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Abstract: 

This article presents the statistical modeling of agricultural yield data based on a set of 
hierarchical Bayesian models. A hierarchical Bayesian framework allows the joint 
modeling of the temporal and spatial autocorrelation observed in the yield data. One of 
the major advantages of this framework is that an estimate of the premium rate is 
obtained directly from the posterior predictive distribution. This method captures all 
possible inference uncertainties involved in predicting the insurance premium rates as 
opposed the more traditional ad hoc two-stage methods based on estimation and 
prediction. A county-average yield data set was analyzed for the State of Paraná, Brazil 
for the period of 1990 through 2002. The choice of the best model from among the 
several non-nested models considered was based on a posterior predictive criterion. The 
methodology used in this article proposes substantial improvements in the statistical 
methods often applied to the calculation of insurance premium rates. These 
improvements are especially relevant to situations when the availability of data is limited.   
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SPATIO-TEMPORAL MODELING OF AGRICULTURAL YIELD DATA WITH 

AN APPLICATION TO PRICING CROP INSURANCE CONTRACTS 

 

Introduction 

Historically, crop insurance in Brazil has been offered by the government at both the 

federal and state levels. In spite of the government’s efforts, the experience with crop 

insurance in Brazil has generally not been satisfactory. The absence of relatively long 

data sets and a suitable actuarial method to price crop insurance contracts is one of the 

main reasons for the poor performance and ultimate failure of this agricultural risk 

management program. High premium rates inhibited the demand for the insurance by 

producers and, at the same time, selected only those with higher probability of receiving 

the indemnity.  This is the classic problem of adverse selection.  

In recent years, efforts have been made to improve the performance of the programs 

and to make crop insurance more popular among producers. In December 2003, the 

federal government of Brazil approved Law No. 10,823, which authorizes the 

government to subsidize the crop insurance premium, according to the sort of insurance, 

type of crop and animal species, categories of producers, and production regions.  These 

scheme benefits those engaged in activities considered risk-reducing or technology-

enhancing. 

Beyond the federal government’s efforts, state governments have attempted to 

stimulate producers’ demand for crop insurance. The State of São Paulo (Southeast 

region), through a pilot project initiated in 2003, subsidized the premium paid by the 

producers. In the State of Rio Grande do Sul (South region), the state government began 

regulating the crop insurance state system through the Law No. 11,352 in 1999. The 

program is subsidized and operates with three types of insurance which vary according to 

the producer and the total amount of subsidy. 

This article concentrates on statistical methods of pricing an alternative crop 

insurance contract based on county yields. This type of insurance is widely available in 

the United States (named group risk plan), India, Sweden and Canada (Miranda, Skees 
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and Hazel, 1999) and, currently, is offered in Brazil in the South Region.  It is important 

to point out that the methodology proposed in this paper can also be applied to pricing 

others forms of insurance contracts, such as those based on individual yields, as long as 

there are enough data. 

 

Statistical  Modeling Framework 

A wide variety of statistical methods are often adopted in the estimation of crop 

insurance rates and a number of issues relating to the modeling of crop yields are 

pertinent to these methods.  For example, one often must address issues related to the fact 

that yields tend to have substantial trends over time and tend to be significantly correlated 

over space due to the systemic nature of weather. One subtlety often overlooked in crop 

insurance pricing models pertain to the fact that a degree of uncertainty also applies to the 

estimated parameters of any model. In this analysis, we adopt a Bayesian inferential 

framework that accounts for such sources of uncertainty while estimating the appropriate 

premium rate.   

Over many years, the statistical issues underlying agricultural yields have been a 

controversial point in the crop insurance literature. Several statistical approaches have 

been considered, including parametric yield models, semiparametric methods (Ker and 

Coble, 2003), nonparametric models (Goodwin and Ker, 1998; Turvey and Zhao, 1999) 

and empirical Bayes nonparametric approaches (Ker and Goodwin, 2000).  

Within the parametric modeling approach, some researchers have concluded that crop 

yields tend to follow a Normal distribution (Just and Weninger, 1999). However, a large 

number of other researchers including Day (1965), Taylor (1990), Ramirez (1997), and 

Ramirez et al. (2003) have found evidence against Normality.  

Other suggestions included the use of a Beta distribution (Nelson and Preckel, 1989), 

Inverse Hyperbolic Sine Transformations (Moss and Shonkwiler, 1993), and Gamma 

distributions (Gallagher, 1987). Sherrick et al. (2004) used several parametric 

distributions including the Normal, Lognormal, Beta, Weibull and Logistic distributions 

to model individual yield data.  
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Of course, the characteristics of crop yields may be idiosyncratic and may vary by 

location, crop, and production practice. In most empirical work, the only information 

known at time t is the time index and previously realized yields. Thus, in these analyses, 

the conditional density is based only on the temporal generating process of the data.  

