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Optimal Insurance Against
Climatic Experience

Olivier Mahul

An optimal insurance contract against a climatic risk is derived in the presence of an uninsurable
and dependent aggregate production risk. The optimal design depends on the stochastic dependency
between both sources of uncertainty and on the producer’s attitude towards risk, especially on his
prudent behavior. Rational weather insurance purchasing decisions are also derived. The prudent
producer responds to actuarially fair weather insurance by increasing his exposure towards risk.
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The U.S. multiple peril crop insurance pro-
gram, in which indemnity payments are based
on the producer’s individual yields, has been
disappointing in that premiums have not
been sufficient to cover indemnity payments
and administrative costs. This failure has
induced the U.S. government to promote
alternative insurance policies. Since 1993, the
Risk Management Agency has offered area-
yield contracts under its group risk plan in
selected counties (Skees, Black and Barnett).
Another alternative is to base the indem-
nity on a weather index, such as rainfall or
temperature. This policy was proposed in the
past by Sanderson but has failed to gain
acceptance among policy makers. The dif-
ficulties of rainfall insurance were a sub-
ject of debate in Australia (e.g., Bardsley,
Abey and Davenport; Quiggin 1986; Patrick).
The recent development of weather based
instruments on financial markets, known as
weather derivatives, for which the payoff
depends on the cause of risk, rather than on
its effect on yield, provide new opportunities
for covering exposure to unfavorable weather
events.

The objective of this article is three-
fold. First, a stochastic production function
affected by a climatic risk and by an aggre-
gate production risk, where both sources
of risk are stochastically dependent, is de-
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fined. The design of an optimal insurance
contract against a weather variable, the first-
best solution, is derived when the aggre-
gate production shock cannot be insured.This
uninsurable background risk creates a source
of incompleteness in the crop insurance mar-
ket. The optimal indemnity schedule depends
on the stochastic dependence between the
insurable climatic risk and the uninsurable
aggregate production risk, and on the pro-
ducer’s attitude towards risk. The concept
of stochastic dominance and the behavioral
property of prudence, introduced by Kim-
ball, are used to derive the optimal insur-
ance design. Second, a functional weather
insurance contract in which the indemnity is
contingent on the intensity of the weather
variable is proposed. In this context of incom-
plete markets the first-best optimum is used
to examine the producer’s weather insur-
ance purchasing decision. The consequences
of stochastic dependence on rational insur-
ance purchasing decisions are highlighted
using recent works on optimal insurance in
the presence of an uninsurable, additive, and
independent background risk (Mahul 1999).
Third, the impact of actuarially fair weather
insurance on the optimal level of input use
is analyzed. Previous comparative statistical
results obtained by Leathers and Quiggin and
by Ramaswami are re-examined under the
behavioral assumption of prudence.

After describing the stochastic produc-
tion function in the next section, the above
objectives are examined successively in the
following three sections and concluding com-
ments are provided in the last section.
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The Stochastic Production Function

Contrary to the standard crop insurance
contracts, indemnity payments of weather
insurance are based on the intensity of the
weather index rather than on its effect on
yield. Nevertheless, the producer seeks to
insure revenue that is affected by these cli-
matic changes. Consequently, the first step
is to specify a model of crop yield to char-
acterize the impact of weather uncertainty
and other production risks on yield. Biophys-
ical models of yield have been developed
to examine changes in yield that are gen-
erated by changes in the physical climate
(Kaufmann and Snell). Crop weather models
simulate the crop-climate interface and mul-
tiple regression is used to estimate the effect
of physical variables on yield from empirical
observations. Here our purpose is more mod-
est. We aim to define a stochastic production
function which models the yield impact of
an insurable random weather variable, of an
uninsurable aggregate production shock, and
of the input level selected by the producer.

The first feature of this production function
is that it allows yield to depend linearly on
two sources of risk

ỹ = g(x)ω̃+ k(x)ε̃+ h(x)(1)

where ỹ is the random output, x is the input,
ω̃ is the random weather index with Eω̃ =
µ > 0 and ε̃ denotes an aggregate production
shock. The index ω̃ is an observable weather
event. For instance, it can measure the cumu-
lative rainfall level or the cumulative degree-
day heat level in a given geographical area
and period. This component of the produc-
tion risk is systemic because it affects all the
farms located in the same geographical area.
The ε̃ shock includes other sources of pro-
duction risk that are not insurable. Thus it
acts as an uninsurable background risk. From
the decomposition of the production func-
tion in equation (1), ε̃ can be farm-specific
or systemic. The functions g(·) and k(·) are
assumed non-negative. Hence, smaller real-
izations of ω̃ and ε̃ correspond to relatively
more severe disasters.1 This functional form
can be viewed as a Taylor’s expansion of a
more general production function f(x� ω̃� ε̃)

1 This linear form prevents us from considering simultaneously
the negative effects of droughts and floods on individual yields,
but they can be examined separately through an appropriate def-
inition of the realizations of the weather index.

around (Eω̃�Eε̃). The Just and Pope pro-
duction function is obtained when ε̃ equals
zero almost surely. The cumulative distribu-
tion function of (ω̃� ε̃) is denoted T(ω� ε) and
it is defined over the support [ωmin� ωmax] ×
[εmin� εmax] with 0 < ωmin < ωmax and εmin <
0 < εmax. The marginal distribution function
of ε̃ is denoted �(ω).

