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Abstract

This study examines rainfall variability
and its impllcations for wheat production
risk in northeast Germany, The hedging
effectiveness of rainfall options and the
role of geographical basis risk are analyzed
using a daily precipitation model. Simpler
pricing methods such as the burn analysis
and the index value simulation serve as
benchmarks for comparison. It is found
that the cholee of statistical approach may
lead to considerable differences in the
estimation results. Daily precipitation
muodels should be used with some caution
in the context of derivative pricing because
they tenid to underestimate rainfall
variability. This is unexpected, because
daily simulation models are usually
preferred in the conlext of temperature-
based weather indexes.
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Wealther, though an important production
factor in agriculture, can hardly be
controlled. In fact, weather risks are a
major source of uncertainty in crop
production. Traditionally, producers have
tried to compensate for the negative
economic consequences of bad weather
evenls by purchasing insurance. However,
weather derivatives, a new class of
financial instruments that permit the trade
of weather-related risks, emerged in the
mid-1990s. These Instruments include
futures, options, and swaps, all of which
are traded over the counter and on {ormal
exchanges such as the Chicago Mercantile
Exchange (CME). Common underlying
weather variables are temperature,
rainfall, or wind.

The advantage of weather derivalives is
that their payoffs are determined in a
transparent manner and with low
transaction costs. Maoreover, they are not
affected by moral hazard or adverse
selection, which can be serious problems
for insurance companies. Yet,
considerable risk may remain with the
producer when using weather derlvatives
{a) because individual yield variations are
not, in general. completely correlated
with the relevant weather variable, and
(b} because of geographical basis risk—i.e.,
the difference between the weather index
al a reference point and at a specific farm
location.

To date, It has been unclear if weather
derivatives would permeate agriculture,
But the lterature increasingly deals with
the question of whether weather
derivatives can also play a role as
agribusiness risk management tools (e.g.,
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Turvey, 2001, 2005; Richards, Manfredo,
and Sanders, 2004; van Asseldonk and
Oude Lansinle, 2003}

Analyzing the hedging effectiveness of
weather derivatives requires three
interrelated problem areas o be solved:
first, the statistical modeling of relevant
weather variables: second, quantifying the
relatonship between weather variables
and production; and third. developing a
theoretically consistent pricing model,
This paper focuses on the availability of a
relinble statistical model of the weather
variable, which is important because it
facilitates the quantification aned
prediction of the weather risk. Moreover,
it is a necessary Ingredient for
caleulating the price of the weather
derivative, 1 .e.. insurance costs.
Substantial research exists with regard to
the statistical modeling of temperature-
related derivatives {e.g., Campbell and
Diebold, 2005; Jewson and Brix, 2005),
but few papers deal with statistical
maodels of rainfall dertvatives, despite the
importance of rainfall for agricultural
production.

Obviously there are significant differences
between analyzing rainfall and
temperature. Rainfall is a binary event
and evolyes much more erratically than
temperature changes, Further, the
correlation between rainfall amounts at
adjacent locations is relatively low. Most
of the existing applications of rainfall
insurance prefer to estimate the
probability law of the rainfall index
directly, assuming an appropriate
distribution function (Stoppa and Hess,
2003: Skees et al., 2001). Turvey (1989)
compares the results of an empirical and a
normal distribution. Cao, Li, and Wel
(2004) were the lirst to suggest calculating
the derivative payoll [rom a rather subtle
stochastie process of daily rainfall.

This paper has two objectives, The first
is the development., estimation, and
comparison of different precipitation
models. Comparing these models reveals
thelr strengths and weaknesses and
facilitates the assessment of their

usefulness for analyzing rainfall-based
weather derivatives or insurance in
agriculture. In particular. we wish to
investigate whether the use of daily
simulation medels can actually improve
the pricing of rainfall derlvatives, as is the
case for temperature-related derivatives,
The second objective is to examine the role
of basis risk for the hedging effectiveness
of rainfall derivatives. Our focus lies on
the quantification of geographical basis
risk by means of a de-correlation analysis,
The precipitation model and the
de-correlation analysis are applied to a
case study that considers wheat
production in Germany.

The remainder of the paper is structured
as follows. First, the theoretical
background of weather derivatives is
briefly reviewed. Next, alternatives of
index modeling are discussed, A daily
precipitation model is then presented,
followed by an empirical application.
Using rainfall data from the Brandenburg
region of Germany, put options on two
rainfall indexes are priced with different
methods, and the effect of wheat
producers’ exposure to risk is examined,
The paper ends with conclusions related to
the proposed statistical approach.

Valuation of Weather
Derivatives

Pricing Weather Derivatives

Financial theory asserts that the price of a
contingent claim. F, which depends on

stochastic varlable [ and expires at time T.
can be calculated according to (Neftcl,

1996, p. 207):
{1} F=EIWN] rexpl-r-T,

where W) denotes the payall of the
derivative al expiration, and ris the risk-
free interest rate. The variable E
represents expectation. conditlonal on the
information available at present, and the
tllde (~] indicates that the expectation of
the derivative payoll is calculated by
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means of risk-neutral probabilities instead
of real-world probabilities. The use of risk-
neutral probabilities ensures the derivative
price is arbitrage free, This 15 a desirable
property when the derivative is traded
before it expires.

To illustrate this concept, consider variable
I, which follows a geometric Brownian
motion with an expected growth rate o«
and volatility 0. To calculate the price of

a derivative in a risk-neutral world, the
actual growth rate & must be reduced by

a rislk premium (A » o) while volatility
remains unchanged, The variable 4 is
knoewn as the market price of risk for £
Hull (2006, p, 590) proves that if Iis a
traded asset, the market price of risk is
givert by A = [e - r)/o. Inserting this Into
the above expression for the risk premium
shows that the risk-adjusted discount rate
is simply the risl-free interest rate r. This
fact i= well known from the Black-Scholes
mrdel.

However, the direct application of
no-arbitrage models to weather
derivatives is impractical since weather
cannot be traded. If [is a weather index,
it is not possible to construct a risk-free
hedge portfolio consisting of [and the
derivative F, and hence the price of the
dertvative must account for the market
price of weather risk. Weather
derivatives are typical examples of an
incomplete market. Unfortunately,
there i3 no unigque way to "risk-
neutralize” the objective (real-world)
probability distribution of the underlying
Iin the case of an incomplete market.
Accordingly. many arbitrage-free prices
for the dervative exist (Benth, 2004,

p. B8).

