
Phil. Trans. R. Soc. B (2005) 360, 2037–2047

doi:10.1098/rstb.2005.1747
Integrating seasonal climate prediction and
agricultural models for insights into

agricultural practice

Published online 24 October 2005
James W. Hansen*
One con
a chang

* jhanse
International Research Institute for Climate Prediction, The Earth Institute at Columbia University,
121 Monell Building, Lamont-Doherty Earth Observatory, PO Box 1000/61 Route 9W,

Palisades, NY 10964-8000, USA

Interest in integrating crop simulation models with dynamic seasonal climate forecast models is
expanding in response to a perceived opportunity to add value to seasonal climate forecasts for
agriculture. Integrated modelling may help to address some obstacles to effective agricultural use of
climate information. First, modelling can address the mismatch between farmers’ needs and available
operational forecasts. Probabilistic crop yield forecasts are directly relevant to farmers’ livelihood
decisions and, at a different scale, to early warning and market applications. Second, credible ex ante
evidence of livelihood benefits, using integrated climate–crop–economic modelling in a value-of-
information framework, may assist in the challenge of obtaining institutional, financial and political
support; and inform targeting for greatest benefit. Third, integrated modelling can reduce the risk
and learning time associated with adaptation and adoption, and related uncertainty on the part of
advisors and advocates. It can provide insights to advisors, and enhance site-specific interpretation of
recommendations when driven by spatial data. Model-based ‘discussion support systems’ contribute
to learning and farmer–researcher dialogue. Integrated climate–crop modelling may play a genuine,
but limited role in efforts to support climate risk management in agriculture, but only if they are used
appropriately, with understanding of their capabilities and limitations, and with cautious evaluation
of model predictions and of the insights that arises from model-based decision analysis.

Keywords: seasonal climate prediction; crop model; impact assessment; yield forecasting
1. INTRODUCTION
There is a strong history of integrated climate–crop

models to estimate the impacts of climate change

scenarios, and adaptive breeding and land use

strategies. Advances in climate prediction at a seasonal

lead-time have stimulated substantial interest in

forecasting crop yields as a means of improving farm

management and policy-level interventions in a

manner that reduces risk and enhances livelihoods

and food security, particularly in the marginal, rainfed,

tropical cropping regions that the green revolution

largely bypassed.

Farmers experience climate change not as a shifting

mean but as climatic variations. Climatic variability at

all of its time-scales is, therefore, a current challenge

to development. Furthermore, developing flexible,

proactive strategies for managing year-to-year climate

variations within farming communities and the insti-

tutions that interface with them, using advance climate

information, is arguably the most concrete step that the

agricultural enterprise can take to build resilience to

long-term changes in the global climate system. These

two realizations appear to be bringing the historically

distinct global change adaptation and agricultural
tribution of 17 to a Discussion Meeting Issue ‘Food Crops in
ing climate’.
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development agendas closer together, particularly in
Africa.

Several research groups are seeking to advance
methodology to integrate crop simulation models with
dynamic climate forecast models for application at a
range of spatial scales. A range of promising approaches
has emerged (Hansen et al. submittedb) that may have
relevance to management of climate variability and
application to climate change projections. In this paper,
I seek to put such work in context by discussing how
integrated climate–crop models operating at a seasonal
lead-time might contribute to efforts to address climate-
related constraints to agricultural development, with
some emphasis on rainfed agriculture in Africa. Section
2 summarizes the role of climatic risk and potential role
of seasonal climate prediction in agriculture. Section 3
relates integrated climate–crop modelling to constraints
that have been identified to effective use of seasonal
forecasts within agriculture. The three subsequent
sections propose three areas in which integrated
modelling might contribute to more effective use of
seasonal climate forecasts for the benefit of smallholder
agriculture in the developing countries.
2. CLIMATE RISK AND AGRICULTURAL
DEVELOPMENT
Climate exerts a profound influence on the lives of poor
rural populations who depend on agriculture for
q 2005 The Royal Society
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livelihood and sustenance, who are unprotected against
climate-related diseases, who lack secure access to
water and food, and who are vulnerable to hydro-
meteorological hazard. The year-to-year variability of
rainfall is a significant constraint to the sustainability of
rainfed farming systems in poorer countries of the
tropics. This argument is developed more fully in
Hansen et al. submitteda. Climatic extremes, such as
drought and flooding, have a direct and often persistent
impact on farmers’ assets and livelihoods (Dercon
2004). Perhaps, more important (Elbers et al. 2003),
the uncertainty associated with climate variability
creates a moving target for management, and is a
disincentive to sustainable resource management, and
to the intensification and adoption of innovation that is
necessary for secure livelihoods and long-term rural
prosperity.
Phil. T
.Variability by itself is not necessarily welfare-