The second feature of this stochastic pro-
duction function is that random variables can
be independent or correlated. The stochas-
tic dependence between both sources of
risk is characterized by stochastic dominance.
More precisely, we assume that a decrease
in ω induces a riskier conditional distri-
bution of ε̃ either by first-order stochastic
dominance (FSD)

�ω(ε/ω̃ = ω) ≤ 0 for all ε and ω(2)

or by second-order stochastic dominance
(SSD) ∫ ε

εmin

�ω(s/ω̃ = ω)ds ≤ 0(3)

for all ε and ω

where �(ε/ω̃ = ω) is the cumulative distri-
bution function of ε̃ conditional on ω̃ = ω,
with �ω ≡ ∂�/∂ω. Notice that the SSD cri-
terion is satisfied when the FSD criterion
holds. For instance, if the weather variable ω̃
denotes the cumulative rainfall level or the
cumulative degree-day heat unit reported by
a regional weather station and ε̃ is an aggre-
gate of all other sources of yield risk, such
a correlation indicates that drought or exces-
sive heat increases other sources of produc-
tion uncertainty in the sense of FSD or SSD.
From the production function expressed in
(1), the marginal productivity of the weather
index can be decomposed as

dy

dω
= g(x)+ k(x) dε

dω
�(4)

The impact of the weather index on output
is thus the sum of two effects. The first right-
hand-side (RHS) term is the direct marginal
productivity. The second term, called indirect
marginal productivity, stems from the corre-
lation between the weather index and the
aggregate production variable. It is zero if the
two sources of production risk are stochasti-
cally independent.

The decomposition of individual yield pro-
posed in (1) differs from that of Miranda,
and Mahul (1999), in which the individual
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yield is the sum of a systemic component
and an independent farm-specific component.
It also differs from a decomposition where
both sources of risk are stochastically inde-
pendent and interact in a non-linear manner
(Ramaswami and Roe; Mahul 2000).

The Design of a First-Best Insurance
Contract against a Climatic Risk

The risk-averse producer is endowed with a
non-random initial wealth π0 and the stochas-
tic production function equation (1).2 Input
and output prices are assumed to be non-
random. The price of one unit of input is
denoted p and the output price is normalized
to unity without loss of generality. Therefore,
the producer faces only production uncer-
tainty. He can purchase an insurance con-
tract that provides protection against a spe-
cific climatic experience, such as droughts or
frosts. Nevertheless, other sources of produc-
tion risk are uninsurable and he has to bear
their consequences. We focus in this section
on the design of an optimal insurance pol-
icy against a weather index in this context of
incomplete markets, assuming the input level
of the producer is fixed. The impact of the
insurance contract on the level of input use
will be examined in a subsequent section.

The insurance contract against a specific
weather event is described by a couple
[I(·)� P ], where P is the insurance premium
and I(ω) is the indemnity payments received
by the policyholder if the insurer observes
the realized weather index ω. A feasible cov-
erage function satisfies

I(ω) ≥ 0 for all ω�(5)

The risk-averse producer with utility function
u, where u′ > 0 and u′′ < 0, maximizes the
expected utility of final wealth π. He pur-
chases the insurance contract [I(·)� P ] if his
expected utility level is greater with this pol-
icy than without it

Eu
(
π ′

0 + ỹ + I(ω̃)− P
) ≥ Eu(π ′

0 + ỹ)(6)

where π ′
0 = π0 − px.

A risk-averse insurance company with a
non-random initial wealth w0 maximizes the

2 An equivalent approach is to assume that the producer is
risk neutral but is motivated to insure by market imperfections
(Greenwald and Stigiltz). He thus behaves “as if” he were risk
averse.

expected value of its utility function ν,
with ν ′ > 0 and ν ′′ ≤ 0. It faces firm-
specific costs of risk bearing such as convex
tax functions and/or transaction costs asso-
ciated with bankruptcy, agency costs caused
by conflicts between shareholders or infor-
mation asymmetries between managers and
providers of capital (Doherty and Dionne).
The transaction cost function c(·) is thus
assumed increasing and convex with indem-
nity payments

c(0) = 0�c′(I )≥0 and(7)

c′′(I ) ≥ 0 for all I �

The insurer offers the insurance contract
[I(·)� P ] if and only if

Eν[w0 + P − I(ω̃)− c(I(ω̃))] ≥ ν(w0)�(8)

The participation constraints (6) and (8)
define the set of insurance contracts which
are acceptable to both parties. This set is
assumed not to be empty and therefore
that climatic risk ω̃ is assumed insurable.
This hypothesis seems realistic if the weather
event is hail. Nevertheless, this insurance
scheme may not be viable for other unfavor-
able weather events, like droughts or extreme
temperatures, which affect a large number
of farms simultaneously. The high correlation
among individual farm-level yields may force
the insurer to charge a high risk premium
which makes insurance unattractive. Hence,
the presence of a strong systemic compo-
nent in the climatic risk may be responsible
for its uninsurability. The presence of sys-
temic risk as a main obstacle of insurabil-
ity was developed by Quiggin (1994) in the
case of rainfall insurance and more recently
by Miranda and Glauber. Weather derivatives
provided by financial markets should con-
tribute to overcoming this obstacle.

The first-best insurance contract against a
specific weather event is a couple [I(·)� P ]
that maximizes the producer’s expected util-
ity of final wealth subject to the constraint
that indemnity payments are non-negative
and that the insurer’s expected utility is
greater than or equal to a constant:

max
I(·)� P

Eu
(
π ′

0 + ỹ + I(ω̃)− P
)

(9)

subject to conditions (1), (5) and (8).
The insurance premium P is taken as given

and problem (9) is solved via optimal con-
trol theory (Raviv). The following proposi-
tion states that the optimal insurance contract
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design depends on the stochastic dependence
between insurable and uninsurable risks and
on the producer’s attitude towards risk.