Various proposals for treating this problem
can be lound in the literature. Alaton,
Dijehiche, and Stillberger (2002] determine
the market price for weather risk to be an
implicit parameter such that the
theoretical pricing model matches the
observable market prices for some
contracts. Of course, this approach is only
practical if a market already exists for
weather derlvatives. Cao and Wei [2003)

and Richards, Manfredo, and Sanders
(2004) apply an extended version of Lucas’
(1978) equilibrium pricing model where
direct estimation of the market price of
weather risk is avoided. Instead, pricing is
based on the stochastic processes of the
weather index and an aggregated dividend.
Moreover, an assumption about the utility
function of a representative investor is
required.

Turvey (2005) refers to the capital asset
pricing model in order to estimate the
market price of risk. From the CAFM we
have:

(2) p=ro g rhepr—,
Dyt

where p and o are the expected value and
the standard deviation of the returns of an
assel, respectively, Variables p,, and oy
denote the corresponding values of the
marlket portfolio, and p measures the
correlation between the asset and the
market portfolio. Combining (2] with the
definition 4 = () - r}/o provides an
estimable relation for A:

@) A-p- 1y - r]_

Ot

In the subsequent application, we will
argue in accordance with Hull {2006,

p. 552) that rainfall indexes have no for a
negligible) correlation with stock market
returns. i.e., rainfall variability 1s not a
systematic risk. In that case, the market
price of risk is zero, and no correction with
the distribution of the weather index is
necessary. This means the expectation in
(1] can be ealeulated with real-world
probabilities,

Determining Hedging Effectiveness

Agricultural producers rarely evaluate a
weather dertvative via its contribution to a
well-diversified investment portfolic.
Rather, they are interested in knowing if
and to what extent the existing yield risk
can be eliminated by holding this security.
The risk reduction that can be attributed
to weather insurance is measured by
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comparing the revenue distribution of a
production activity or a whole farm with
and without having the weather derivative.
The present value of revenues R of a
farmer who produces output @ and holds a
position of the weather derivative is
deflined by:

(4) R=[QU)+P+ WI}exp(-r=T) - F.

where P'is the product price, which 1s
assumed to be constant for the sake of
simplicity. Without insurance, the terms
Wand Fyanish., Output @ is a function of
the stochastic weather index Iand other
controllable or stochastic factors.
Obviously, the risk-reducing potential of
any wealher insurance depends on the
correlation belween the weather index
and the considered agricultural product.
Further on, this relationship will be
captured by the estimation of a
“production funetion.”

Analyzing the hedging effectiveness of risk
management tools is usually carried out in
an expected utility framework. A widely
used utility function, which we also apply
here, is the negative exponential:

(5) LK) = -expl-2 =R,

where 4, s the absolute risk-aversion
parameter. The effect of weather
insurance can then be expressed in terms
af certainty equivalence ((CE]:

(6) CE - E [UR).

Statistical Modeling of
Weather Indexes

The previous section made clear that the
probability distribution of the weather
index [ at the time of expiration is crucial
to the assessment of any wealher
derivative. The distribution of the
weather index influences the revenue
distribution through the production
[unetion and the derivative payofl and also
determines the cost of insurance, ie., the
derivative price.

From a statistical viewpolnt, there are
three alternatives with regard (o the
modeling of weather risk. On the one
hand, the weather index distribution

[e.g., cumulative rainfall in May) can be
estimated directly, either parametrically or
nonparametrically. On the other hand, the
relevant weather index can be derived from
a daily model of a generic weather variable
[e.g.. daily rainfall) through appropriate

aggregation,

The corresponding approaches are the
burn analysls (also referred to as burmn rate
method), the index value simulation, and
the daily simulation. These modeling
approaches are briefly deseribed in turn.
For a more thorough discussion, interested
readers are referred to Jewson and Brix
(2005, chapters 3, 4, and 6.

Burn Analysis

In a nonparametric burn analysis, the
general pricing formula (1) is implemented
in a simple manner:

(7} Feexpl-r+T)»

l fl
e g WU,]‘,

Caleulating (7] involves the following steps.
First, weather data over a time horizon of
n years are collected [and cleansed, if
necessary). Next. the index value and the
hypothetical payofls of the derlvative are
determined for each year in the sample
period. Finally, the payofl average is
calculated and discounted with the risk-
free Interest rate r. This means that the
burn analysis utilizes the empirical
distribution of the rainfall index. No
further statistical model is required.

Although this method is widely practiced.
it has been criticized in the literature.
Turvey (2005] states that a burn analysis
is only backward-looking, and implicitly
assumes that historical patterns will
repeal themselves, while Cao. LI, and Wel
(2003) report that derivative prices
produced by this method are rather
sensitive to the number of observations.
Moreover, Jewson and Brix [2008)
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emphasize that the burn analysis has
difficulties predicting the occurrence of
extrems weather events.

Index Value Simulation

An index value simulation follows steps
simllar to the burn analysis, but the
empirical distribution is replaced by a
statistical model for the weather index or
the derivative payoff. This can be a
nonparametric distribution, for example
a kernel density, or a parametric
distribution. The choice of the functional
form of the distribution is usually based
on theoretical considerations (e.g., a
nonnegative domain for rainfall amounts)
and is supported by goodness-of-fit tests,

Parameters of the distribution can be
estimated from historical data with
standard methods such as the method of
moments or maximum lkelihood, With an
appropriate distribution, at-hand values
for the precipitation index are randomly
drawn and the discounted payof! of the
derivative is determined. The derlvative
price {s again obtained by calculating the
average discounted payoff,

If the correct distribution s known and the
parameters can be estimated precisely,
then the index value simulation will
produce more accurate results than the
burn analysis, because random errors can
be eliminated by choosing a sufficlently
high number of random draws. However,
in contrast to the modeling of financlal
variables, there s little theoretical
guldance for modeling the distributions of
weather indexes, and hence the danger
exists of misspecifying the model.

