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Abstract This paper applies Hierarchical Bayesian Models to price farm-level yield
insurance contracts. This methodology considers the temporal effect, the spatial
dependence and spatio-temporal models. One of the major advantages of this fra-
mework is that an estimate of the premium rate is obtained directly from the posterior
distribution. These methods were applied to a farm-level data set of soybean in the
State of the Paraná (Brazil), for the period between 1994 and 2003. The model selec-
tion was based on a posterior predictive criterion. This study improves considerably
the estimation of the fair premium rates considering the small number of observations.
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1 Introduction

All economic activities are influenced by some degree of risk. These risks and their
economic consequences are especially relevant to insurance companies. In agriculture,
the risk is basically related to the occurrence of some adverse climatic phenomena (e.g.,
drought), resulting in major economic losses, depending on the severity and extension
of the phenomena.

Over time, several risk management tools were created by producers to manage
these risks, including insurance schemes. Under some insurable conditions, the
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insurance allows an individual to turn a future and uncertain expenditure (loss), usually
high, into an anticipated, certain and lower expenditure (premium) (Booth et al. 1999).

One of the main benefits of the insurance is the fact that it allows the insured to
balance their income, whenever an adverse event occurs, to the condition in which
such event does not take place. This is done through the payment of the premium
and the receiving of compensation (indemnity), in case of misfortune (Arrow 1971;
Rothschild and Stiglitz 1976).

However, several problems inhibit the development of a private crop insurance
market: moral hazard (Chambers 1989; Goodwin and Smith 1998), adverse selection
(Goodwin 1994; Quiggin et al. 1994; Skees and Reed 1986), systemic risk (Miranda
and Glauber 1997) and the absence of long-term data on agricultural yield and actuarial
methods to accurately calculate the fair premium rate.

Thus, in many countries, such as Brazil, USA, Japan, Canada and India, the total
premium collected is lower than the total indemnity paid, which results in huge finan-
cial losses to the insurance companies. Moreover, in most of these countries, the
programs are heavily subsidized by the government (Hazell et al. 1986). In Brazil,
the absence of a suitable methodology is pointed as one of the main problems for the
non-emergence of a private market (Rosseti 2001).

The aim of this article is to price a crop insurance contract based on farm-level yield
data. In light of this, several Bayesian models are applied to the data set in order to
forecast yields two steps ahead. One of the main advantages of using this approach is
to derive rates directly from the posterior distribution. Moreover, the standard errors
of the estimates for the premium rate provide a measure to the loading practices used
by actuaries, which reflects the degree of uncertainty associated with an individual
premium rate.

The individual yield crop insurance is widely available in USA (named multiperil
crop insurance), Mexico, Spain and India (Miranda et al. 1999) and, is currently offered
in Brazil by five insurance companies.

Basically, the compensation mechanism is triggered based on the farm-level yield.
In this process, producers are indemnified when the agricultural yield observed in
the harvest (in the unit or farm) falls below the guaranteed yield—chosen by the
producer. This type of agricultural insurance is called individual yield crop insurance.
The indemnity I for each farm i can be expressed as follows:

Ii = φi max [(yc
i − yi ), 0]. (1)

In which, φi represents the amount deductible, such that 0 < φi < 1, yc
i is the

guaranteed yield; and, yi is the observed yield.
Equation (1) shows the indemnity to be paid to each producer when the agricultural

yield yi in the harvest time falls below the guaranteed yield yc
i . In this type of contract,

the producer chooses the level of coverage αi , such as 0 ≤ αi ≤ 1. The guaranteed
yield is calculated according to the equation: yc

i = αi ye
i , in which ye

i is the expected
(forecast) agricultural yield in farm i .

In the analysis that follows, a number of alternative Bayesian models were applied
to the data set aiming to model the generating process of agricultural yield data and, in
particular, to properly recognize the temporal, spatial and spatio-temporal processes
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underlying crop yields. To select among a large number of potential candidate models,
a criterion of quadratic prediction error was used. The contribution of this article is
the investigation of alternative statistical methods based on Bayesian hierarchical
models in a situation of small amount of available data on farm-level yield, in which
the traditional statistical analysis based on asymptotic theory generates inconsistent
results. Furthermore, this method captures all possible inferring uncertainties involved
in predicting the insurance premium rates as opposed to the more traditional ad hoc
two-stage methods based on estimation and prediction (Goodwin and Ker 1998).