Proposition 1. If one of the following
assumptions are satisfied:

(i) the producer is risk averse and a
decrease in the insurable weather
index makes the uninsurable aggregate
production variable riskier according
to equation (2):

(ii) the risk-averse producer is prudent
[u′′′ > 0] and a decrease in the insur-
able weather index makes the unin-
surable aggregate production variable
riskier according to (3);

then a trigger weather index ω̂ ∈ [ωmin� ωmax]
exists such that the optimal indemnity, when
the premium and the level of input use are
fixed, takes the form

I ∗(ω)

{
= 0 if ω ≥ ω̂
> 0 if ω < ω̂�

(10)

When I ∗(ω) > 0, the marginal coverage
satisfies

I ∗′(ω)(11)

=
{
g(x)

∫ εmax

εmin

u′′(π)d�
(
ε/ω̃=ω)

+
∫ εmax

εmin

u′(π)d�ω

(
ε/ω̃=ω)} 1

 
<0�

with

 ≡ −
∫ εmax

εmin

u′′(π)d�(ε/ω̃ = ω)

+
[
c′′

1 + c′ + (1 + c′)Aν(w)

]

×
∫ εmax

εmin

u′(π)d�(ε/ω̃ = ω) > 0�

where π = π ′
0+g(x)ω+k(x)ε+h(x)+I(ω)−

P�w = w0 +P − I(ω)− c(I(ω))� c′ and c′′ are
evaluated at I ∗(ω), and Aν ≡ −ν ′′/v ′

is the
insurer’s index of absolute risk aversion.

The proof of this proposition is in the
appendix. If the insurable climatic risk and
the uninsurable aggregate production shock
are independent, i.e., �ω(ε/ω̃ = ω) = 0
for all ε and ω, then equation (2) holds.
Therefore, the design of an optimal insurance
contract against a climatic experience in the
presence of an independent background risk
contains a trigger level such that indemnity

payments are made if the realized weather
index falls below this trigger level, as shown
by Mahul (1999). When the two sources of
risk are correlated, however, the indemnity
schedule can take basically any form with-
out further restrictions on stochastic depen-
dence and on the producer’s behavior. If a
decrease in ω induces a riskier conditional
distribution of ε̃ in the sense of FSD, then
the first-best insurance design contains a trig-
ger level under which indemnity payments
are made. Risk aversion is not sufficient to
characterize the first-best indemnity sched-
ule if the cumulative distribution of ε̃ con-
ditional on ω̃ = ω becomes riskier in the
sense of SSD as ω decreases. The producer
must also exhibit a convex marginal utility
function, i.e., u′′′ > 0, which is a well-known
condition introduced by Leland. Kimball uses
“prudent” to characterize agents who behave
this way and the following economic interpre-
tation can be offered: prudence is the propen-
sity to prepare and forearm oneself in the
face of uncertainty, in contrast to risk aver-
sion which is how much one dislikes uncer-
tainty and would turn away from uncertainty
if one could. Hence, in the intertemporal
model of saving under uncertainty, prudence
represents the intensity of the precaution-
ary saving motive. It is also a necessary con-
dition for decreasing absolute risk aversion.
The concept of prudence has been recently
stressed by Gollier to examine optimal insur-
ance contracts when the indemnity is contin-
gent only on an imperfect signal of the final
wealth of the policyholder.

The optimal marginal coverage expressed
in equation (11) is the sum of two terms
weighted by a third. The first RHS term
in curly brackets is the direct effect of
the weather index on output. The second
one is the indirect effect of the weather
index on production through the stochastic
dependence between sources of production
risk. Finally, the denominator  is positive
and greater than

∫ εmax

εmin
u′′(π)d�(ε/ω̃ = ω)

because of the insurer’s risk aversion and
its convex transaction cost function. The sec-
ond RHS term in curly brackets is equal to
zero when the insurable weather index and
the uninsurable aggregate production shock
are stochastically independent and thus the
optimal marginal coverage under the trigger
index is proportional to the direct marginal
productivity of the weather index g(x).

Two special cases of first- and second-order
stochastic dependence are examined. First, if
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ε̃ is a positive linear function of ω̃:

ε̃ = α+ βω̃+ ẽ with β > 0(12)

where ẽ and ω̃ are stochastically independent
and Eẽ = 0, then the cumulative distribu-
tion of ẽ conditional on ω̃ = ω��(ε/ω̃ = ω),
increases as ω decreases. This positive linear
relationship between an insurable risk and
an uninsurable background risk, which has
been recently analyzed by Mahul (1999) in
the context of area yield insurance, is a par-
ticular case of an increase in risk in the sense
of FSD. Second, if the aggregate production
shock is inversely proportional to the weather
index

ε̃ = ẽ

ω̃
(13)

where ẽ and ω̃ are stochastically independent
and Eẽ = 0, then �ω(ε/ω̃ = ω) is negative
for all ε ≤ 0 and positive otherwise. Because
E[ε̃/ω̃ = ω] = [Eẽ]/w = 0, this stochastic
relationship is a particular case of an increase
in risk according to equation (3).

The following proposition, proven in the
appendix, defines the effect of transaction
costs on the trigger weather index selected by
the producer.

Proposition 2. Under the same assump-
tions as in proposition 1, the optimal trigger
weather index satisfies ω̂ = ωmax if insurance
is sold at an actuarially fair price [c′(I ) = 0
for all I ], and it satisfies ω̂ < ωmax otherwise
[c′(I ) > 0 for some I ].

Rational Weather Insurance
Purchasing Decisions

Area yield crop insurance (AYCI) contracts
have been recently proposed to U.S. farm-
ers. These are insurance programs where the
indemnity schedule is not based on a pro-
ducer’s individual yield but rather on an
index that is not affected by individual deci-
sions. As a consequence, moral hazard and
adverse selection are essentially eliminated
and administration costs are substantially
reduced (Miranda; Mahul 1999). Another
alternative contract is an insurance policy in
which the indemnity depends on a weather
index. It is called a weather insurance con-
tract and is described by a couple [I c(·)� P c]
where

I c(ω) = φmax[ω̂− ω� 0](14)

is the indemnity and P c is the premium. The
producer selects a trigger weather index ω̂
such that indemnity payments are made if the
realized weather index falls below it, and a
coverage level φ ≥ 0.