Daily Simulation

Instead of modeling the weather index or
the payoff distribution directly. one can
alternatively develop a statistical model for
the stochastic process of the underlying
weather variable (daily rainfall or average
daily temperature]. Such a model
describes the dynamics of the weather
variable over time and can be used for

simulation. The weather Index can be
derived from the simulated sample path by
summing up daily precipitation or daily
average temperature. respectively, in the
relevant accurmulation period. The
subsequent steps for calculating the
derivative price are identical to the index
value simulation.

This procedure is initially more complex,
yet potentially (avorable for several
reasons, First., the ways in which daily
models can be used are very flexible,
because practically all yield-relevant
events such as the sums of precipitation
or temperature for different accumulation
perlods, dry spells, or extreme
precipitation can be determined for any
time period. In contrast, directly
estimating the weather index distribution
1s usually only valid for a particular index.
Second—and this seems even more
important than the higher lexibility—the
accuracy of daily-based models is higher
due to a considerably larger number of
ohserved values (Brix. Jewson, and
Ziehmann, 2002). If observations from N
vears are available to estimate the
parameters of a weather index distribution,
then 365 = N observations can be used (o
estimate the stochastic process parameters
of the underlving daily weather variable.
Finally, daily simulation permits
incorporating weather forecasts into the
pricing model.

Presumably for these reasons. pricing and
analyzing the effectiveness of temperature-
related derivatives mainly originate from
daily temperature models. Despite the
aforementioned differences between the
stochastic processes of temperature and
rainfall, it seems promising to apply the
dally modeling approach in the context of
rainfall-based insurance. We pursue this
idea in the next section.

A Daily Precipitation Model

A precipitation model should be able to
capture the following characteristics of daily
rainfall. First, the probability of rainfall
oceurrence obeys a seasonal pattern.
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Rainfall in Europe, for example, is more
likely in winter than in summer. Second,
the sequence of wel and dry days follows
an autoregressive process. This means the
probability of a rainy day is higher If the
previous day was wet. Third, the amount
of precipitation on a wet day varies with
the season, Rainfall in Europe is more
intensive in summer than in winter. Fourth,
the volatility of the amount of rainfall also
changes seasonally. In Europe, it is higher
in summer than in winter.

In the following, a daily precipitation model
is described which can depict these
characteristics. According to Moreno
[2002) and Cao, Li, and Wel (2004). the
stochastic process of daily precipitation
can be decomposed into two parts: (a) a
stochastic process for the binary event
“rainfall” and "dryness,” and (b} a
distribution for the amount of precipitation
glven a rainy day. In order to specify the
first component of the model, we define the
random variable X, :

0 ifday tis dry.

8 X -
; 1 il day tis rainy.

It is assumed that X, follows a first-order
Markov chain, The probability (p,] that it
will rain on day ! can be calculated as:

@ p=p a1 -p )egd
t=1,2, .., 365.

where g;"' describes the [ransitional
probability of rain on day r and dryness on
the previous day t- 1. Analogously, g,
represents the transition probability
between two successive rainy days. Note
that the transition probabilities ' and
g, vary with time.

The second parl of the model, Le., the
precipitation amount y, on day ¢, is
represented by a sequence of conlinuous
random variables with independent
distributions. In the literature, various
distributions with a nonnegative domain
are discussed, including, among others,
the exponential distribution and the
garmnma distribution (Woolhiser and

Roldan, 1982), The mixed exponential
distribution has proven to be especially
flexible (Wilks and Wilby, 1999), The
density function is given by:

(0} fly !X =1) ==t (i}
y] I [j't Exp I}T

1-u, -4,
+ = Elxp —_— 4
Te e

withOza < land Q=< =¥y,

The mixed exponential is a weighted
combination of two simple exponential
distributions and inherits their properties.
The advantage of this distribution is that
it can better represent exireme events
compared with a simple exponential (cf.
Hansen and Mavromatis, 2001). The
parameters of the mixed exponential
distribution «,. f,, and vy, are also time-
varying, thereby taking into account the
seasonality of precipitation.

In this form, however, the model {3 not
estimable. In order to reduce the number
of parameters to be estimated, each of the
time-varying parameters is developed by a
finite Fourier series:

fak

where 8, =g/ 0,,=q,'.05=a.08,-B,

0 =v,.and t=365/(2+n); a, and bjk
denote the Fourier coefficients; and m, is
the maximum number of harmonics
needed to specify the seasonal cycles. The
variable m, can be determined by means of
a model selection criterion, e.g.. the Akaike
information criterion (AIC). The Fourier
coeflicients for g, and q;' are estimated
by maximizing the following log-likelihood
functions (Woolhiser and Pegram. 1979):

L)
{12} InL, - E[c,ﬂ“*mu g™ v e -1nig")
=1
-elounil - g+ el v Inig ).
where ¢! denotes the observed number of

transitions from state {at day {- 1 to state |
at day &
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In order to estimate the Fourier
coefficients for «,, [, and y,, we maximlze
the following log-likelihood lunction
{Woolhlser and Pegram, 1979):

(13) L, -3 In[fiy,|X - 1],
=1

where ndenoles the number of rainy days
in the sample,

Based on this model. Wilks (1999) provides
a computational procedure for the
simulation of sample paths of daily
rainfall, First, three independent uniform
random variables, w , t, . and ug,, are
generated, with w, . e, o ug, 2 [001]0 The
sequences of wet and dry davs (8) can then
be simulated by comparing the estmated
probabilities of daily rainfall occurrence (9)
and u, , as follows:

0 fu ,>p,.
(14) X { L=

| otherwise,

For a rainy day (X, = 1), the rainfall
amount y " can be simulated according

T
(18) u™ -1 - @ ~Infu, ],

where [ Is the minimal rainfall amount for
a day to be recorded as rainy [ equals

0.1 mm for weather stations in Germany).
The parameter @ is chosen as:

—— B, fuy, «a,
" |y, otherwise,

The sequence y;/™. t= 1.2, ... 365,
facilitates determining one iteration of the
considered rainfall index, The entire
procedure (s repeated 50,000 times.

Application: Valuation of
Rainfall Options for Grain
Producers in Northeast
Germany

Grain production in northeast Germany,
Brandenburg in particular, is highly
affected by rainfall risk. During the

relevant period of April to June over the
last 20 years, average vearly rainfall in
Brandenburg was between 64 mm and
258 mm of precipitation (with a mean of
151 mm). and the grain yields have
Muetnated similarly. The correlation
between rainfall and vields results from
the sandy =soil possessing little water-
storing capacity, as well as the lack of
frrigation. Currently there is no possibility
of insuring against vield losses caused by
low rainfall.