In this study the temporal aspect of the data generating process is addressed, but we 

also give attention to the spatial dimension of the data generating process. In particular, 

we explicitly recognize the fact that the events that underlie yield realizations (e.g., 

weather, disease, and pest damages) tend to affect large areas at any single time. Thus, 

adjacent regions may experience substantial spatial correlations of yields over time. 

Taking this fact into account, space and time were combined in order to construct a 

spatio-temporal model.  

In other words, we simultaneously model the time trend, the temporal and spatial 

autocorrelation in contrast to two-stage methods1 making the premium rate calculation 

less ad hoc, in the sense that rates are derived directly in the model after the simulation 

through Markov Chain Monte Carlo algorithm (MCMC). Moreover, when calculating 

rates we are able to capture its estimation uncertainty through the standard errors. 

The fact that our data set is not large (in time dimension) creates additional 

difficulties regarding the forecast or prediction2 of crop yields in future years. In the 

construction of crop insurance contracts, it is typically the case that the terms and 

parameters of the contract must be available one to two years prior to the insurance 

cycle3.   

In our case, the last observation recorded was for the year 2002. Assuming that there 

is a two year lag between the receipt of historical yield data and the deadline required for 

filing new contract terms4. In light of this objective, we model the structure of the yield 

                                                 
1 A two-stage method first detrend the time series and them treat the detrended data (known as “normalized 
yields” ) as “observed” data to estimate the premium rate. Thus, this method fails to capture the uncertainty 
of the premium rate estimate. 
2 In this article, forecast and prediction and density and distribution will be used interchangeably.  
3 Administrative issues relating to the operation of any program require substantial lead time in providing 
the parameters of the contract offering. 
4 Such a two year lag is inherent in all U.S. crop insurance programs.   
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mean and assume that the precision of our models is conditionally constant throughout 

the analysis5.  

Under this approach, the conditional mean itµ was considered as identical to E(yit), 

where i represents the space variable index and t the temporal index. Thus, yit is the 

agricultural yield in county i and in time t, where i = 1, 2, ... , S and t = 1, 2, ... , T. The 

objective is to model the stochastic mean component, so that itµ reflects the temporal 

effects, spatial variation and the spatio-temporal relationships.  

Modeling the structure underlying the mean yield realization by adopting hierarchical 

models is intuitive and facilitates the visualization of each component in the analysis 

instead of modeling such structure directly through the yit
6. However, one limitation of 

the building correlation structure by hierarchical models is that all of the pairwise 

correlations would be positive.  

In situations where relatively little is known about the hyper-parameters, diffuse prior 

distributions can be adopted. Nevertheless, we must be careful to recognize that improper 

priors may yield improper posterior distributions7. In a practical sense, this problem can 

be prevented by considering proper prior distributions that assure that the Gibbs sampling 

process will be well-behaved, where ignorance can be represented as values for the 

precision parameter close to zero8 (Gelfand and Smith, 1990).  

 

Bayesian Mixture of Gaussian distributions 

                                                 
5 Modeling the mean component rather than the precision in forecasting problems results in more effective 
results (Gelfand et al., 1998). 
6 For this alternative version, Anselin (1988) shows several spatial and spatial-temporal models, such as, 
SUR (seemingly unrelated regression), where the Beta coefficients are allowed to vary in one of the two 
dimensions and the error term is correlated in the other dimension. In those models the dependence 
structure is modeled through the error term ε it, where yit = xit β it + ε it. 
7 In this context, Hobert and Casella (1996), estimated the parameters of a hierarchical linear mixed model 
using the Gibbs sampler and warned about using a non-informative prior distribution that can lead us to an 
improper posterior distribution. 
8 However, even in this case Gelman (2004) raises some computational and numerical issues. 
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Extending the work of Ker and Goodwin (2000), we modeled itµ as coming from two 

subpopulations or groups, a catastrophic and a non-catastrophic group9. Under this 

approach, we fit a hierarchical Bayesian model based on a mixture of two Gaussian 

distributions, where the density of the first (catastrophic) group lives in the inferior tail of 

the second group.  

Because catastrophic events are, by definition, much less frequent and the observed 

yield in such years is inferior relative to yields in regular years, one can expect a smaller 

mass in the first group and that such concentration lies in the left tail of the non-

catastrophic distribution. If we had information about such catastrophic events for each 

region and each year, we could use it as an indicator variable within a regression model. 

However, in most cases, such information is not observable and thus must be considered 

to be represented by latent variables.   