This article is arranged according to the following outline. Section 2 details: (i) the
design of the individual crop insurance contract; (ii) the discussion of some statistical
issues regarding agricultural yield; and, (iii) the data set used in the empirical analysis.
Section 3 describes the hierarchical Bayesian models and the criterion of model selec-
tion. Section 4 presents the data analysis, considering the prediction problem and the
empirical application—pricing crop insurance contracts. Finally, Sect. 5 offers some
concluding remarks.

2 Preliminaries

A wide variety of statistical methods are often adopted in the estimation of crop
insurance rates and a number of issues regarding the modeling of crop yields are
pertinent. For example, the crop yield has a substantial trend over time and tends to be
significantly correlated with space due to the systemic nature of weather. One subtlety
often overlooked in crop insurance pricing models refers to the fact that a degree of
uncertainty also applies to the estimated parameters of any model. In this analysis, we
adopt a Bayesian inferential framework that accounts for such sources of uncertainty
while estimating the appropriate premium rate.

Moreover, given the increasing interest in crop insurance in Brazil by the insurance
companies, pricing contracts has become an important issue. Traditionally, insurers
price their contracts using what is conventionally called empirical method (Goodwin
and Ker 1998), which is simply the average loss realization over liability. Because no
smoothing is undertaken, a relatively large sample is necessary to accurately represent
the probability of distribution.

The choice of a statistical model that adequately reflects the conditional density of
yield is an important consideration in the actuarial calculation of an accurate premium
rate. In doing so, one must try to recover the probability for generating the process of
the yield data. Agricultural yield follows a spatio-temporal process, in the sense that if
we take the average in a conditional region regarding the underlying temporal process,
we can recover the conditional yield density generated by the information available at
moment t (Ker and Goodwin 2000).

Along the years, statistical aspects underlying agricultural yields have been a contro-
versial point in the literature. Particularly, the shape of the density function has been
discussed extensively. On the one hand, Just and Weninger (1999) concluded that agri-
cultural yields follow a Gaussian distribution. However, other authors found evidences
against normality (Ramirez et al. 2003; Taylor 1990).
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Alternatively, other distributions have been proposed: beta distribution (Nelson and
Preckel 1989), inverse hyperbolic sine transformations (Moss and Shonkwiler 1993)
and gamma distributions (Gallagher 1987).

One must note that, in the context of crop insurance studies, the shape of the
distribution is especially important because it reflects the crop yield risk (probability
of loss). In other words, when modeling an agricultural yield, one must try to estimate
precisely the left tail of the distribution. Considering this fact, several statistical models
have been proposed in the literature to better reflect the innovation of the agricultural
yield, such as, parametric (Sherrick et al. 2004), semi-parametric (Ker and Coble
2003), non-parametric (Goodwin and Ker 1998; Ozaki et al. 2008) and empirical
Bayes non-parametric approaches (Ker and Goodwin 2000).

Agricultural yield data usually present some sort of idiosyncrasies in their structure.
One of them is the spatial dependence across farms (Goodwin 2001; Wang and Zhang
2003). Other sources of systematic influences are presented in the data set: trends,
autoregressive effects and heteroskedasticity. The first reflects the fact that in incor-
porating new technologies and more suitable and efficient methods, farmers increase
the level of agricultural yields over time. Thus, yields observed in the early 1980s
cannot be compared to those obtained in 2006. The autoregressive effect is important
in the sense that drought or excessive moisture effects may persist from year to year.
Heteroskedasticity happens because the variability is not constant or stable over time.

In this work, the temporal aspect of the data generating process is addressed, but we
also incorporate the spatial dependence of the data generating process. In particular,
we explicitly recognize the fact that the events that underlie yield realizations (e.g.,
weather, disease, and pest damages) tend to affect large areas at any single time.
Thus, adjacent farms may experience substantial spatial correlations with yields over
time. Taking this fact into account, space and time were combined in order to build
spatio-temporal models.

The empirical analysis is based on a data set composed by 38 soybean producers
located in the Castro region, in the State of Paraná, Brazil. The variable of interest
is the agricultural yield, for the period between 1994 and 2003. Table 1 shows some
basic statistics of the data set.