In view of the extreme crop failures in the
drought years 2000 and 2003, during
which tme the government had to provide
disaster relief in order to save farmers from
insolvency. there is a pronounced interest
in introducing some kind of rainfall
insurance. By purchasing a put option on
some rainfall index, a grain producer is
(partially) insured against revenue losses
due to little precipitation in the growing
season. Prior to the analysis of the
hedging effectiveness of a particular
Instrument, we investigated the properties
of the historical simulation, the index
value simulation, and the datly simulation
for a variety of rainfall indexes.

Definition of the Rainfall Indexes

Twao different types of precipitation indexes
are defilned: a cumulative rainfall index
and a deficit index. The cumulative index
() is the sum of daily rainfall amount in a
certain accumulation period:

X
(7 =%y,
i=1

where x denotes the length of the
accumulation period. We call this index
the “rainfall sum.” Existing emplrical
studies on rainfall insurance usually apply
this type of index. As an alternative, we
suggest a rainfall deficit index (") defined
HEL

(18) J”*=Zl;mln 0. ¥ -yl

[ RS FEEERS

This index measures the shortfall of the
rainfall sum in an s-days period relative
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Table 1. Probability Distribution Functions Selected by Different Goodness-of-Fit Tests

Rainfall Sum Index Rainfall Deficit Index
— Accumulation Perloed — — Accumulation Period —
Jan- Mar- Apr- Jan— Tlar- Apr-

Goodness-of-Fit Test Dec July June June Dec July June June
Chi Square: Beta  Weibull Beta Pearson VI Beta  Welbull Beta Betn

r Test Value 3.90 4.41 7.30 11.96 6.50 6.84 10,28 .0

* Critical Value® S - 16.92 o
Eolmogorov-Smirnov: Welbull Weibull Gamma Lognormal Beata Wedbull Beta Beta

» Teat Value 0.08 0.07 0.07 0.08 0,05 0,05 012 007
_* Critical Yalue* P DEY 087 _L.36 136 1.36 0687 136 @ 136
Anderson-Darling: Welbull  Erland Gamma Lognormal Beta Wedbull Beta Beta

= Teat Value .42 0.23 044 0.54 .53 .20 .66 .82

» Crilical Value® 0.76 2,49 2,49 2,49 2.49 0.76 2.49 2.49

= Critical values al a 95% significance: level,

to a reference level ™', This shortfall s
cumulated over z perlods. Hence, the
construction principle s quite similar to
that of degree-day indexes, which are
widely used for the specification of
temperature derivatives.' The rainfall
sum and the rainfall deficit are
caleulated for four accumulation periods:
January 1-December 31, March 1-July
31, April 1-June 30, and June 1-June 30,
The variable s is set to five days, and y""
equals the average five-day precipitation
in the respective accumulation period.

Specification and Estimation of
the Precipitation Models

Estimation of the rainfall index
distributions (s based on rainfall data
measured in Berlin-Tempelhof from
January 1, 1948 to December 31, 2005.
This means N = 58 observations are
avallable for estimating the empirical and
the parametric distribution ol the two
rainfall indexes, and n = 21,170
observations for estimating the daily
precipitation model, The most appropriate
parametric distributions for the eight

' Thia delinitton may appear unusual since the
deficht Index will take negative values, However, the
definition 1s convenient for the preaent application
because the celattianship belween the index and the
praduction oultpul is the same as for the rainfall sum,

indexes are determined by means of three
goodness-ol-fit tests: the Chi-Square test,
the Kolmogorov-Smirmov (est, and the
Anderson-Darling test,® That distribution
which showed the smallest value of the
respective test eriterion was selected.
Only distributions with a nonnegative
domain for the rainfall sum and a
nonpositive domain for the ralnfall deficlt
were considered,

Table 1 displays the estimation results,
For rainfall deficit. the beta distribution, In
most cases, offers the best approximation
to the empirical distribution, An exception
is the accumulation period from March-
July, where the Weibull distribution is
more appropriate. The cholee of a
parametrie distribution for the rainfall sum
is more complicated, initially because more
funetions come into play, and additionally
because the three statistical tests suggest
different distributions for the same
accumulation period. Considering this
sensitivity, we did not select a single
distribution for the index value simulation
but ran two variants labeled “index value
simulation [ (IVS 1] and "index value
simulation 11" (IVS I} thereafter,

*The catculations were carvied oul with BesiFii,
[etailed information on the properties and the
assumptions of these goadness-of-fit lesis can be
found, for example. in D'Agosting and Stephens | 1986)
and Vose (2006, p. 240).
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Figure 1. Observed and Estimated Average Daily Precipitation (weather

station Berlin-Tempelhof)

To estimale the daily precipitation model
parameters (8) to {(11]). the likelihood
Munetions [12) and {13) were maximized
with a genetic algorithm,” The assumption
ol a mixed exponential distribution for the
daily rainlall amount is supported by a
Holmogorov-Smirnov test at a 85%
significance level, The number of harmonics
ol the Fourier series, m,, are determined
using the Akaike information criterion
(AIC). The AIC value is minimal for m =9
in the case of the transition probabilities,
and m = 7 In the case of the mixed
exponential distributlon parameters,
Figure 1 shows the actual and the
estimated dally rainfall over the course of a
year. Figure Al in the appendix depicis
the corresponding transition probabilities
gt and g''. Obviously, the model not
only fts the yearly average, but also the
seasonality of the rainfall amounis as well,
From appendix Flgure A2 |t can be seen
that the standard deviation of the
estimated daily precipitation is actually
higher in summer than in winter. Henee,
the model reflects the aforementioned
characteristics of daily rainfall.

‘Genette algarithms are heurstic search procedures
which are able to solve complex optimizalion problems
by mimicking the opimtation strategy of blologieal
evolulicn, For a detalled exposition, see Goldberg
[ LEEH or Mitchell | 1546].

A pitfall of the daily precipitation model is
the underestimation of the cumulated
rainfall variance over a period of several
weeks, This underestimation of the
variance has already been observed in a
different context and has been termed “low
frequency variability bias”™ {(Hansen and
Mavromatls, 2001; Dubrovsky, Buchtele,
and Zalud, 2004). For example, the
sample standard dewviation of the
cumtulative precipitation from January—
December is 895.09 mm, whereas the daily
precipitation model only shows a value of
75.53mm. One can expect that the daily
simulation will also result in biased
options prices because options prices are
sensitive to volatility.