Throughout this section, we assume that
the insurer in the competitive insurance mar-
ket is risk neutral and his administrative
cost function is linear. The insurance pre-
mium is thus proportional to the expected
indemnity. Under this common assumption
of proportional loading, the optimal marginal
indemnity function expressed in equation
(11) becomes

I ∗′(ω) = −g(x)(15)

+
∫ εmax

εmin
u′(π)d�ω(ε/ω̃ = ω)

− ∫ εmax

εmin
u′′(π)d�(ε/ω̃ = ω)

for all ω < ω̂. The slope of the first-best insur-
ance policy is thus equal to the negative of
the direct marginal productivity of the insur-
able weather index plus a ratio that depends
on the stochastic dependence between both
sources of uncertainty and on the producer’s
preferences.

The first-best insurance contract expressed
by proposition 1 with equation (11) replaced
by equation (15) is used to investigate the
producer’s rational weather insurance pur-
chasing decisions, and especially the optimal
coverage level. This allows us to examine how
the producer’s optimal coverage when the
random weather index and the background
risk are stochastically dependent differs from
the optimal decision under independent risks.

The indemnity schedule I c of the weather
insurance contract is restricted to be piece-
wise linear in the insurable weather index
ω while the marginal coverage of the first-
best solution (15) is usually non-linear in ω.
An exception is when the random weather
variable and the aggregate production shock
are stochastically independent. The first-best
solution can thus be perfectly replicated
with the weather insurance contract: the
optimal coverage level φ∗ is equal to the
direct marginal productivity g(x). This spe-
cific case corresponds to the result derived by
Mahul (1999). Under stochastic dependence
between both sources of production risk, the
non-linearity of the optimal coverage (15)
precludes replication of the first-best solution
with the weather insurance contract. This cre-
ates a second source of incompleteness in
the crop insurance market, in addition to the
presence of an uninsurable background risk.
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Integrating the numerator of the RHS ratio
in equation (15) by parts, once and twice,
yields for all ω < ω̂, respectively:

(16a) I ∗′(ω)=−g(x)+k(x)

×
∫ εmax

εmin
u′′(π)�ω(ε/ω̃=ω)dε∫ εmax

εmin
u′′(π)d�(ε/ω̃=ω)

and

(16b) I ∗′(ω)=−g(x)+k(x)u′′(πmax)

×
∫ εmax

εmin
�ω(s/ω̃=ω)ds∫ εmax

εmin
u′′(π)d�(s/ω̃=ω)ds +k

2(x)

×
∫ εmax

εmin
u′′′(π)

[∫ ε
εmin
�ω(s/ω̃=ω)ds

]
dε

−∫ εmax

εmin
u′′(π)d�(s/ω̃=ω)ds

where πmax =π ′
0+g(x)ω+k(x)εmax+h(x)+

I ∗(ω)−P . The ratio in equation (16a) is neg-
ative if the producer is risk averse and if a
decrease in ω induces a riskier conditional
distribution of ε̃ in the sense of FSD. Both
RHS ratios in equation (16b) are also neg-
ative if the risk-averse producer is prudent
and if a decrease in ω induces a riskier
conditional distribution of ε̃ in the sense of
SSD. This implies that the first-best marginal
coverage is, in absolute value, higher than
the direct marginal productivity g(x) for all
ω<ω̂. However, the producer is not able to
replicate this first-best solution with a piece-
wise linear indemnity schedule I c . Because
I ∗′(x)<−g(x) for all ω<ω̂, he will select
−φ=I c′(ω)<−g(x) for all ω<ω̂ in order to
replicate as close as possible the first-best
solution. Comparing the slope of the first-best
indemnity schedule and of the weather insur-
ance contract yields the following corollary.

Corollary 1. If the insurance premium is
proportional to the expected indemnity and
one of the following assumptions is satisfied:

(i) the producer is risk averse and a decrease
in the insurable weather index makes the
uninsurable aggregate production variable
riskier according to equation (2);

(ii) the risk-averse producer is prudent and
a decrease in the insurable weather
index makes the uninsurable aggregate
production variable riskier according to
equation (3);

then the optimal coverage level of the weather
insurance contract is higher than the direct
marginal productivity of the insurable weather
variable: φ∗>g(x).

When both sources of production uncer-
tainty are correlated, the risk-averse and pru-
dent producer hedges against the uninsurable
aggregate production shock by selecting
a coverage level higher than the direct
marginal productivity of the weather index.
Furthermore, if ε̃ depends on ω̃ according to
the positive linear relationship (12), then one
can show that the coverage level selected by
the risk-averse producer is φ∗=g(x)+βk(x),
with β>0. It is thus equal to the sum of the
direct and indirect marginal productivity of
the weather index. The existence of stochastic
dependence between both sources of produc-
tion risk expressed by equation (2) or (3) thus
induces the risk-averse and prudent producer
to select a coverage level higher than the one
chosen under stochastic independence.

Until now, we have assumed that the aggre-
gate production shock ε̃ becomes riskier as
the realized weather variable ω decreases,
according to equation (2) or (3). Neverthe-
less, it could also be realistic to assume that
ε̃ becomes riskier as ω increases. For exam-
ple, an increase in the cumulative rainfall
level could be in favor of the development
of disease and insect infestation. Formally, we
define the following increases in risk accord-
ing to the first-order stochastic dominance:

�ω(ε/ω̃=ω)≥0 for all ε and ω,(17)

and according to the second-order stochastic
dominance:∫ ε

εmin

�ω(s/ω̃=ω)ds≥0 for all ε and ω.(18)

Without additional restrictions, the indemnity
function can basically take any form. This is
due to the fact that the direct and indirect
marginal productivity of the weather index ω
have opposite effects on output: a decrease in
ω reduces the direct productivity of ω but, at
the same time, increases the expected produc-
tivity of ε̃ conditional on ω and decreases its
riskiness. This negative correlation between
sources of risk tends to lessen the impact
of a low weather index on production. The
design of a first-best indemnity schedule is
thus indeterminate.3 This differs from the pre-
vious case where a decrease in ω decreases
its direct productivity while it decreases the
conditional expectation of the productivity of
ε̃ and increases its riskiness.