The general mixture model can be written as: 

1 1 1
( | ,..., , ,..., ) ( | )

J

j j j jj
f y f yθ θ γ γ γ θ

=
=� ,                   (1)  

where θ j is the parameter vector, J is the number of components, and for  j = 1, 2, ... , J 

jγ � 0 is a weighting parameter representing the ratio of the population attributed to the 

component j, such that� =
j

j 1γ .  If the distribution f (y | jθ , jγ ) is represented by a 

Gaussian distribution, then we haveθ j = ( jµ , 2
jσ ). Thus, eq. (1) can be written as  

� =
= J

j jjJJ yNyf
111 )|(),...,,,...,|( θγγγθθ                     (2) 

The previous model can be specified in an alternative manner by introducing an 

unobserved (latent) indicator variable that identifies the component from which the 

observation is drawn. This indicator variable I receives values equal j when y is drawn 

from the jth component. Equivalently, thus the mixture model in (1) can be represented 

as: 
                                                 
9 A catastrophic event can be defined by an adverse climatic event that occurs in a determined period of 
time (such as drought, hail, etc.). Consequently, if such an adverse event occurs, the agricultural yield will 
be drawn from the catastrophic group. Alternatively, yields are considered to be drawn from the non-
catastrophic group when normal weather events are realized. In this manner, one can think of yield 
realizations as being drawn from a finite mixture of two distributions. 



 6 

y | I, θ  ~ f(y | θ I)       

I |γ  ~ DCat (γ ),           (3) 

where DCat ( ) is the Categorical distribution such that P[I = j] = jγ  , j = 1,…,J.  We 

assume that we do not know from which component each observation is drawn.  In this 

case, if we consider that the parametersθ andγ are independent, then the prior distribution 

can be considered as the product of the two distributions. As we assign a Categorical 

prior distribution for I, the conjugate prior for � will be the Dirichlet distribution10 with 

hyper-parameterα : 

1

)(

)(
)( −Π

ΓΠ

Γ
=

�
j

jj
jj

j j
f αγ

α
α

γ ,     (4) 

where 0 < �j < 1 and 1=� j jγ , 0>jα , j = 1, ... J.  

Gelman et al. (2003) suggest that the ratio between the two variances should be 

considered as fixed or, alternatively, one should assign a proper prior distribution.  In this 

analysis, we assign an Inverse Gamma distribution (a, b) to assure that the posterior 

distribution is proper (assuming J = 2), and adopt Normal priors for the jµ terms and a 

Dirichlet distribution for the jγ terms.   

 

Temporal modeling 

Considering the temporal component as an integral part of itµ , we will model it 

initially by assuming that tt u+=Ψ β , where tΨ is a constant mean for all regions plus an 

error term, where tu  
iid

~  N(0, 2σ ). This model will be expanded incorporating time as a 

covariate in the analysis.  In this case, time may be represented by a polynomial in t 

according to t

p

l

l
lt ut +=Ψ �

=1

β . For this type of deterministic trend model, the variable t 

                                                 
10 For more details see Spiegehalter et al. (2003) 
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was centered in order to improve the MCMC speed of convergence, such that t* = (t - 

(N+1)*0.5).  

As an initial data exploration technique, we use empirical plots to evaluate the type of 

trend that might be present in the data. This evaluation indicated that a quadratic trend 

was sufficient to capture deterministic trend effects. Beyond the deterministic trend 

models, stochastic trend models and its interactions were analyzed.  

The stochastic trend component was modeled as a first-order autoregressive model 

AR (1), where, tΨ = ρ 1−Ψt  + ut, where -1 ≤ ρ ≤ 111. Note that this specification includes 

the random walk model as a special case.  

Assumptions regarding the specification of the model must be made. First, the 

correlation parameter ρ in the stochastic trend models varies according to the region. 

Second, an exchangeable12 Normal prior was assigned to the parameter ρ and Normal and 

inverse Gamma hyper-distributions for the mean and variance parameters, respectively13. 

Initially, a first-order polynomial function in t added to the stochastic component was 

considered. A subsequent model emerges naturally summing the second order term, 

resulting in tΨ = β 0 + β 1t* + β 2t*2 + tη , and ttt u+= −1ρηη . Similarly, the correlation 

coefficient was reparameterized as in the previous case and Normal prior distributions 

were assigned for β 0 and β 1 and β ,, with a prior precision parameterτ  →  0.  