Hansen and Mavromatis (2001) discuss
various methods for reducing the low
frequency variability bias, In this study
we Lake several measures. First, the
transition probabilitles g and g, are
estimated by their empirical sample
counterparts, which clearly show a higher
variability than those based on the Fourier
series (see appendix Figure Al). Moreover,
the parameters of the mixed exponential
distribution «,. . and y, are determined in
such a way that the resulting standard
deviation exactly fit the sample standard
deviation of the daily rainfall amounts
shown in appendix Figure AZ2(b]. Second,
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Table 2. Comparison of Different Precipitation Models

PANEL A. Moments of the Rainfall Index

Rainfall Sum Index Rainfall Deficit Index
— Accumulation Period — — Accumulation Period —
Jan— Mar- Apr- Jan- Mar— Apr—
Precipitation Model Dec July June June Dec July June June
Ba:
» Mean 578,32 267.13 160,34 G, 64 26799 -116.31 -75H.88 2652
{11.94) {731 16430 5.23] 4.82) [2.35] [2.28] [1.59)
» Standard Deviaton a5.09 53.46 51.37 40,21 37,48 18.79 17.13 13,04
(7.92} 4.84) (3.54) (6.72] (260 [1.55) [1.68) (1.04)
IVSI: Beta Wejbull Beta Pearson V1 Beta Welbull Beta Beta
» Mean BY8.32 25427 1680.34 75.54 -257.9049  -116.31 Th.B8 20.62
{12.48) (8.29) (6. 545) [7.43) [B.26] [2.54) [2.28] [1.B8)
v Standard Deviatlon 95.09 BO.7TH h1.37 &4 .00 a7.48 18.86 17.13 13.04
(65,500 (5700 (337 (16.36] (2,32 [1.74] [1.27] [1.04)
VS II: Welbull Erland Gamma Lognormal Beta Weibull Heta Beta
= Mean 5¥2.B6 25660 16094 T0.BT
(13,70 [7.72) [8.34) [5.74) [see VS 1]
r Standard Deviallon 105,73 53,44 51.99 45,66
(10,571 (5.58) [5.93) [8.495]
DS I
» Mean B7R.72 25710  161.54 68,13 -236.62 10827 7045 -28.18
8, TH] [5.71) [5.25) [5.07] (5. 79 (2.51) (1.6 [2.05)
v Standard Deviatlon 75.63 51.63 42,81 20.24 28.41 19.62 15.91 11.46
[5.87) (4.74) [4.52) [3.68) [2.37) {1.75] [2.06) [1.22)
DS I
r Mean 57021 256631 16001 69,15 -246.66 -]1L3.B9 T4.36 30.009
[B.95) (5. 06} [5.95) [4.24) [3.12] [2.6T] |1.95] [1.76}
» Standard Deviation £3.26 56.35 46,03 32.15 29.65 20.55 16.74 11.682
[B.94] [5.00) [4.90]) [4.13) [2.42] {1.89 [1.65 [1.11}

Mates: BA = burn analyals, IVS = index value simulation, DS = dailly slmulation; mean and standard deviation values
are in mm; values lor the put and call oplions are in €: values o parentheses are standacd errors.

following Dubrovsky, Buchtele, and Zalud
{2004}, a second-order Markov process [as
opposed to a first-order) is estimated,
Thus. longer sequences of consecutive
rainy and dry days, respectively, may
occur, which leads to a higher standard
deviation of the cumulated precipitation,
In what [allows, the original and the
modified dally precipitaton model are
called “daily simulation 1" (DS 1) and “daily
simulation 17 (DS 1), respectively.?

Y In addition 1o these two models, olher medel
versions have been spectfiicd and estimated. For
example, the mixed exponental distribution has been
replaced by a kernel densicy estimator as suggested by
Rajagopalan. Lall, and Tarboton [(1996). The resules,
however, did not change significantly,

Results of the Precipitation Models

Panel A of Table 2 presents the mean and
the standard deviation of the rainfall index
distributions obtained by applving the
burn analysis, the index value simulation,
and the dally simulation.” The results of
the parametric methods [index value
simulation and daily simulation] are based
on 50,000 repetitions. Consequently,
sampling errors are virtually eliminated.

*Note that the mean and the variancee da nofb
completely describe the index distributons presenited
In Table 2. Higher-order moments (e.g., skewness and
kurtosisl may also differ. We focus here on the first
twor moments, since they are the nwst impartant
determinants of the optlons prices consldered below.
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Table 2. Extended

PANEL B. Options Prices

Rainfall Sum Index Rainfaill Deficit Index
— Accumulation Perlod — — Accumulation Period —
Jin- Mar— Apr- Jan- Mar- Apr-
Precipitation Model Dec July June June Dec July June June
BA:
» Pl A7.04 20.56 2015 13.82 14.85 710 G.31 5.16
(6.53) {3.95) (3.59) (2.26) [(2.77) [1.300 11.47] [} 815]
» Call 37.04 20.56 a0.15 13.82 14.95 710 631 5,16
(7.12)  (4.54) (3.87)  (4.13) (279)  (145)  (LOS1  (0.87)
WS I: Beta Weibull Beta Pearson VI Beta Wedbull Beta Beta
* Put 40.07 24.90 21.57 16.28 15.51 7.37 B.71 5.24
[G.94] [5.14) [3,78] [2.17] [3.08) [1.44) (137 1.0
= {all 37.93 22.14 20.81 21.08 15.89 737 T.03 5.18
[7.19) [4.51) (3.71) {6.45) (2,700 [1.56] 11.25) I]._H]
VS I Weibull Erland Gamma Lognormal Beta Weibull Beta Beta
+ Put 43.058 20.76 19.78 15.08
19.05) [4.01] {3.43) [2.14] [see VS 1]
= Call 38.08 20033 20,42 16.0%
{7.25) [4.89) [4.200 [4.61]
DS I:
= Pur 28657 20,02 15.32 11.83 3.38 4.33 G040 385
[4.400 [3.24] [2.58) [2.09) [0.82) [1.18] (1.20) 11.16)
= Lall 29,06 19,59 16,47 10.57 25.03 12.08 .13 5.16
[G.29) [3.77) [2.89) [3.39) [3.33] 11.79] {110 [1.07]
DS II:
* Pul 31.33 21.98 17.37 12.42 6. 78 G.B3 5.76 4,89
(4. 55) 13.72) 13.50) (2.25) [1.35) [1.47} [1.28)] [ 1.9
e Call 32.19 21.16 17.92 12.04 17.70 9.16 7.22 4. 54
{5.65) 14.34) 1:3.29) |2.68] (2. 36) [1.67) [1.15) (8=

In order to assess the reliability of the five
models, panel A also displays the
estimates’ standard errors, which are
calculated for 200 iterations using the

discount rate of 5% and a maturity of nine
months are assumed.

bootstrap method.