3 Following the proof of proposition 1, the first RHS term of
K ′ expressed in equation (A5) is negative, whereas its second
term is positive under equation (17) or (18).
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To overcome this indeterminacy, we exam-
ine specific increases in risk according to
equations (17) and (18). First, if ε̃ is a nega-
tive linear function of ω̃:

ε̃=α+βω̃+ ẽ with β<0(19)

where ẽ and ω̃ are stochastically indepen-
dent and Eẽ=0, then this increase in risk
satisfies equation (17). It is straightforward
in this case to show that φ∗=g(x)+βk(x)<
g(x) if 0>β>−k(x)/g(x). If β≤−k(x)/g(x),
the producer does not purchase the weather
insurance policy, i.e., φ∗=0. Second, assume
that the aggregate production shock is pro-
portional to the weather index

ε̃= ω̃ẽ(20a)

where ẽ and ω̃ are stochastically independent
and Eẽ=0, and

g(x)+k(x)e≥0(20b)

for all e. This means that yield always
increases with the insurable weather index
whatever the realization of the aggregate
production variable. One can easily show
that this increase in risk satisfies equation
(18). The stochastic production function then
becomes

ỹ= [g(x)+k(x)ẽ]ω̃+h(x)�(21)

Using the same arguments as those devel-
oped in the proof of proposition 1, one can
show that I ∗′(ω)>−g(x) for all ω<ω̂.4 This
implies that I c′(ω)=−φ>−g(x) for all ω<ω̂.
This discussion on the effect of stochastic
dependence on the optimal coverage level is
summarized in the following corollary.

Corollary 2. If the insurance premium is
proportional to the expected indemnity and
one of the following assumptions is satisfied:

(i) the producer is risk averse and an increase
in the insurable weather index makes the
uninsurable aggregate production variable
riskier according to equation (19);

(ii) the risk-averse producer is prudent and
an increase in the insurable weather
index makes the uninsurable aggregate
production variable riskier according to
equation (20);

4 Under assumptions (20), the function K ′ expressed in equa-
tion (A5) is negative for all ω. Therefore, the optimal insurance
contract is such that indemnity payments are made whenever the
realized index is lower than a trigger index.

then the optimal coverage level of the weather
insurance contract is lower than the direct
marginal productivity of the insurable weather
index, 0≤φ∗<g(x).

Therefore, the risk-averse and prudent pro-
ducer responds to the presence of an uninsur-
able and dependent background risk, where
the stochastic dependence is expressed in
equation (19) or (20), by choosing a cover-
age level lower than the optimal one under
stochastic independence. This corollary is not
exactly the reverse of corollary 1 because
the former is derived under specific forms
of first- and second-order stochastic domi-
nance. As explained previously, inverting the
inequalities in equations (2) and (3) leads to
an ambiguous form of the first-best solution
and thus of the optimal coverage level. This
can be overcome with additional assump-
tions such as those expressed in equation (19)
or (20).

Input Response to Weather
Insurance Contract

Until now, input use has been assumed fixed.
In this section, we examine how buying insur-
ance alters the input level. We focus on the
simplest case where the input use affects
the output level only through the insurable
weather index.5 The stochastic production
function is thus assumed to be

ỹ=g(x)ω̃+h(x)+ ε̃�(22)

where ω̃ and ε̃ are independent.6 The input
is either risk-decreasing like pesticides, or
risk-increasing like fertilizers, depending on
whether the productivity is higher or lower
in more adverse states of nature. This implies
that the marginal productivity of the input
g ′(·) is negative or positive, respectively.

For sufficiently highly fixed values of the
trigger weather index ω̂, the optimal coverage

5 It must be recognized that a more general formulation in
which the input level would also affect the uninsurable back-
ground risk leads to ambiguous results.

6 If ω̃ and ε̃ are correlated, one can project orthogonally the
aggregate production risk ε̃ onto the random weather variable ω̃:

ε̃=β(ω̃−µ)+ ẽ
where β=cov(ε̃�ω̃)/var(ω̃)�Eẽ=0�ω̃ and ẽ are assumed to be
independent. The stochastic production function can thus be
rewritten as ỹ= [g(x)+β]ω̃+[h(x)−βµ]+ ẽ.
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φ∗ is equal to g(x).7 The indemnity schedule
of the weather insurance contract is thus

I c(ω) = g(x)J(ω) with(23)

J(ω) = max(ω̂−ω�0)�
The insurance contract is assumed actuari-
ally fair, i.e., P c=EI c(ω̃)=g(x)Q with Q=
EJ(ω̃). Notice that the insurance premium
P c depends on input use of the producer,
contrary to the premium associated with the
standard insurance contract based on individ-
ual yield (Ramaswami).

If weather insurance is not available, the
optimal choice of x is given by

max
x
U(x�0�0)=Eû(π̃ni(x))�(24)

where πni(x)=π0+g(x)ω+h(x)−px and
the indirect utility function is defined as

û(π)=Eu(π+ ε̃) for all π�(25)

The optimal level of input use xni satisfies the
first-order necessary condition:

Ux
(
xni�0�0

)
(26)

= g ′(xni)µ+h′(xni)−p

−
{
−g ′(xni)cov

[
ω̃�û′(π̃ni(xni))]
Eû′(π̃ni(xni))

}
= 0�

and the second-order condition is satisfied
if g(·) and h(·) are concave in x and the
producer is risk averse. The RHS term in
curly brackets in the above equation is the
marginal risk premium of the input when
there is no insurance contract. It is zero if the
producer is risk neutral. Under risk aversion
it is positive (negative) if the input is risk-
increasing (risk-decreasing).