                                                 
11 In light of the small sample size, a more sophisticated temporal model was not possible. For example, 
Ker and Goodwin (2000 p. 465) proposed an IMA(1,1) process, represented by yt = yt-1 + θ 0 + θ et-1 + et. 
The number of observations used in their article was small as well, though larger than in our case. Thus 
modeling an IMA(1,1) process can become a troublesome with regard to the stability and convergence of 
the parameters. In this manner, because we can express an MA(1) process as an AR( ∞ ) process, they 
modeled the temporal process as a AR(4), such that, yt = yt-1 + β 0 + β 1(yt-1 - yt-2) + β 2(yt-2 - yt-3) + β 3(yt-

3 - yt-4) + β 4(yt-4 - yt-5) + et . 
12 The random variables X1, … , Xn are exchangeable if any permutation of any subset of them of size k (k 
� n) has the same distribution. Note that a generalization of iid random variables is exchangeable random 
variables (Casella and Berger, 2002). This idea was first introduced by de Finetti (1972). One immediate 
consequence of exchangeability is that all marginal distributions must be the same (Migon and Gamerman, 
1999). 
13 We can also reparameterize the parameter ρ  so that a prior distribution could be assign to ρ , such that 
ρ  = 2η  – 1, 0 � η  � 1. Naturally, the Beta (c, d) distribution emerges as a prior for the parameter η  where 
c = ξ ψ and d = (1 - ξ ) ψ , 0 < ξ  < 1, ψ  > 0 and hyper-prior distributions for ξ  and ψ . 
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In light of random effects models, β ’s will be exchangeable. Such a result is 

convenient and it is reasonable to assume that the parameters may be different from one 

another, although they arise from the same population distribution. Thus, the preceding 

model (named “exchangeable model”) takes the form β  ~ N3(b, Σ ), where the hyper-

prior distributions for the vector b and the matrix Σ  will be, respectively, b ~ N3( bµ , bΣ ), 

where bµ  = 0 and bΣ is the diagonal covariance matrix with diagonal elements that 

approach ∞ and Σ  ~ W(R, k), where Σ is a p x p symmetric positive definite matrix, with a 

density proportional to: 

|R|k/2 | Σ |(k–p–1)/2 exp [–1/2(Tr(R Σ ))], (5) 

where k ≥  p yields the Wishart distribution (Anderson, 1982).  

 

Spatial modeling  

In the traditional literature of Bayesian spatial models, a variable Φ i denoting the 

spatial aspects can be represented initially in terms of a set of covariates placed in a 

vector Φ i representing a given characteristic of a certain area, contributing a component 

g( Φ i), where g would be a specific parametric function. In the absence of such 

covariates, random effects are introduced in order to capture unobserved features among 

different regions (Gelfand et al., 1998).  

This approach is particularly appealing because of the nature of agriculture yield data. 

Random effects by region need to be separated. Using the hierarchical structure of our 

Bayesian model one can separate these effects. Under the exchangeability assumption 

heterogeneity variables and clustering variables can then be estimated. The former 

through its prior distribution and the latter assuming a special form of spatial prior 

distribution.  

This treatment addressed the problem of spatial dependence between counties. 

Identification of the parameters in the likelihood function in this case is verified in the 
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hierarchical model by assuming a conditional autoregressive14 (CAR) prior distribution 

for
i

ξ and exchangeable Normal priors for vi. Moreover, when using the temporal term as 

a covariate, the autocorrelation and the time trend are considered, without any data 

transformation.  

In previous studies (Besag, 1974; Clayton and Kaldor, 1987; and, Cressie and Chan, 

1989), the non-structured variable is assumed to follows a Normal distribution, such that 

vi ~ N( υµ , 2
υσ ).  In addition, we assume that the spatially structure variable iξ conditional 

on jξ (j � i), is proportional to:  

�
≠

−−
ij

jijiiji })(2/1exp{~| 22 ξωξϕσξξ ξ  

where �i � 0 is a “sample size” associated with region i and ijω � 0 is the weight reflecting 

the influence of jξ on the conditional mean of iξ . We let �ij = 1 if j is neighbor of i and 0 

otherwise and set �i equal the number of neighbors of i. Thus, the conditional distribution 

�i | �j simplifies to iξ ~N( iξ , 2
ξσ / ni), where iξ is the average of the jξ ’s, in which j indexes 

the neighboring sites of i. The variance parameters 2
υσ and 2

ξσ are assigned an inverse 

Gamma prior distribution.   

Bernardinelli et al. (1995a) pointed out that the choice of the dispersion parameter 

must be made with caution. Carrying out a simulation of a Poisson model applied to 

disease mapping they verified that the heterogeneity parameter has standard deviation 

approximately equal to 0.7 times the standard deviation of the clustering parameter, var 

(vi ) ≈  0.7 var ( iξ ).   

Thomas et al. (2002) suggested that a restriction must be imposed on the random 

effects parameters such that those effects sum to zero. In other words, an intercept 

parameter must be included in the model receiving an improper (uniform) prior 

distribution.  

                                                 
14 The reader must not confuse the term “autoregressive” commonly used in the time series analysis. In 
spatial statistics or econometrics, autoregressive refers to the mean of the variable in the neighbor regions. 
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Gelfand et al. (1998) noted that, if both parameters were placed in the model, then 

one must allow E(vi) = 0. In the same fashion, if both parameters iv and iξ were included in 

the model and one attributed a non-informative prior for iv , then either iv = 0 or � iv  = 0. 