In addition, the prices of a put and a call
option on each of the elght rainfall indexes
are calculated in Table 2, panel B to
illustrate the consequences of statistical
modeling for the valuation of weather
derivatives, The options prices are
calculated according (o equation (1) using
actual probabilities. The contract payvoff W
is max(5 - L 0) - V for the put option and
max{f - S 0] « ¥ for the call option. The
strike price S equals the sample mean of
the respective indexes, and the tick size ¥
is set to 1 € per index point. A risk-free

Using the empirical distribution generated
by the burn analysis (BAl as a benchmark,
we find from Table 2, panel A that the it of
the index value simulation and the daily
stmulation varies depending on the rainfall
index. For example, the mean and
standard deviation of the rainfall deficit
from April—June and the month of June
are estimated fairly well by all methods.

In contrast, high deviations occur, for
example, in the sum of ralnfall in June.

The relative performance of the index value
simulation and the daily simulation is also
ambigunous. The index value simulation

is superior to both variants of the dally
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simulation for all variants of the defieit
index in the sense that its estimates are
closer to the mean and the standard
deviation of the empirical distribution
[which themselves are random variahles),
In confrast, the DS II outperforms the
Pearson VI distribution in the case of the
rainfall swm in June, and the Weibull
distribution for the accumulation period
March—July. As noted above, the DS 1 has
particular problems in estimating the
volatility of the rainfall index correctly, In
almost all eases. the estimator s blased
downward, This problem can be mitigated
by modifications of the standard model
described above, but in some cases the DS
11 still underestimates rainfall variability,
while the index value simulation tends to
overestimate the volatility. This bias can
be considerable—e.g.. for the rainfall sum
in June.

The mean and standard deviation of the
index distribution are important
determinants of the corresponding options
prices, and hence biased estimates of
these parameters translate into incorrect
derivative prices, The differences between
the various estimation methods are
pronounced for the annual period of
rainfall deficit. Fair prices for the put
option calculated with the daily simulation
models amount to 3.38€ and 6. 78 €,
respectively, while the burn analysis and
the index value simulation give an option
price of about 15€. It may also happen
that estimation errors in the mean and in
the velatllity compensate each other, fe,
the resulting oplion price is right for the
wrong reasons, This occurs, for example,
when IVS [ is used to price a put optlon on
the rainfall sum in June,

An argument sometimes presented in favor
ol daily simulation s that this method
produces small standard errors.  Actually,
the daily simulation shows smaller
standard errors than the burn analysis
and the index value simulation in many
cascs of the present application, but the
galn in accuracy is not as pronounced as
reported by Brix, Jewson, and Ziehmann
(2002] for a temperature index, It may
even be that the daily simulation has

slightly larger standard errors than one

of the ather estimation procedures,
Interestingly. the estimates of the burn
analysis frequently have smaller standard
errors than those of the index value
simulation, Contrary to this ohservation,
the burn analysis has been criticized in
the literature for producing unstable
results (see, e.g., Cao and Wei, 2003; Zeng,
2000,

Estimating the Relation Between
Wheat Yield and Rainfall

Estimation of the yield model is based on
the yield data of a single representative
farm in Brandenburg over 13 years, from
1993 to 2005, Thirteen observations seem
to be a poor database for the estimation of
the yield model. However, a longer ime
series is not avallable for the new federal
states in Germany in general and
Brandenburg in particular, since
production took place under lotally
different conditions prior to German
reunification. Hence, yleld data before
and after 1990 cannot be pooled.®

Several functional forms for the yield
model have been tested—in particular, a
quadratic, a logarithmic, and a linear-
limitational (Leontief] production function,
The latter provided the best fit in terms of
R for the observed data and both
indexes.” Another advantage of the
Leontief production function is that it
duplicates the payoff structure of a (plain
vanilla) option, Specifically, il the yield
can be modeled by a linear limitation
unetion of the weather index, then an
option on this index can be constructed
which exactly offsets the revenues from
production (If basis risk Is nonexistent).

*This problem does not exist for eeglans in West
Germany. but it is not possible to Unk a yield model
that is calibrated for a reglon In West Germany wilh o
rainfall model for Brandenburg.

"This finding cannot be generalized. Zhang (2003],
for example, linds a quadratic production function
more sultable for describing the relationship between
wheat and rainfall, Vedenov and Barnett (2004)
conclude that the appropriate weather-vield model
virles by crop and regiomn.



Agricultural Finance Review, Spring 2007

Odening, Musshoff, and Xu 147

A linear-imitational production function is
glven by

d. oved +f-p IfT<d,
“9] Qfl!1}= i) i t t 'd'l
el, otherwise,

L

withi=1, 2,..13,

Here, o, d,, d,. and d, are parameters,
and ¢, is the error term of the production
function. The variable I represents, on
one hand, the rainfall sum in June. and on
the other hand the rainfall deficit in the
period from April 1<June 30 (with s = 5
and y™ = 6.4 mm),

Table 3 presents the estimated parameters
of the production function. The assoclated
test statistics show that the fit of the
production function is much better for the
rainfall defleit than for the rainfall sum.
The magnitude of the production function
estimation errors will affect the hedging
effectiveness of the rainfall Insurance, and
therefore it is important to understand
their occurrence. The rather low fit of the
vield models can be partly attributed to
the shortness of the yleld time serles,
Moreover. the residuals of the regression
include both production risk and
geographical basis risk, since the
considered farm site is located at a
distance of about 40 ldlometers from the
weather station.