3 Empirical method

The objective of this section is to detail the empirical methodology to predict yields
two steps ahead and to price a farm-level insurance contract. In light of this, we model
the mean yield and assume that the precision (inverse of the variance) is conditionally
constant in the analysis. Gelfand et al. (1998) show that more effective results can be
achieved when modeling the mean component rather than the precision in forecasting
problems.

Therefore, E(yit) ≡ µit , in which i represents the space variable index and t the
temporal index. Thus, yit is the agricultural yield in farm i in time t , where i =
1, 2, . . . , S and t = 1, 2, . . . , N .

Modeling the dependence structure through hierarchical models is intuitive and
facilitates the visualization of each component in the analysis instead of modeling
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Table 1 Exploratory analysis of the soybean agricultural yield

Year

1994 1995 1996 1997 1998 1999 2000 2001 2002 2003

Mean 2,802 2,854 2,769 2,657 2,882 2,891 2,720 2,954 3,104 3,317

(59) (60.6) (65.2) (86.4) (75.2) (67.2) (68.4) (51.8) (48) (77.1)

5◦ Percentile 2,046 2,094 2,117 1,843 1,955 2,254 2,077 2,481 2,569 2,533

50◦ Percentile 2,846 2,924 2,749 2,679 2,874 2,932 2,782 2,913 3,064 3,304

95◦ Percentile 3,329 3,467 3,550 3,562 3,738 3,683 3,221 3,529 3,604 4,001

Standard deviation 363.6 373.5 402.2 532.9 463.7 413.9 421.5 319.5 295.8 475.3

Coefficient of variation 12.98 13.09 14.53 20.06 16.09 14.32 15.5 10.82 9.528 14.33

Maximum 3,474 3,484 4,089 3,861 3,885 3,766 3,387 3,669 3,712 4,979

Minimum 2,008 2,085 2,015 1,261 1,639 2,053 1,371 2,265 2,437 2,351

Skewness −0.43 −0.36 0.871 −0.12 −0.29 0.083 −0.97 0.277 −0.14 0.928

Kurtosis −0.49 −0.61 2.005 0.18 0.616 −0.52 1.314 −0.23 −0.24 2.99

Standard error in parenthesis

such structure directly through the yit .1 However, assigning non-informative prior
distributions can lead to improper posterior distribution (Hobert and Casella 1996).

Taking this fact into account, proper prior distributions will be chosen assuring
that the Gibbs sampling process will be well-behaved. In this case, ignorance can be
represented as values for the precision parameter close to zero (Gelfand and Smith
1990).

The temporal component will be initially modeled considering a deterministic trend

model according to: yit = ∑p
j=1 β j T j + εt , εt

i id∼ N (0, σ 2) and p = 1, 2. For this
type of trend model, the variable T was centered in order to improve the Markov Chain
Monte Carlo (MCMC) algorithm speed of convergence, such as T ∗ = [T − (N +
1) × 0.5]. Moreover, the empirical plot checking indicated that a quadratic trend was
sufficient to capture trend effects.

In addition to the deterministic models, an autoregressive AR (1) term was included
and fitted to the data, such as: yt = ρyt−1+εt ,−1 ≤ ρ ≤ 1. At this point, assumptions
regarding the specification of the model must be made. First, the correlation parameter
ρ in the stochastic models changes according to the farm. Second, an exchangeable2

Gaussian prior was assigned to the parameter ρ and Gaussian and inverse Gamma
hyper-distributions for the mean and variance parameters, respectively.

The interaction between the deterministic and stochastic models was analyzed
considering a first-order polynomial function in t added to the stochastic component,
as follows: yt = ρyt−1 + β0 + β1T ∗ + εt .

1 Alternative approaches model the temporal and spatio-temporal dependences through the error term
(Anselin 1988).
2 For more details see Casella and Berger (2002), De Finetti (1972) and Migon and Gamerman (1999).
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Univariate Gaussian prior distributions were assigned to β0, β1 and β2 with zero
mean and precision parameter τ → 0. Considering a random effect model, then all β’s
will be exchangeable. This result is convenient and it is reasonable to assume that the
parameters may differ from one another, although they arise from the same population
distribution.

The spatial effect can be represented as random effects vi were introduced in order
to capture the heterogeneity (unobserved features) among different regions. More-
over, a latent variable was introduced to catch the spatial effect ξi representing the
geographic nature of each farm. Thus, vi is the spatially non-structured latent variable
(heterogeneity) and ξi is the spatially structured latent variable (clustering).