Moreover, as they pointed out, if iξ and vi are included in the model, the prior distribution 

will have greater weight in the posterior density. If one allows vi to be centered around 

zero with a small variance, then the component iξ will have greater weight in the term Φ i.  

Due to convergence issues in the MCMC algorithm, Gefland et al. (1998) suggested 

that one should choose to include either the spatially non-structured variable or the 

structured variable, but not both. Because the objective of their article was to obtain 

predicted values, they concluded that the model including iξ yielded better results. 

 

Spatio-temporal modeling 

One of first articles related to the spatial-temporal analysis using a log-linear Poisson 

model in disease mapping was provided by Bernardinelli et al. (1995b). In general, the 

model can be represented by: (intercept + area) + (time + area*time). To capture the 

dependence between vi and iξ , or in other words, the intercept and trend, they assumed 

that vi follows a univariate Normal distribution and that iξ came from a conditional 

Normal distribution.   

Based on this research, Dreassi (2003) modeled the relative risk for each period and 

city in Italy, incorporating an ordinal covariate that allows one to determine in which 

time lag the disease, in this particular case, lung cancer is affected by socio-economic 

factors.  

Another approach to modeling spatio-temporal effects was proposed by Waller et al. 

(1997). In this model, instead of capturing the spatio-temporal variation in a 

multiplicative form, they considered a nested model, where the spatial effect and the 

heterogeneity effect were allowed to vary in time. The general model considered was: 
T T

ist is i it itx z vµ β ω ξ= + + + ,                  (6) 
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where T
isx β is the covariate representing the effect for each sub-group s, ωT

iz represents the 

regional covariate, itξ is the spatial effect for the ith region in year t and itv is the random 

effect for the ith region in year t.  

Because of the conditional interchangeability associated with time, the resulting prior 

distribution assigned to the heterogeneity can be represented by )(t
iν

iid

~  N( )(2)( , tt
νν σµ ).  For 

the spatial effect )(t
iξ in the ith region in year t, an intrinsic CAR prior distribution was 

adopted (Waller et al., 1997). Thus, )(t
iξ ~ N( )(t

iξ , )(2 t
ξσ / ni), where )(t

iξ is the average of 

the jth contiguous areas of i. The precision parameters ( )(2 t
νσ and )(2 t

ξσ ) follow an inverse 

Gamma.  

Some restrictions also must be imposed in spatio-temporal models in order to ensure 

identification.  The inclusion of the former effect makes unnecessary the addition of vi 

and iξ . Moreover, the model is incapable of identifying )(t
iξ and tΨ if both are included in 

the model and a non-informative prior is assigned to tΨ given the time t. If 

both )(t
iν and )(t

iξ are included in the model, then )(t
νµ = 0. In this study, the spatial effects 

were nested within the temporal process, such that the parameters of the deterministic 

trend (�’s) are modeled using the CAR prior15. Thus we have the following general 

expression for the mean component: it
iii

it utt +++= 2)(
2

)(
1

)(
0 ** βββµ .  

 

Model selection criteria 

As we have demonstrated in the preceding review, several models emerge as potential 

candidates for our particular problem. A basic question is thus how to select the best 

model, taking into account one of the objectives of this work - prediction of agricultural 

yields. Traditional criteria of model selection, such as the Bayes factor, are not applicable 

in cases like ours where non-informative or conditional autoregressive (CAR) prior 

distributions are used. Carlin and Louis (2000, pg. 220), have shown that the use of 

                                                 
15 Intuitively, one can think of the trend parameters as being correlated across space, given time. 
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improper priors results in improper conditional predictive distributions, limiting the use 

of Bayes factor as a model selection criterion in these cases.   

The application of the classical approach to model selection is also difficult in these 

cases. Penalized likelihood criteria based on asymptotic efficiency requires the 

determination of the dimension of the model or the number of the parameters. In 

hierarchical models with random effects (such as the ones used in this paper), the 

dimension is difficult to characterize. Criteria based on cross validation are also difficult 

to implement when more sophisticated models are considered, due to the inclusion of 

heterogeneity and clustering variables defined only by the prior (Waller, 1998).  

In this article, a criteria based on predictive densities was considered (Laud and 

Ibrahim, 1995). In this context, Gelfand and Ghosh (1998) formalized a predictive 

criteria using a general form of loss function. The objective is to minimize the posterior 

predictive loss.  The posterior predictive distribution is given by: 

 (7) 

where M represents the set of all parameters in a given model and ynew is the replicate of 

the vector of observed data yobs. 