When the weather insurance program
[I c�P c] is available, the producer maximizes
the following objective function

U
(
x�I c�P c

)=Eû(π̃i(x))�(27)

where πi(x)=πni(x)+I c(ω)−P c=πni(x)+
g(x)[J(ω)−Q].

7 This assumption on ω̂ is realistic because weather insurance
does not generate moral hazard and therefore there is no reason
to introduce a large deductible to encourage the producer to
self-protect. If ω̂ was too low, the producer may be induced to
choose a coverage level which could be different from g(x).

The optimal level of input use xi satisfies

Ux
(
xi�I�P

)=g ′(xi)µ+h′(xi)−p(28)

+g ′(xi)
cov[ω̃�û′(π̃i(xi))]
Eû′(π̃i(xi))

−g ′(xi)
cov[J(ω̃)�û′(π̃i(xi))]

Eû′(π̃i(xi)) =0�

where E[(J(ω̃)−Q)û′(π̃i(x
i))]=cov[J(ω̃),

û′(π̃i(x
i))] under actuarially fair insurance.

Compared with equation (26), there is an
additional term represented by the last term
in equation (28), characterizing the impact of
the actuarially fair weather insurance policy
on the producer’s input decision. Because
the objective function U(x�0�0) is concave
in x, then xi≤(≥)xni as Ux(x

i�0�0)≥(≤)0.
From equations (26) and (28), this inequality
is rewritten as

g ′(xi)cov[ω̃�T
(
xi�ω̃

)
](29a)

+g ′(xi)
cov[J(ω̃)�û′(π̃i(xi))]

−Eû′(π̃i(xi)) ≥(≤)0�

where

T(x�ω)= û′(π̃ni(x))
Eû′(π̃ni(x))

− û′(π̃i(x))
Eû′(π̃i(x))

�(29b)

The first term in the above inequality rep-
resents the difference between the marginal
risk premiums of the input with and with-
out the weather insurance contract. It can
be shown (see appendix) that cov[ω̃�T(x�ω̃)]
is non-positive for all x if the insurance
premium is actuarially fair and if the risk-
averse producer exhibits prudence. The first
term in equation (29a) is thus positive or
negative depending on whether the input is
risk-decreasing or risk-increasing. The second
covariance term in equation (29a) depends
on the shape of J and û′(π̃i) with respect
to ω. The indemnity function J is non-
increasing with ω and the profit func-
tion πi is non-decreasing with ω. Because
the producer’s risk aversion implies that
the indirect utility function û is concave
(Kihlstrom, Romer and Williams), we deduce
that cov[J(ω̃)�û′(π̃i(x))] is positive. The sec-
ond term in equation (29a) is thus positive
(negative) if the input is risk-decreasing (risk-
increasing).

It follows that the purchase of actuarially
fair weather insurance induces the risk-averse
and prudent producer to (i) increase his level
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of risk-increasing input use and (ii) decrease
his level of risk-decreasing input use.

Ramaswami examines how the purchase
of a multiple peril crop insurance contract,
in which indemnity payments are based on
the producer’s individual yield, alters the
input decision. He shows that under non-
increasing absolute risk aversion, the impact
of actuarially fair crop insurance on input
use is to reduce usage if the input is risk-
decreasing but the effect is indeterminate
if the input is risk-increasing. This is the
consequence of two effects. First, the risk-
reduction effect induces the producer to
increase his exposure towards risk by reduc-
ing (increasing) his level of risk-decreasing
(risk-increasing) input use. The second effect
is due to ex ante moral hazard: the pur-
chase of insurance alters input decisions and
thus the distribution of the individual yields.
These changes cannot be observed by insur-
ers and, consequently, they cannot be taken
into account in the calculation of the insur-
ance premium. This moral hazard effect leads
the producer to reduce his use of both risk-
increasing and risk-decreasing inputs. Under
the weather insurance policy examined here,
and more generally when the indemnity func-
tion is based on exogenous variables beyond
the producer’s control, changes in input use
affect the insurance premium and therefore
ex ante moral hazard does not exist. The
impact of insurance purchase on the level of
input use is thus unambiguous, even if the
input is risk-increasing.

If the actuarially fair weather insurance
contract provides complete coverage against
the climatic risk, i.e., the trigger weather
variable ω̂ is equal to ωmax which implies
that J(ω)−Q=µ−ω, then both ratios in
equation (28) equal zero. Therefore, the pro-
ducer adopts a risk-neutral attitude towards
the insurable weather event by selecting
a level of input use so that the expected
marginal productivity of the input equals its
marginal cost. The insured risk-averse pro-
ducer thus responds to the introduction of
this insurance policy by increasing or decreas-
ing input use depending on whether it is risk-
increasing or risk-decreasing. The assumption
of prudence is not necessary in this specific
case of global risk reduction. This result dif-
fers from the impact of complete coverage
offered by the multiple peril crop insurance
contract where the moral hazard effect does
not provide any incentive for positive level of
input use (Ramaswami).

Buying the actuarially fair weather insur-
ance contract generates a mean-preserving
reduction in climatic risk. Leathers and
Quiggin have shown that such a risk reduc-
tion induces the producer to increase his
exposure towards risk if his utility function
exhibits non-increasing absolute risk aver-
sion. Our result can thus be viewed as
slightly more general because the same find-
ing is obtained under prudence. Following
the same approach as the one used under a
weather insurance contract, it is also straight-
forward to show that the result obtained
by Ramaswami holds under slightly weaker
assumptions of risk aversion and prudence.