In this study, we incorporate the unobserved farm-effects features that affect agri-
cultural yield through these latent variables. More specifically, vi captures the socio-
economical factors (such as, agricultural techniques and technologies in each farm) and
ξi reflects the soil and climatic conditions particular to each location. This approach
is particularly appealing because of the nature of the agriculture yield data.

These random effects are separated by using the hierarchical structure of the model.
Under the exchangeability assumption we can estimate the heterogeneity variable
through its prior distribution and estimate the clustering variable assuming a special
form of spatial prior distribution. This framework addresses the problem of spatial
dependence between farms.

Identification of the parameters in the likelihood function in this case is verified in
the hierarchical model by assuming a conditional autoregressive3 (CAR) prior distribu-
tion for ξi and exchangeable Gaussian priors for vi . We assume that the non-structured
variable follows a Gaussian distribution, so that vi ∼ N (µυ, σ 2

υ ), and the spatially
structure variable ξi |ξ j ( j �= i), was represented according to ξi ∼ N (ξ̄i , σ

2
ξ /ni ), in

which ξ̄i is the average of the ξ j ’s, in which j indexes the neighboring sites of i .
The variance parameters σ 2

υ and σ 2
ξ are assigned an inverse Gamma prior distribution

(Besag 1974; Besag et al. 1991; Bernardinelli et al. 1995a; Clayton and Kaldor 1987;
Cressie and Chan 1989).

A restriction must be imposed to the random effects parameters, so that those
effects amount to zero. In other words, an intercept parameter must be included in the
model to assign an improper (uniform) prior distribution (Thomas et al. 2002). If both
parameters were placed in the model, then E(vi ) = 0. Likewise, if both parameters
vi and ξi were included to the model and one attributed a non-informative point prior
to vi , then we would have either vi = 0 or

∑
vi = 0. Due to convergence issues in

the MCMC algorithm, one must include either the spatially non-structured variable or
the structured variable, but not both (Gelfand et al. 1998).

The spatio-temporal models were based on the works of Bernardinelli et al. (1995b),
Dreassi (2003) and Waller et al. (1997). In their work, Waller et al. (1997) consider a
nested model, in which the spatial effect and the heterogeneity variable vary in time.

Because of the conditional interchangeability associated with time, the resulting

prior distribution assigned to the heterogeneity can be represented by v
(t)
i

i id∼

3 The reader must not confuse the term “autoregressive” commonly used in the time series analysis. In
spatial statistics or econometrics, autoregressive refers to the mean of the variable in the neighbor regions.
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N (µ
(t)
υ , σ

2(t)
υ ). For the spatial effect ξ

(t)
i in the i-th region in year t , Waller et al.

(1997) adopted an intrinsic CAR prior distribution. Thus, ξ
(t)
i ∼ N (ξ̄

(t)
i , σ

2(t)
ξ /ni ),

where ξ̄
(t)
i is the average of the j th contiguous areas of i . An inverse Gamma was used

to form hyper-priors for σ
2(t)
υ and σ

2(t)
ξ .

We also allow the spatial effects to be nested within the temporal process, in such
a way that the parameters of the deterministic trend (β’s) are modeled by using the
CAR prior. Intuitively, one can think of the trend parameters as being spatially corre-
lated, given time. The stochastic term was incorporated to the general expression and
exchangeable prior distributions were assigned to the AR(1) term. Thus, we have the
following general expressions:4

yit = ρi yt−1 + β0i + β1i T
∗ + β2i T

∗2 + v
(t)
i + εi t . (2)

As one can note, several models emerge as potential candidates. Traditional criteria
of model selection, such as the Bayes factor, are not applicable in this case as they
are, where non-informative or conditional autoregressive (CAR) prior distributions
are used. Improper prior distributions result in improper conditional predictive distri-
butions, limiting the use of Bayes factor as a model selection criterion in these cases
(Carlin and Louis 2000, p. 220).

Classical approach to model selection is also difficult. Penalized likelihood criteria
based on asymptotic efficiency require the determination of the dimension of the model
or the number of the parameters, which is difficult to estimate in hierarchical models
with random effects such as those used in this paper.