The criteria of model selection is based on a discrepancy function d(ynew, yobs), and the 

objective is to choose the model that minimizes the expectation of the discrepancy 

function,  conditional on yobs and Mm, where Mm  represents all the parameters in the 

model m. If we consider Gaussian models, the discrepancy function is given by d(ynew, 

yobs) = (ynew - yobs)T(ynew - yobs): 

],|)()[( mobsobsnew
T

obsnewM MyyyyyED
m

−−=             

� −=
n

mobsnewnobsnM MyyyED
m

],|)[( 2
,, .                    (8) 

Equation 8 can be factored into two additive terms 
mMG and

mMP , where the first term 

� −=
n

obsnewnobsnM yyEyG
m

2
,, )]|([  represents the sum of squared errors, which is a 

measure of goodness-of-fit, and the second term �=
n

obsnewnM yyP
m

)|var( ,  is a penalty 

term.  In models that are over- or under-fit, the predicted variance tends to be large and 

�= dMyMpMyfyyf obsnewobsnew )|()|()|(
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thus
mMP is large. The penalty is considered in the analysis without regard to the 

dimension of the model.  

In this work, a slightly different version of the model selection criterion will be 

utilized. Instead of using the quadratic predicted error, the mean squared predictive error 

will be considered relative to the number of regions used in the analysis. Note that the 

inclusion of a common denominator to all models does not affect the criterion. 

 

Empirical Analysis 

 

Data Description 

The agricultural yield data used in this study were provided by the IBGE (Statistical 

and Geography Brazilian Institute) and correspond to the period of 1990 trough 2002 for 

corn in the state of the Paraná, located in the southern region of Brazil. The state is made 

up of 399 counties. Annual yield observations for all 13 years are only available in 290 

counties. Consequently, we carry out the analysis with only those counties with the 

largest number of observations. The five largest counties in terms of average yields are 

Castro (6142 kg/ha), Ponta Grossa (5629 kg/ha), Marilândia do Sul (5488 kg/ha), Tibagi 

(5346 kg/ha) and Catanduvas (4923 kg/ha).  

 

Empirical Application 

We begin our analysis by choosing the model that minimizes the posterior predictive 

loss. Among the several models that were considered as candidates (25 in all), we only 

present results for the 10 best models (that resulted in minimum Dm, according to the 

criteria described above). Results for the model selection criteria are presented in Table 1.   

Note that all of the models chosen by the ten best values of the predictive error 

criterion include the temporal component and the stochastic trend. This clearly 

demonstrates the importance of the stochastic trend in the analysis. The optimal model, or 

in other words, the model that minimizes the quadratic predictive error, includes both the 

stochastic and deterministic components. In addition, allows the intercept to vary from 
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one county to another.  Further, this model was expanded to include spatial dependence 

in the slope parameters.  

The difference between models 1 and 2 lies in the prior distributions assigned to the 

β parameters. The superscript C indicates that a conditional autoregressive prior was 

assigned to the parameter. Otherwise, β receives a Normal prior. Comparing models 4 

and 9, one can note that the presence of heterogeneity variable results in smaller Dm as 

compared to the inclusion of the clustering effect. Comparing models 6 and 7, adding the 

spatially structured latent variable (clustering) indexed by t results in larger value of Dm 

as compared to the model that holds the clustering variable fixed in time. If we include 

the deterministic term, the model with a clustering effect that varies in time becomes 

slightly superior to the model considering the same effect constant in time (D8 < D9).  

The results in Table 1 also demonstrate that the quadratic deterministic trend model and 

mixture of Normal models were not included in the top ten best model specifications due 

to unsatisfactory values of Dm. 

Basically, model 1 can be expressed according to the hierarchical structure: 

 

 

Prior distributions: 

�i ~ N(��, ��) - exchangeable prior distributions  

)/,(~ 2

2

iii

i
C

nCAR

c
i

ξσξξ

ξβ +=
 

i1β and c Normal priors with mean zero and low precision. 

� = 1/(	)0.5 an Inverse Gamma distribution 

Hyperprior distributions: 



� Normal hyperprior and �� = 1/(	�)0.5 an Inverse Gamma distribution 

We run three chains to check the mixing of the Markov sequence and also check for 

all the parameters the graphical diagnostics of convergence. Results showed that all 

parameters achieved good convergence and mixing.  
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One of the main advantages of Bayesian analysis is that one can incorporate 

uncertainty when estimating the parameter value. Table 2 shows the expected value of the 

parameter, its standard deviation and the percentiles 5%, median and 95%. For these 

counties, the average standard deviation is for β 1, β 2 and ρ equal to 582, 3.9 and 0.11.  

Because of the limited space, we will show only descriptive statistics of the 290 

counties. Thus, the maximum predicted values of β 1, β 2 and ρ are respectively 2410, 

46.85 and 0.83. The minimum values are 550, 46.73 and 0.30 and the average, 1174, 

46.79 and 0.61. The average standard deviation is 430, 3.95 and 0.13. Due to the small 

number of observations, we do not correct for conditional heteroskedasticity. Instead we 

assume that series are conditionally homoskedastic16.  