Analysis of the Hedging
Effectiveness of Two Rainfall
Options

At this point, we have specified all model
components necessary to investigate the
hedging effectiveness as described earlier.
We consider two put options: the first
option refers to the rainfall sum in June,
while the rainfall deficit in the period from
April 1-June 30 underlies the second
aplon. These particular specifications
were chosen because the correlations
between the indexes and the wheat yield
are then maximized. The strike levels
for the two options are 130 mm and

33.7 mm, and the corresponding values
for the tick size amount to 1.9 € findex

point and 8.1 €/index point. Again. these
parameters are determined in such a way
that the hedging effectiveness of the two
derfvatives s maximized.

The stochastic values of the rainfall
indexes are generated by means of the
index value simulation (lognormal
distribution for the rainfall sum and
Beta distribution for the rainfall deficit)
and the modified daily simulation by
using 50,000 repetitions. The basis risk
that is inherent Lo the two options is
captured by the normally distributed
stochastic component of the estimated
production functions. When simulating
the stochastic revenues according to
equation (4], a constant product price of
LOE fdt is assumed.

Table 4 presents selected parameters of
the revenue distribution functions with
and without rain insurance, as well as
their certainty equivalents. The latter refer
to the negative exponential utility function
with an absolute risk-aversion parameter
A, =0,01.* Note that the expected value of
the profit distributions does not change
when buying the option, because the
option price is calculated as the expected
value of the payofls with respect to the
actual probabilities.

As explained earlier, this procedure

implies a weather risk market price of zero
and can be Justified if the rainfall index
and the market portfolio are uncorrelated.
In the case of a positive correlation, the
expected value of the weather index at
expiration should he corrected downward,
thus yielding a higher price for the put
options, i.e., the cost of insurance would
be higher. Moreover, sellers [insurance
companies, banks) will presumably charge
additional premiums to cover thelr
transaction costs. Hence, actual prices are
expected to be higher than the prices
reported in Table 4. This leads to a
downward shift of the revenue distributions
with insurance,

*This chodee of 1, implie= rather strang risk aversion
fof. Benitez et al.. 2006),
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Table 3. Estimation of Production Functions and Associated Test Statistics

Critical Critical
Value of ¢ Value of F
Parameters Estimation t-Value {95%) R F-Value {95%)
Rainfall Sum Index:
e, 5.0 7.22
o, .19 1.83
d, 130.0 o 0D.22 2.82
d, Fr 3.485
1.B1 4.96
Rainfall Deflcit Index:
d, 103.0 13.01
el msl 4.97 1673
o, a7 _ 0.562 B
ds 75.5 2.34

Table 4. Hedging Effectiveness

Parameters of the Revenue DHstribution
Precipitation Put Optien Standard Certainty
Model Option Price Mean Deviation 5% B5% Equivalent
Rainfall Sum Index:
VS Without 624,13 117,89 434.38 B21.79 548.06
Wilth 117.21 62413 99,79 459,96 788.24 561.59
DS I Without G662 114.06 437.94 Bl15.66 552. 58
With 113.29 G26.62 104.11 461.24 T82.07 D64.03
Rainfall Deficit Index:
wWs Without 619.76 11936 411,00 BO3.4T 523.83
With 107,11 G19.76 TH.18 481.15 748.30 574.42
DS 11 Withoutl 624,02 1165.82 424 61 805.73 56,55
With 103.73 624.02 TB.AT 404,93 753.13 B76.25

Notes: IVS = index value stimulation, DS = daily stimulation: all values are in €.

In contrast to other applications (e.g.,
Stoppa and Hess, 2003), risk reduction
using a put option on the rainfall sum s
limited here due to high basis risk, The
volatility of revenues with insurance is
only about 15% smaller than without
insurance, and the certainty equivalent
increases by 2%, This result is not
surprising considering the small
correlation between the rainfall sum and
the wheat vield. The hedging effectiveness
is higher for the rainfall deficit and
amounts o one-third in terms of a
reduction of the standard deviation: this
finding emphasizes the importance of
defining an appropriate weather Index,

As demonstrated below, the effect of
rainfall insurance may be dampened or
amplified the farther or closer a farm is
located in relation to the weather station.

From a methodical viewpoint, it is
interesting to compare the two valuation
methods, Table 4 shows that the
revenue distributions of the index value
simulation and the [modified) daily
simulation do not differ significantly.
Additionally, both approaches calculate
nearly the same hedging effectiveness.
The: largest difference amounts to a 4%
variation for the certainty equivalent in
the case of the defleit index. This is
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remarkable since Table 2 showed
considerable differences in the estimation
of the mean and the standard deviation of
the index distributions, in particular for
the rainfall sum in June. The reason for
this is that the index distributions of the
rainfall sum generated by the index value
simulation and the daily simulation differ
mainly in the right tail, though these
differences are aligned by the constant
segiment of the linear-limitational
production function. However, this finding
does not mean that the cholce of modeling
approach s unimportant. Other
situations may exist where differences in
the estimated rainfall distribution are
translated more directly into the revenue
distribution.

Analysis of Geographical Basis Risk

The existing empirical literature is
equivocal with regard to the hedging
effectiveness of weather derivatives in
agriculture (see, e, Chen and Roberts,
2004; Edwards and Simmons, 2004;
Fleege et al.. 2004; Schmitz et al., 2004;
Vedenov and Barnett, 2004: Manfredo
and Richards, 2005}, This is not
surprising since the hedging
effectiveness depends on several factors,
which vary between applications.

First. the correlation between the weather
index and the vield is important. The
correlation itself depends on the
detinition of the index and the
considered product. Second, the
quantification of the weather-yield
relationship is subject to estimation errors,
which can be pronounced. Third, the
geographical basis risk has to be taken
into account.

The first two Issues have been discussed.
Now we attempt Lo assess the magnitude
of geographical basis risk that is inherent
to the considered rainfall opiions by means
of a de-correlation analysis. Rubel (1996)
proposes the following nonlinear
de-correlation function for the spatial
relationship of precipitation in Europe:

(20) pld) - e, +expl-e, +d®).

where pld) denotes the correlation
coefficient between precipitation at
different places, and d is the distance
between the weather station and the
farmer's production site. The variables
e, &, and e, are parameters to be
estimated. In spite of the de-correlation
analysis being a popular instrument in
meteorology, two points should be
considered critically. First, the
de-correlation function is invariant
regarding direction. Thus, topagraphical
differences potentially influencing
precipitation are neglected. Second,
Embrechts, McNeil, and Straumann {1598)
{dentfy problems of using correlation
coefficients when the underlying
distributions are not elliptical. Despite
these weaknesses, de-correlation analysis
iz used in this study.