In this article, the model selection criteria will be based on predictive densities (Laud
and Ibrahim 1995). Working on the predictive space, the penalty appears without
the necessity of asymptotic definitions. The objective is to minimize the posterior
predictive loss (Gelfand and Ghosh 1998). The posterior predictive distribution is
given by:

f (ynew|yobs) =
∫

f (ynew|M)p(M |yobs)d M (3)

in which, M represents the set of all parameters in a given model and ynew is the
replication of the vector of observed data yobs .

The criterion is based on a discrepancy function d(ynew, yobs), and the objective
is to choose the model that minimizes the expectation of the discrepancy function,
conditional on yobs and Mm , where Mm represents all the parameters in the model m.
The penalty is considered in the analysis regardless of model dimension. If we consider
Gaussian models Dm is given by:

DMm = E[(ynew − yobs)
T (ynew − yobs)|yobs, Mm]. (4)

4 When including the heterogeneity variable, the clustering variable must be excluded and vice versa.
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Table 2 Model selection
M Dm Model (µi t )

1 208,100 ρi yt−1 + β1i + βC
2i

t∗

2 264,700 ρi yt−1 + βC
1i

+ β2i t∗
3 269,500 ρi yt−1 + ζ t

i

4 270,300 AR(1)

5 279,900 ρi yt−1 + βC
1i

+ βC
2i

t∗
6 305,500 ρi yt−1 + β1i + β2i t∗ + ζ t

i

7 306,800 ρi yt−1 + β1i + β2i t∗
8 307,500 β1i + β2i t∗ + ζ t

i

9 308,200 β1i + β2i t∗

10 363,500 β1i + β2i t∗ + β3i t∗2

4 Results and empirical application

Altogether, ten models were adjusted to the data set. Table 2 shows that the first seven
models present the stochastic trend component. Thus, it is evident that the temporal
effect is relevant in the analysis. The model that minimizes the mean squared predictive
error has the stochastic and the deterministic term (model 1). Moreover, the intercept
parameter varies according to the i-th farm. In this case the spatial correlation is
detected by the slope parameter through the CAR prior distribution.

The difference between models 1 and 2 relies on the prior distribution assigned to
the β’s. The superscript “C” indicates a conditional autoregressive prior distribution.
Furthermore, a Gaussian prior distribution is assigned to β. One can note that the values
of Dm between models 1 and 2 are considerably different. This fact suggests that the
inclusion of the spatial dependence results in better agricultural yield predictions.

Considering models 3 and 4, the inclusion of the spatially structured latent variable
changing over time associated to the stochastic trend term reduces the value of Dm

when compared to the first-order autoregressive model. Assigning CAR priors to
both parameters of the deterministic trend component improve the prediction results
(D5 < D7). The difference between models 8 and 9 is the addition of the clustering
variable changing over time, which is preferable to the situation where the variable
is absent (D8 < D9). Finally, the polynomial model shows the highest value of Dm ,
thus the worst result in terms of prediction.

In order to check the mixing and convergence of the Markov sequence we run three
chains. Results showed that all parameters achieved good convergence and mixing.
Because of the small temporal number of observations, we do not correct to conditional
heteroskedasticity. Instead, we assume that series are conditionally homoskedastic.
Table 3 shows prediction results using model 1 (Table 2).

After choosing the best model and predicting yields two steps ahead, we use this
prediction to calculate the premium rate. The premium rate (PR) is calculated consi-
dering the level of coverage α(0 ≤ α ≤ 1) of the expected yield ye and given by the
following equation (Goodwin and Ker 1998):
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Table 3 Predicted yield of the 38 producers, in kg/ha

Producer Year Predict. Producer Year Predict. Producer Year Predict. Producer Year Predict.
yield yield yield yield