In Table 3 we show the predicted values of yields and its respective standard 

deviation and percentiles 5, 50 and 95% for the chosen counties. The variance of the 

predicted value tends to increase as the time lag increases. 

 

Rating Crop Insurance Contracts 

The insurance premium rate (PR) represents a proportion (or percentage) of total 

liability.  In the simple case where a proportion � (0 � � � 1) of the expected crop yield y e 

is used to form the basis of insurance, the premium rate is given by (Goodwin and Ker, 

1998):  

Premium Rate (PR) = e

ee
Y

e
Y

y
yyYyEyF

λ
λλλ )]|([)( <−

,   (9) 

where E is the expectation operator and F is the cumulative distribution function of 

yields. At this point we show how rates can be derived directly from our Bayesian 

hierarchical model. A slightly different derivation of the premium rate is convenient for 

our purposes. If we reparameterize y, such that, y* = y / �ye, then equation (9) becomes:  

PR = P(y* < 1)Ey*[1 – (y*| y* < 1)]          (10) 

                                                 
16 If series were relatively longer, a procedure that could be used to verify heteroskedasticity would be 
assign to the precision parameter tau indexes i and t, or in other words, make the parameter vary in time 
and space and, later on, monitor such parameter to verify the variation in the precision and correct it, when 
necessary. 
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Note that the support of the random variable Y remains the same in this transformation. If 

we consider w = 1 – y*, then equation (10) can be rewritten such that: 

PR = P(w > 0)[1 – Ew(1 – w|w > 0)]     

PR = P(w > 0)Ew[w|w > 0)]    (11) 

After some simplification, the premium rate equation reduces to: 

 
1

0

( )PR wf w dw= �           (12) 

Equation 12 can be written as PR = E[wI(0 < w < 1)]. Because of the change of 

variable, the support also changed such that w lies now in between 0 and 1. In our model, 

we can easily implement computationally equation (11) using the predicted yields. This 

expression represents the mean of w, or more specifically in the Bayesian jargon the 

“posterior mean” of w, which is the PR calculated for each county and for each level of 

coverage. Moreover, the Bayesian approach allows one to derive standard error estimates, 

but in our context these estimates are called Monte Carlo standard error of the mean17. In 

table 4, we show some rates and their MC errors. Antonina county is an illustrative 

example of the variability in rates. The standard deviation and consequently the MC error 

are much higher in this county comparing to the others. In this case, the uncertainty on 

rates will be much higher.  

A natural advantage of having a viable measure of the uncertainty associated with an 

individual premium rate estimate can be found in the common insurance practice known 

as “loading”18. These adjustments are typically ad hoc and are based upon the actuary’s 

confidence in the estimate. The standard errors of the premium rate estimates provide a 

natural metric to guide such loading practices. In particular, higher load adjustments can 

be applied to those rates which reflect a greater degree of uncertainty. The standard errors 

account for all of the uncertainty that encompasses the model, including the estimation of 

yield trend effects and spatial correlation factors. 

                                                 
17 For further details see Spiegehalter et al. (2003). 
18 Loading refers to markups or additive factors that are often applied to premium rates to account for 
uncertainty and is also commonly used to build reserves, to cover administrative and operating costs and to 
ensure a positive profit for the insurer.   
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In figure 1 below, we illustrate aggregate premium rates by coverage levels and by 

regions in the state of Paraná. The state was divided into 10 great regions19: 1 - 

Occidental Centre (21), 2 - Oriental Centre (10), 3 - Centre-South (11), 4 - Metropolitan 

of Curitiba (28), 5 - Northwest (33), 6 - Central North (64), 7 - Pioneer North (43), 8 - 

West (36), 9 - Southeast (18), 10 - Southwest (26).  

 

Conclusions 

We have discussed a statistical method of pricing a crop insurance contract based 

upon hierarchical Bayesian models. We point out that this methodology can also be 

applied to contracts based on individual yields, as long as there are enough data.  

Conventional methods of pricing this type of individual contract using aggregate yield 

data, such as, county averages, are not recommended, because they do not reflect 

accurately the risk structure of an individual producer, thus increasing the problem of the 

adverse selection. 

The methodology developed in this article was used to forecast corn yields for 

selected counties in the State of Paraná using data covering 1990 through 2002. Using the 

posterior predictive criteria of Gelfand and Ghosh (1998), we chose from among several 

models appropriate for this forecasting and insurance pricing problem. The optimal 

model was used in the calculation of premium rates for insurance coverage based on 

regional yield indexes.  

Our analysis considers not only the temporal aspect of yield movements but also the 

spatial correlation that exists between counties. The resulting spatial-temporal model is 

thus more flexible and less ad hoc compared to other potential specifications that have 

been considered in the literature.  