Conclusion

Recent developments in the theory of insur-
ance under incomplete markets have been
used to design an optimal insurance contract
against a specific weather event, like droughts
or extreme temperatures, in the presence
of an additive and dependent background
risk. The first-best indemnity schedule of this
insurance policy has been shown to depend
on the stochastic dependence between the
insurable climatic risk and the uninsurable
aggregate production shock and on individual
behavior towards risk. It contains a trigger
weather index under which indemnity pay-
ments are made if (i) the producer is risk
averse and the aggregate production vari-
able becomes riskier according to the first-
order stochastic dominance as the weather
index decreases or (ii) the risk-averse pro-
ducer exhibits prudence and the uninsur-
able aggregate production variable becomes
riskier according to the second-order stochas-
tic dominance as the weather index decreases.
The optimal coverage level of the weather
insurance program equals the direct marginal
productivity of the weather index if sources
of production uncertainty are stochastically
independent. It is higher than this direct
marginal productivity if the aggregate pro-
duction variable becomes riskier according
to second-order stochastic dominance as the
weather index decreases and if the producer
is prudent. When the aggregate production
shock becomes riskier as the weather index
increases, according to the first- or second-
order stochastic dominance, the optimal form
of the weather insurance contract is ambigu-
ous because a decrease in the weather index
increases the conditional expectation of the
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background risk and reduces its riskiness.
Under some additional assumptions, how-
ever, such as a production function where
both risks interact in a multiplicative man-
ner, the optimal coverage level of the pru-
dent producer is positive and lower than the
direct marginal productivity. Therefore, the
existence of a stochastic dependence between
the insurable climatic risk and the uninsur-
able background risk induces the producer
to choose a coverage level different from the
optimal one under independence.

The level of input use has been shown
to be altered by the presence of a weather
insurance policy. When the input decision
affects only the direct marginal productiv-
ity of the insurable climatic risk, the risk-
averse and prudent producer responds to the
introduction of an actuarially fair weather
insurance contract by increasing his expo-
sure towards risk, i.e., by reducing his level
of risk-decreasing input and/or by increas-
ing his level of risk-increasing input. There-
fore, the behavioral concept of prudence has
turned out to be sufficient to derive unam-
biguous effects of an exogenous decrease in
production risk, holding expected production
constant on the level of input use. Previous
results obtained by Leathers and Quiggin and
by Ramaswami are found to hold under the
condition of prudence.

Due to the similarity between financial
instruments and insurance contracts, the
optimal weather insurance purchasing deci-
sions can be easily re-interpreted to analyze
the optimal hedging strategy with weather
derivatives provided by financial markets.

[Received September 1999;
accepted September 2000.]
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Appendix

Proof of Proposition 1

The objective function of equation (9) can be
rewritten as∫ (t)max

(t)min

∫ εmax

εmin

u(π ′
0+g(x)ω+k(x)ε(A1)

+h(x)+I(ω)−P )dT(ω�ε)�
where dT(ω�ε)=d�(ε/ω̃=ω)d�(ω). The Hamil-
tonian of the maximization problem is

H =
{∫ εmax

εmin

u(π)d�(ε/ω̃=ω)(A2)

+ζν(w)
}
d�(ω)�

where π=π ′
0+g(x)ω+k(x)ε+h(x)+I(ω)−

P and w=w0+P −I(ω)−c(I(ω)). As already
shown by Raviv, the multiplier function ζ is con-
stant with respect to ω. The first-order necessary
conditions are

I ∗(ω) = 0 if K(ω)≡
∫ εmax

εmin

u′(π1)(A3)

×d�(ε/ω̃=ω)−ζ[1+c′(0)]
×v ′(w0+P )≤0�

where π1=π ′
0+g(x)ω+h(x)−P +k(x)ε and

I ∗(ω) > 0 if
∫ εmax

εmin

u′(π)d�(ε/ω̃=ω)(A4)

−ζ[1+c′(I ∗(ω))]v ′(w)=0�

The first derivative of K with respect to ω is:

K ′(ω) = g(x)
∫ εmax

εmin

u′′(π1)d�(ε/ω̃=ω)(A5)

+
∫ εmax

εmin

u′(π1)d�ω(ε/ω̃=ω)�

The first RHS term in (A5) is negative because
the producer is risk averse and g(·) is a positive
function. Integrating the second RHS term in (A5)
yields: ∫ εmax

εmin

u′(π1)d�ω(ε/ω̃=ω)(A6)

=−k(x)
∫ εmax

εmin

u′′(π1)�ω(ε/ω̃=ω)dε

with �ω(εmin/ω̃=ω)=�(εmax/ω̃=ω)=0. Since we
have k(·)>0, the above expression is negative if

the producer is risk averse and if equation (2) is
satisfied. Third, integrating again the RHS term of
equation (A6) yields:∫ εmax

εmin

u′(π1)d�ω(ε/ω̃=ω)(A7)

=−k(x)u′′(π1max)

×
∫ εmax

εmin

�ω(s/ω̃=ω)ds+k2(x)

×
∫ εmax

εmin

u′′′(π1)
[∫ ε

εmin

�ω(s/ω̃=ω)ds
]
dε

where π1max =π ′
0+g(x)ω+h(x)−P +k(x)εmax.

The above expression is negative if u′′<0�u′′′>0
and equation (3) is satisfied.