decreasing if it is anticipated and acted upon. Surprise,

however, has adverse consequences since the optimal

ex post and ex ante choices rarely coincide

(Hallstrom 2004)
Rainfall variability tends to be the dominant source
of livelihood risk in smallholder rainfed agriculture,
particularly in dryer environments (Walker 1991;
Rosenzweig & Binswanger 1993; Dercon 2002;
Zimmerman & Carter 2003). In the face of climatic
uncertainty, risk-averse farmers employ conservative
strategies, including avoidance of improved technol-
ogy, under-use of fertilizers and shifting from pro-
ductive to non-productive liquid assets. In sub-Sahara
Africa, where soil nutrient depletion is now recognized
as a root cause of declining per capita food production
and a critical constraint to sustainable livelihoods
(Stoorvogel & Smaling 1990; Sanchez et al. 1997;
Sanchez 2002), the apparent effect of climatic
uncertainty on investment in soils (Bliss & Stern
1982; Binswanger & Sillers 1983) is a particular
concern. These ex ante strategies, designed to buffer
against climatic extremes, substantially reduce average
income and marginal productivity of assets, and do so
disproportionately for the relatively poor (Rosenzweig
& Binswanger 1993; Zimmerman & Carter 2003).

Despite the tremendous concern about climate
change, climate variability has not received as much
attention as other development issues, in part because
it has been considered part of the environmental
baseline that is not amenable to intervention. Climate
variations in the months ahead no longer need to be
accepted as a total unknown. The chaotic nature of the
atmosphere restricts deterministic prediction of
weather events to lead-times of several days. However,
year-to-year variations in the atmosphere are influ-
enced by interactions between the atmosphere and the
more slowly varying ocean and land surfaces, such as
those associated with the El Niño-Southern Oscillation
(ENSO) in the tropical Pacific. Improvements in our
understanding of interactions between the atmosphere
and its underlying surfaces, advances in modelling the
global climate system, and substantial investment in
monitoring the tropical oceans now provide a degree of
predictability of climate fluctuations at a seasonal (i.e.
several months) lead-time in many parts of the world.
rans. R. Soc. B (2005)
Goddard et al. (2001) provide a useful, recent review of
the scientific basis and methodology of seasonal climate
prediction. Where the necessary conditions are in place
or can be put into place, seasonal climate prediction
offers an under-exploited opportunity to manage
climate variability: to respond proactively to adverse
conditions and exploit favourable conditions.
3. INTEGRATED CLIMATE–CROP MODELLING
AND THE CLIMATE RISK PROBLEM
The potential for seasonal forecasts to reduce the
adverse impacts of climate variability and enhance rural
livelihoods has motivated a number of pilot studies
targeting smallholder farmers in developing countries.
Several pilot studies with African farmers have
demonstrated a high level of interest and have
identified a range of promising livelihood management
responses (Ngugi 2002; Tarhule & Lamb 2003;
Ziervogel 2004). They have also identified several
obstacles to using seasonal forecasts effectively to
reduce the adverse impacts of climate variability and
enhance rural livelihoods. I highlight three for which
integrated climate–crop modelling has a potential role.
The first is a mismatch between farmers’ needs and the
scale, relevance and transparency of available forecasts
(O’Brien et al. 2000; Ingram et al. 2002; Patt & Gwata
2002; Ziervogel 2004). The second is the cost, risk and
learning time farmers face during adaptation and
adoption (Patt & Gwata 2002; Ziervogel 2004).
Third, I propose that failure to obtain adequate
institutional, financial and political support is also a
key constraint. Farm-scale studies have identified
several resource constraints (Vogel 2000; Phillips
et al. 2001; Ingram et al. 2002; Phillips 2003) that
limit responses to advance climate information, but
that might be amenable to intervention if additional
institutional actors (e.g. suppliers of production inputs
and credit) are engaged. Scaling up beyond plot studies
will require substantial investment on the part of
national agricultural and meteorological services.
Providing comprehensive institutional support,
including provision of relevant climate information,
appropriate technical guidance and intervention in
financial services and production inputs (Hansen et al.
submitteda) will require the involvement of a broader
range of institutions that have typically been involved in
pilot studies.

Several research groups who are working on
applications of seasonal climate forecasts have invested
heavily in the use of crop simulation models. Although,
the use of weather data from analogue years associated
with, e.g. ENSO phases, has been the standard
approach, interest in coupling crop simulation with
dynamic climate forecast models has increased sub-
stantially in recent years. A mismatch between the scale
of dynamic climate models and crop simulation models
complicates the task (Hansen & Indeje 2004). Crop
growth depends more on the distribution of weather
within a season than on the season averages that
forecasters typically provide. Crop simulation models,
generally, assume the small-scale of a homogenous
plot, and simulate dynamic interactions between
weather, management and crop growth and
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development on a daily time-step. On the other hand,
the spatial resolution of the current generation of
general circulation models (GCMs) is on the order of
10 000 km2. Although, GCMs simulate the atmos-
phere on a sub-daily time-step, the spatial averaging
within grid cells distorts day-to-day variability, with
potentially serious consequences for simulated crop
responses (Baron et al. 2005). Fortunately, recent and
ongoing research has given rise to several promising
approaches to translating seasonal climate forecasts
into probabilistic predictions of crop response
(reviewed in Hansen et al. submittedb).

It is clear that applications of seasonal climate
forecasts to manage risk are concerned with impacts
on, e.g. crops and not climate per se. Yet, the most
critical opportunities and challenges have more to do
with institutional support than technology. If that is the
case, then what contribution can agricultural models
integrated with seasonal climate prediction models
make? I propose three promising contributions: (i)
translating seasonal climate forecasts into useful
information; (ii) ex ante assessment of potential benefits
and (iii) fostering and guiding application.
4. TRANSLATING CLIMATE FORECASTS INTO
USEFUL INFORMATION
Hammer (2000) argued that seasonal climate forecasts
have no intrinsic value. First, value comes from
improved decisions not information. Second, it is not
climatic means but impacts within the system being
managed that are relevant to decisions. If climate
forecasts are to have value, they must modify decision
makers’ expectations of the production or economic
outcomes that relate to goals, within the system being
managed (Luseno et al. 2003). Crop models integrated
with seasonal climate forecasts provide a means of
translating forecasts of seasonal climate anomalies into
forecasts of production impacts. The nature of the
decision determines the appropriate spatial scale and
lead-time of crop forecast information.

(a) Farm level applications

Producers of annual crops must routinely make a range
of critical production and livelihood decisions prior to
planting that interact with climate, but whose outcome
is not realized until harvest several months later. Where
predictability is sufficient, seasonal forecasts may
provide probabilistic information about crop yields
with sufficient lead-time to influence pre-planting
decisions. A mismatch between the content, scale,
format and lead-time of available operational climate
forecasts, and the information that farmers need for
such decisions, is the most often cited constraint to
effective use. It is also the constraint that is most within
the control of climate information providers.

Although, farmers’ information requirements are
somewhat context-specific, a few generalizations
emerge from experience in a range of contexts. Farmers
need information that: (i) can be interpreted at a field
scale (O’Brien et al. 2000; Jochec et al. 2001; Letson
et al. 2001; Ingram et al. 2002); (ii) includes
information about timing beyond three-month climatic
means (Nelson & Finan 2000; O’Brien et al. 2000;
Phil. Trans. R. Soc. B (2005)
Phillips & McIntyre 2000; Ingram et al. 2002); (iii) is

explicit about accuracy (Childs et al. 1991; O’Brien
et al. 2000; Ziervogel 2004); and (iv) is expressed in

terms of impacts and management implications within
the agricultural systems that they manage. In contrast,

operational climate forecasts are typically expressed as
three month climatic means averaged over large areas.

When accuracy is communicated, it is typically
expressed as shifts in the probability of experiencing

outcomes within each climatological tercile, with no
information about how the probabilities are derived.

The widespread awareness associated with the 1997
El Niño event stimulated a great deal of interest and

debate about the potential value of climate prediction

to poor farmers in developing countries. Some
expressed doubts about the feasibility of meeting

farmers’ information requirements. Is predictability of
climate and crop response at the farm scale sufficient to

be useful? If not, will responding to forecasts that could
be wrong expose farmers to unacceptable risk? Barrett

(1998) expressed concern that the level of predict-
ability of crop yields at a farm scale is likely to be

inadequate for use by risk-averse smallholder farmers.
First, fine-scale spatial variability of rainfall implies that

seasonal rainfall predictability is limited to aggregate
spatial scales. Second, because crop yield is not a

simple function of seasonal total rainfall, the accumu-
lation of errors going from seasonal climatic predictors

(e.g. sea surface temperatures), to local seasonal
means, to crop response implies that predictions of

impacts such as crop response will be less accurate than
predictions of climatic means. Barrett called for greater

investment in methods for translating climate forecasts
into forecasts of relevant farm-level impacts.