1 2004 3,110 11 2004 3,276 21 2004 3,416 31 2004 2,650

2005 3,232 2005 3,295 2005 3,528 2005 2,693

2 2004 3,268 12 2004 3,126 22 2004 3,561 32 2004 3,175

2005 3,346 2005 3,224 2005 3,672 2005 3,181

3 2004 3,346 13 2004 2,810 23 2004 3,693 33 2004 3,080

2005 3,386 2005 2,894 2005 3,721 2005 3,155

4 2004 3,042 14 2004 3,813 24 2004 3,411 34 2004 3,259

2005 3,094 2005 3,762 2005 3,489 2005 3,316

5 2004 3,707 15 2004 3,784 25 2004 3,533 35 2004 3,203

2005 3,738 2005 3,868 2005 3,626 2005 3,271

6 2004 2,725 16 2004 3,386 26 2004 3,647 36 2004 3,165

2005 2,872 2005 3,469 2005 3,763 2005 3,243

7 2004 3,817 17 2004 3,382 27 2004 3,866 37 2004 3,198

2005 3,809 2005 3,442 2005 3,911 2005 3,289

8 2004 4,837 18 2004 3,691 28 2004 2,476 38 2004 3,307

2005 4,809 2005 3,756 2005 2,593 2005 3,399

9 2004 3,703 19 2004 3,207 29 2004 3,281

2005 3,655 2005 3,335 2005 3,307

10 2004 3,438 20 2004 2,961 30 2004 2,727

2005 3,520 2005 2,999 2005 2,755

PR = FY (αye)EY [αye − (Y |y < αye)]
αye

. (5)

In which E is the expectation operator and F is the cumulative distribution of yields.
If we reparameterize y, so that, y∗ = y/λye, then Eq. (5) becomes:

PR = P(w > 0)Ew[w|w > 0)]. (6)

In which w = 1 − y∗.
After some simplification, the premium rate equation reduces to:

PR =
1∫

0

w f (w)dw. (7)

Premium rates were monitored through the posterior mean of w. In Table 4 we
show the average premium rate (38 producers), maximum and minimum, by level of
coverage. In addition to the calculation of the PR we derive standard error estimates,
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Table 4 Average, minimum and maximum premium rates (PR)—38 producers—by level of coverage, and
Monte Carlo standard error (MC SE)

Level of coverage (%) Average PR (%) Minimum PR (%) Maximum PR (%) MC SE

70 0.0934 0.002505 0.5593 0.000056

75 0.3030 0.014720 1.3150 0.000117

80 0.7753 0.069410 2.6300 0.000213

85 1.6395 0.241200 4.5500 0.000339

90 2.9792 0.648000 6.9720 0.000480

which in our context are called Monte Carlo standard errors of the mean.5 The estimates
of the premium rate standard errors provide a natural metric process to guide “loading
practices”6—a measure of the uncertainty associated with an individual premium rate
estimate. In particular, higher load adjustments can be applied to those rates which
reflect a higher degree of uncertainty.

5 Concluding remarks

The premium rate is one of the most important pieces of information of any insurance
contract. An actuarially fair premium rate is a rate that is set so that premiums collected
are equal to expected indemnities. An inaccurate premium rate results in distortions
to the insurance pool and thus may result in losses as agents adversely select against
the insurance provider.

For example, consider an insurance company selling contracts to soybean producers
located in the Castro region charging 3.5% of premium rate. In Brazil, rates are regio-
nalized and charged equally among producers. Further, consider that the premium rate
(level of coverage of 90%) calculated using the Bayesian method is equal to 4.87% to
producer 1 and 1.84% to producer 5.

In this situation, the insurer will overprice producer 5 and underprice producer 1.
In a market where historically indemnities paid are higher than the total amount of
premiums collected, better actuarial methods (such as, the one proposed in this paper)
should be taken into account by insurance companies to calculate accurate premium
rates and reduce their historical high loss ratio. This approach makes the premium rate
calculation less ad hoc, in the sense that rates are derived after the simulation through
MCMC algorithm. Moreover, when we calculate the rates we capture their uncertainty
through the standard error.

This study is appealing from both economic and political perspectives because
it improves the actuarial methods used by the insurance companies and better
addresses the spatial and temporal correlation. Results show a high variance of the

5 For further details see Spiegehalter et al. (2003).
6 Loading refers to additive factors that are applied to premium rates to account for uncertainty and is
commonly used to build reserves, to cover administrative and operating costs and to ensure a positive profit
for the insurer.
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rates among producers at the same level of coverage. This fact suggests that the risk
varies considerably in this sample. If the insurance companies continue to charge equal
premium rates by regions indistinctly, they might end up increasing their losses.

The fact of the matter is that producers have better information about their own
risk than the insurance companies do. Thus, without enough volume of accurate
information to assess the farmer’s risk, insurers might concentrate their operations
in the regions of lower risk. Considering the political perspective, this is the situation
to be avoided by the government, which is trying to develop a financially sound crop
insurance plan to better support agricultural producers nationwide.
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