Consequently, K decreases with ω if the pro-
ducer is risk averse, i.e., u′′<0, and if a decrease
in ω induces a riskier conditional distribution
of ε̃ in the sense of FSD. It also decreases if
the risk-averse producer is prudent, i.e., u′′′>0,
and if a decrease in ω induces a riskier condi-
tional distribution of ε̃ in the sense of SSD. If
K(ωmin)>0≥K(ωmax), then a unique value ω̂∈
[ωmin�ωmax] exists such that K(ω̂)=0. The opti-
mal form of the insurance contract expressed in
equation (10) is thus derived. If K(ωmin)≤0, then
the non-negativity constraint (5) is always binding.
This implies that I(ω)=0 for all ω∈ [ωmin�ωmax]
or, equivalently, ω̂=ωmin in equation (10). If
K(ωmax)>0, then constraint (5) is never binding
and therefore I(ω)>0 for all ω[ωmin�ωmax]. In
other words, ω̂=ωmax in equation (10).

Differentiating equation (A4) with respect to ω :
I ∗(ω)>0 yields:[

g(x)+I ′(ω)
]∫ εmax

εmin

u′′(π)d�(ε/ω̃=ω)(A8)

×(ε/ω̃=ω)+
∫ εmax

εmin

u′(π)d�(ε/ω̃=ω)

−ζI ′(ω)c′′v ′(w)+ζI ′(ω)(1+c′)2v ′′(w)=0

where c′ and c′′ are evaluated at I(ω). Replacing
the multiplier function ζ by its expression in (A4)
and rearranging the terms yield equation (11).

Finally, notice that I ∗(x) also satisfies the suf-
ficient condition because the Hamiltonian does
not depend on the state variable (Kamien and
Schwartz).

Proof of Proposition 2

Let the function λ(ω) be such that∫ εmax

εmin

u′(π)d�(ε/ω̃=ω)(A9)

−ζ[1+c′(I ∗(ω))]v ′(w)+λ(ω)=0

for all ω∈ [ωmin�ωmax]. From first-order necessary
conditions (A3) and (A4), λ(ω)=0 if I ∗(ω)>0 and
λ(ω)≥0 otherwise. The maximization of problem
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(9) with respect to the premium P yields

ζ= E{E[u′(π̃)/ω̃=ω]}
Ev ′(w̃)

�(A10)

Introducing (A10) in equation (A9) and taking the
expectation with respect to ω̃ yields

Eλ(ω̃)= Eu
′(π̃)

Ev ′(w̃)
E[c′

(
I ∗(ω̃)

)
v ′(ω̃)]�(A11)

If c′(I )=0 for all I , then Eλ(ω̃)=0. Since λ(·) is
a non-negative function, this requires that λ(ω)=0
for all ω∈ [ωmin�ωmax] and, consequently, I ∗(ω)>0
for all ω∈ [ωmin�ωmax]. This means that ω̂=ωmax. If
c′(I )>0 for some I , then we have Eλ(ω̃)=0. This
implies that I ∗(ω)=0 for some ω. Since I ∗(·) is a
decreasing function under risk aversion and a FSD
increase in risk, or under risk aversion, prudence
and a SSD increase in risk, the trigger weather
index ω̂ is lower than ωmax.

Proof of the negativity of cov[ω̃�T(x�ω̃)]

Using the same arguments as those developed by
Ramaswami, one can prove the following lemma.

Lemma. If Q=EJ(ω̃) and u′′′ ≥0, then there
exists ω∗ ∈ [ωmin�ωmax] such that

T(x�ω)(ω∗−ω)≥0 for all ω∈ [ωmin�ωmax]

where

T(x�ω) = û′(πni(x))
Eû′(π̃ni(x))

− û′(πi(x))
Eû′(π̃i(x))

�

πni(x) = π0+g(x)ω+h(x)−px and

πi(x) = πni(x)+I c(ω)−P c�
Proof. The indirect utility function û is concave

and its marginal utility is convex if the direct util-
ity function u exhibits risk aversion and prudence.
Under an actuarially fair weather insurance con-
tract, we deduce from û′′′>0 that

Eû′(π̃ni)≥Eû′(π̃i)�(A12)

Since J(ω)=max[ω̂−ω�0] decreases in ω, a trig-
ger level ω1 exists such that [J(ω)−Q](ω1−ω)≥0
where Q=EJ(ω̃). Consequently, for ω≤(≥)ω1, we
have û′(πni)≥(≤) û′(πi) from the concavity of û.

Combining this inequality with (A12) yields

T(x�ω)≤0 for all ω≥ω1�(A13)

Differentiating T with respect to ω and rearrang-
ing the terms yield

∂T(x�ω)

∂ω
= g(x)

[
û′′(πni)
Eû′(πni)

− û′′(πi)
Eû′(πi)

]
(A14)

−g(x)J ′(ω)
û′′(πi)
Eû′(πi)

�

The second RHS term of (A14) is positive because
û is concave and J is decreasing. From the assump-
tion of prudence and inequality (A12), the first
RHS term is negative for all ω≤ω1. This implies
that

∂T(x�ω)

∂ω
<0 for all ω≤ω1�(A15)

Combining (A13) and (A15) and using the fact
that ET(x�ω̃)=0 yield that a trigger level ω∗ ≤ω1
exists such that T(x�ω)(ω∗−ω)≥0 for all ω∈
[ωmin�ωmax]. This proves the lemma.

Ramaswami derives a similar result under the
assumption of non-increasing absolute risk aver-
sion. The above assertion is less restrictive because
it is obtained under prudence which is a slightly
weaker condition than non-increasing absolute
risk aversion. We deduce from this lemma that∫ ω∗

ωmin

ωT(x�ω)d�(ω)(A16)

≤ω∗
∫ ω∗

ωmin

T(x�ω)d�(ω)

and ∫ ωmax

ω∗
ωT(x�ω)d�(ω)(A17)

≤ω∗
∫ ωmax

ω∗
T(x�ω)d�(ω)�

Consequently, we have

cov(ω̃�T(x�ω̃))(A18)

=
∫ ω∗

ωmin

ωT(x�ω)d�(ω)

+
∫ ωmax

ω∗
ωT(x�ω)d�(ω)

≤ω∗ET(x�ω̃)=0�


