, in order to obtain different patterns
of the compositional data. Table 2 presents the parameter values and Figure 5 shows ternary
diagrams for one sample of each of the configurations.
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Figure 5: Ternary diagrams of data simulated from each parameter set considered in the simu-
lation study.

Table 2: Parameters values used in the simulation study.

Configuration 51 B2 o o9 1 To ¢ p
1 -0.2 -0.5 1 1.5 03 03 025 0.9
2 1 1 1.2 1.5 09 05 025 0.5
3 -0.5 -1 045 013 03 05 0.1 0

The configurations 1, 2 and 3 generate samples which displays the ternary diagram: concen-
trated in the middle, spread all over and concentrated on the left side, respectively.

For each parameter configuration we simulate 1000 samples and fit the geostatistical composi-
tional model proposed in Section 2. The confidence intervals were obtained using the asymptotic
result (7). Table 3 presents the bias and coverage rate by sample size and parameter set.

Table 3: Bias (BS) and coverage rate (CR) by sample size and parameter set.

Configuration 1 Configuration 2 Configuration 3
n = 100 n = 225 n = 100 n = 225 n = 100 n = 225
Parameter  BS CR  BS CR BS CR  BS LC BS CR  BS CR
o1 -.067 .909 | -.050 .853 | -.035 .966 | -.059 0.912 | -.048 .814 | .009 .894
P -101 .901 | -.077 .834 | -.046 .974 | -.072 0.916 | -.005 .962 | .005 .957
T .004 881 | -.026 .878 | -.120 .964 | -.051 0.966 | -.039 .788 | -.062 .945
Ty -.004 .891 | -.042 .897 | -.179 .960 | -.073 0.980 | -.021 .956 | -.007 .958
10) -.001 .868 | -.019 .776 | -.029 .732 | -.037 0.718 | .039 .902 | -.004 .807
P -.021 .868 | .004 .931 | -.400 .926 | -.108 0.978 | -.109 .924 | -.134 .973

The results show that the maximum likelihood estimators underestimate the covariance pa-
rameters at all cases. The largest bias appear in the configuration 2 and for the spurious cor-
relation parameter. In general, as expected, the bias decreases when the sample size increases.

For most cases the coverage rate is slightly smaller than the expected nominal level (95%) with
worse results for the range parameter.



5 Discussion

We proposed a model-based geostatistical approach to deal with regionalized compositional data.
The model combines the additive-log-ratio transformation and multivariate geostatistical models
whose covariance structure was adapted to take into account for the spurious correlation induced
by the compositional structure. This allows for the use of standard likelihood methods for
estimation of the model parameters. A critical point in the analysis of regionalized compositional
data is the spatial prediction. We adopted the approach proposed by Pawlowsky and Olea (2004)
combining a back-transformation and the Gauss-Hermite method to approximate the conditional
expectations. We also obtain simulations of the predictive distribution which can be used for
assessing quality of the results given the analytical approximation of the back-transformation
and, possibly more important, to obtain predictions of general functionals of interest. Results of
the predictions returned by our model satisfies the required constant sum constraints.

We apply the geostatistical compositional model to analyse a data set about particle size
fractions of sand, silt and clay. In general, in this type of analysis the main goal is to obtain
predictions for the fractions in a form of a map covering the study area. We showed through
the data set that the two presented prediction methods provide similar and reasonable results.
Through a simulation study we showed that in general the maximum likelihood estimators have a
small negative bias for the covariance parameters. The coverage rate is slightly smaller than the
expected nominal level. Thus, we recommend to use the profile likelihood approach to quantify
the uncertainty associated with these estimates, mainly when analysing small and medium data
sets.

The computational overhead are due to computations with the dense variance-covariance
matrix. This overhead may be alleviated by adopting methods such as covariance tapering (Fur-
rer et al., 2006; Kaufman et al., 2008), predictive processes (Eidsvik et al., 2012), low rank
kriging (Cressie and Johannesson, 2008) and SPDE models (Lindgren et al., 2011).
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