Caleculation of geographical basis risk is
carried out for both considered rainfall
indexes {.e., rainfall sum in June and
rainfall deficit from April 1-June 30,
Rainfall records for 223 weather stations in
the Berlin and Brandenburg region are
avallable between January 1983 and
December 2003. For each weather station,
a time series of the two rainfall indexes is
calculated, and palrwise correlation
coefficients are determined, Next, the
distances between the stations are
measured and entered into the nonlinear
regression function [20). Parameter
estimates for the de-correlation function
are: ¢ = 0.84, e, = 0.0033, and e, = 0.88
for the rainfall sum, and e, = 0.89,

e, = 0.0001, and e, = 1,63 for the rainfall
deficit.

Figure 2 shows the graphs of the
de-correlation [unetions which, as
expected, have a negative slope. The R*
for the rainfall sum is 0.24 and lor the
rainfall defieit 0.63. Therefore, the
estimated de-correlation function is a
better approximation to the empirical
correlations in the case of the rainfall
deficit. Moreover, the scatter plot reveals
heteroskedasticity, i.e., the relationship
between distance and correlation
becomes less precise with increasing
distance,
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Figure 3. Revenue Distributions With and Without Hedging

From Figure 2 it can be seen that the
correlatlon between Berlin-Tempelhof aned
a weather station 40 km away s
approximately 0,87 for the rainfall sum
and 0.86 for the rainfall defleit. These
values decrease Lo about (.65 and 0.5,
respectivelv, at a distance of 200km. This
decrease s very moderate and related to
the particular topographical situation in
Brandenburg.”

Finally, we Investigate the relationship
between geographical basis risk and
hedping effectiveness. This relationship is
exemplified for the put option on the
rainfall deficit index from April 1-June 30
using the index value simulation. The
setting of the calculation is as before, but a
second farm, which is located at a distance
of 140km from the reference weather
statlon instead of 40 km, is also
considered. According to the estimated
de-correlation function, the correlation of
the rainfall deficit index at these two farm
locations is (0.74.

* Salzon and Garcla-Bartual (2003 report a
eorrelation of only 0.3 4t a distance of 10 lan in a
Mediterranean region. Paulson and Harg (2006
estimate a correlation coeficient of approsdmately 0.6
for one degree of latitude (110 km) In lowa, USA. East
[2005] finds a de-correlation similar o ours for
southeast Australia.

Figure 3 shows that the hedging
effectiveness of a pul option is considerably
reduced the farther away from the
reference weather station the producer is
located, The standard deviation of the
revenues s 78,18 at a distance of 40km
and 103.38 at a distance of 140km. That
is, more than half of the risk-reducing
potential of the put option vanishes il the
distance between the farm location and
the reference weather station increases by
100 km.

Conclusions

In this paper we investigate three statistical
approaches that can be used for modeling
rain risk and pricing rain insurance. Our
maln interest les with the question of
whether a dally precipitation maodel can
improve the estimation of rainfall indexes
(and thereby the valuation of an index-
based insurance] using simpler approaches
such as burn analysis and index value
simulation for comparison, Our resulis
indicate that clear differences in the
estimation results may oceur among the
three approaches. This finding underseores
the importance of the model choice,
However, it is difficult to draw an
unequivoeal conclusion regarding the
superiority of a specific valuation approach.
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Insofar as our results do not confirm
others’ previous experience in the context
af temperature modeling, daily stmulation
is generally preferred. On the one hand,
applying daily simulation has the advantage
of vielding smaller confidence intervals for
the resulting indexes and prices compared
with the nonparametric burn analysis and
the index value simulation, though this
atdlvantage seems to be much smaller for
rainfall than for temperature. On the
other hand, the danger of a rather
sophistcated daily precipitation mode]
being wrongly specified is relatively high;
such a risk is precluded when the
precipitation [ndex is estimated directly,

In the present application. the daily
simulation model tends to underestimate
the volatility of monthly rainfall. This
pitlall may be of minor importance in the
context of meteorological or hydrological
applications, but it is severe when the
model is used for risk assessment and
derivative pricing, Some measures o
reduce this bias have been discussed and
successfully implemented in this paper,
Nevertheless, the problem deserves further
attention.

Another shorteoming of the presented daily
rainfall model is the ignorance of long-term
(interannual] variability of the parameters.
This means that trends, or an increase of
rainfall volatility due to climatic changes,
are not captured by this model, In
principle, however, it is also possible to
incorporate interannual variability nto
daily precipitation models (ef. Wilks and
Wilby, 1999), We conclude that the
preferential statistical approach to weather
derivative pricing depends on the context
of its application. Tdeally, more than one
maodel shauld be implemented, and
differences of the models' outcomes should
he carefully analyzed. A systematic model
validation based on quasi-ex ante forecasts
is suggested as a subject for further
research.

Regardless of the issue of the appropriate
stalistical method, the following practical
conclusions can be drawn. The risk-

reducing effect of precipitation derivatives

is much more reglonally confined than is
the case with temperature-related
derivatives. In the example of Brandenburg
considered here, the correlation between
the precipitation index of the weather
station Berlin-Tempelhof and a remote
{arm site decreases to a value of 075 at a
distance of 100km. If one additionally
takes into account the stochastic relation
between precipitation and production, the
use of rainfall derivatives as risk
management tools In agriculture appears
gquestionable, at least for conditions
camparable to those in this study,

It follows that potential suppliers of rainfall
insurance should introduce a dense
network of weather stations as reference
points for the rainfall index in order to
increase the attractiveness of this type of
insurance, although this may lead 1o
fragmented demand, Morcover, the
specification of adequate weather indexes
also requires further study. Simple rainfall
indexes, upon which we focus here, may
not be specific enough from the viewpoint
of many producers. The inclusion of
additional weather variables in the weather
index (e.g., temperature or humidity] could
help mitigate the problem of basis risk.
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Appendix

Transition Probability
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Figure Al. Conditional Transition Probabilities
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