In other words, temporal and spatial effects can be incorporated into the model trough 

prior distributions. Moreover, premium rates can be derived directly considered as 

another parameter to be estimated by the model. One advantage is that standard errors of 

premium rates will also be calculated and used to load insurance premiums.  

                                                 
19 Number of counties analized in brackets. 
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Future research will evaluate methods of pricing insurance contracts for individual 

yields using the methods developed in this analysis.   
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Table 1. Model Selection Criteria 

M Dm Model for uit 
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1 667800  

2 673200  

3 700100 R-W 

4 728500  

5 736800 AR(1) 

6 737900  

7 739900  

8 751400  

9 751700  

10 761300 Exchangeable model 

 

Table 2. Predicted parameter values, standard deviation and percentiles 5, 50 and  

95%, of selected counties. 
County parameter predicted value standard deviation 0.05 0.95 

�1 1366 683.6 201.3 2475 
�2 46.83 3.938 40.33 53.29 Castro 
� 0.8073 0.1143 0.6236 1.002 
�1 1545 515.7 687.5 2397 
�2 46.78 3.95 40.29 53.34 Catanduvas 
� 0.7147 0.1032 0.5447 0.8851 
�1 1446 592.6 461 2426 
�2 46.78 3.937 40.28 53.28 Marilândia do Sul 
� 0.7703 0.1092 0.5904 0.9502 
�1 1511 612.3 490.1 2523 
�2 46.82 3.94 40.34 53.3 Ponta Grossa 
� 0.7553 0.11 0.5749 0.9413 
�1 2109 526.4 1260 2993 
�2 46.79 3.937 40.31 53.28 Rolândia 
� 0.5579 0.1082 0.374 0.733 
�1 1380 563 450.5 2306 
�2 46.82 3.941 40.32 53.32 Tibagi 
� 0.7751 0.1062 0.6021 0.9526 

 

Table 3. Predicted yield values, standard deviation and percentiles 5, 50 and  

95%, of selected counties, in 2003 and 2004. 

county year predicted 
yield 

standard 
deviation 0.05 median 0.95 

2003 5968 758 4716 5972 7195 Catanduvas 
2004 5833 903 4350 5813 7316 
2003 8301 791 6990 8303 9591 Castro 2004 8455 1114 6647 8443 10280 
2003 7499 786 6208 7492 8784 Marilândia do Sul 2004 7624 1074 5883 7614 9405 
2003 6553 760 5296 6550 7793 Ponta Grossa 2004 6638 1008 5021 6628 8338 
2003 7336 777 6068 7342 8615 Rolândia 2004 7461 1079 5745 7433 9280 
2003 7730 793 6419 7733 9019 Tibagi 
2004 7779 1094 6035 7753 9613 

Table 4. Premium rates (%) for selected counties by level of coverage, standard 

deviation and MC error estimates 
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County 
Level of 
Coverage 

(%) 

Premium 
Rate 

Stand. 
Dev. 

MC 
error County 

Level of 
Coverage 

(%) 

Premium 
Rate 

Stand. 
Dev. 

MC 
error 

70 7.295 0.139 0.00154 70 0.006 0.002 1.77E-05 
75 9.478 0.153 0.00171 75 0.039 0.005 5.64E-05 
80 11.810 0.165 0.00186 80 0.178 0.012 1.45E-04 
85 14.230 0.177 0.00200 85 0.553 0.022 3.00E-04 

Antonina 

90 16.690 0.186 0.00212 

Ponta 
Grossa 

90 1.326 0.035 5.33E-04 
70 0.014 0.003 2.72E-05 70 0.001 0.001 6.34E-06 
75 0.084 0.008 9.51E-05 75 0.013 0.003 2.68E-05 
80 0.318 0.016 2.63E-04 80 0.063 0.007 6.64E-05 
85 0.897 0.029 5.17E-04 85 0.220 0.014 1.37E-04 

Castro 

90 2.041 0.044 8.34E-04 

Rolândia 

90 0.593 0.023 2.41E-04 
70 0.017 0.003 3.25E-05 70 0.016 0.003 2.89E-05 
75 0.096 0.008 9.26E-05 75 0.096 0.008 1.00E-04 
80 0.342 0.017 2.07E-04 80 0.356 0.017 2.41E-04 
85 0.905 0.029 3.74E-04 85 0.980 0.030 4.51E-04 

Catanduvas 

90 1.920 0.044 5.76E-04 

Tibagi 

90 2.120 0.045 7.08E-04 
70 0.013 0.003 2.73E-05      
75 0.076 0.007 7.44E-05      
80 0.314 0.016 1.78E-04      
85 0.899 0.028 3.78E-04      

Marilândia 
do Sul 

90 2.007 0.044 6.83E-04      

 

 

FIGURE 1. Premium rates (%) by level of coverage and aggregated by regions in the 
state of Paraná 