Averaging in either time or space tends to increase

prediction skill by reducing the random ‘noise’
component of variability in weather. As Gong et al.
(2003) demonstrate, the skill of GCM-based seasonal
climate forecasts tends to increase with increasing

spatial aggregation relative to a single GCM grid cell in
several parts of the world. For the state of Ceará, in

northeast Brazil, they also showed that downscaling to
individual single stations reduces prediction skill, but

that a substantial proportion of the predictability
remains (figure 1). Although limited experience

seems to support the generalization that forecasts that
are skilful at an aggregate scale show only moderate

decline at individual points, there remains a need to
evaluate the influence of scale of aggregation on

prediction skill systematically in a range of locations.
The argument that predictability of agricultural

impacts is necessarily less than that of climatic means
overlooks two considerations. First, information (e.g.

antecedent rainfall, stored soil moisture) beyond

seasonal climatic anomalies can contribute to predict-
ability of crop response. Second, predicting relevant

impacts directly from climatic predictors instead of
from predicted climatic means reduces accumulation

of errors, and potentially incorporates information
about rainfall distribution and other relevant meteor-

ological variables that are embedded in climatic
predictors, but lost when converting them into seasonal

rainfall totals (Rosenzweig 1994).
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Figure 2. (a) Predicted and observed October–December
rainfall and (b) simulated maize yields, Katumani, Kenya.
Maize yields are from APSIM run with 20 realizations of
stochastic rainfall disaggregated from monthly hindcasts,
40 kg haK1 applied N fertilizer, stand density of 3.5 mK2

(courtesy of K. P. C. Rao, ICRISAT Nairobi). Maize yields
simulated with observed rainfall serve as the benchmark for
comparison. Rainfall hindcasts are based on a linear
transformation of ECHAM four simulations, forced with
observed SST boundary conditions (Hansen & Indeje 2004).

0

0.2

0.4

0.6

0.8
co

rr
el

at
io

n

point ~1∞×1∞ state
scale

~2∞×1∞

Jan–Mar Apr–Jun

Figure 1. Correlation of observed versus predicted rainfall in
the state of Ceará, northeast Brazil, as a function of scale of
aggregation. Source: Gong et al. 2003.
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In a paper that arguably stimulated much of the
interest in using seasonal forecasts to benefit farmers in
Africa, Cane et al. (1994) showed that ENSO-related
sea surface temperatures in the Pacific were correlated
more strongly with maize yields (1970–1993) than with
rainfall averaged across Zimbabwe. Dilley (1997)
found that maize yields in Oaxaca, Mexico, were
correlated more strongly with the Southern Oscillation
Index than with local rainfall. K. P. C. Rao (ICRISAT,
Nairobi 2004) and I used the APSRU model to
simulate maize yields for the short rains season at
Katumani, Kenya, as a function of observed weather
and GCM-based monthly hindcasts disaggregated to
daily values using a stochastic weather generator.
Correlations between predictions and observations
were higher for simulated yields than for seasonal
rainfall totals (figure 2), although the analysis did not
account for crop model error. By integrating GCM-
based seasonal rainfall forecasts into an operational
regional wheat forecasting system in Queensland,
Australia, Hansen et al. (2004) showed that reported
district yields were more predictable than seasonal
rainfall totals. They attributed this in part to the
influence of observed antecedent rainfall and resulting
soil moisture storage on subsequent yields. I anticipate
that methodological advances and empirical evidence
will address concerns about the predictability of crop
response to climate fluctuations. Yet, given the spatial
heterogeneity, multiplicity of yield-reducing factors
and paucity of data in rainfed farming systems of
much of Africa, realistic, site-specific forecasts of crop
yields are likely to be elusive for some time.
(b) Early warning, market and policy

applications

Advance information about crop production is relevant
to decision-makers operating at a range of scales from
field to national or regional, whose decisions impact the
welfare of farmers. Institutions responsible for respond-
ing to drought or food crises and traders and investors
in commodity markets, are interested in anticipating
production at relatively large spatial scales. Because of
the adverse impacts of variability on commodity prices,
the use of advance information about production to
Phil. Trans. R. Soc. B (2005)
manage markets for staple foods to stabilize prices is
appealing from the standpoint of food security.
Although, experience with using climate information
to intervene in markets is still limited, economy-wide
modelling in Mozambique suggests considerable
potential aggregate benefits of market applications of
climate forecasts (Arndt & Bacou 2000; Arndt et al.
2003).

In food-insecure regions of Africa, early warning
systems based on remote sensing of rainfall and
vegetation, and monitoring of local commodity mar-
kets, provide early indication of likely food shortfalls
(Verdin & Klaver 2002). When a crisis requires external
food aid, it can take several months to verify shortfalls,
mobilize donors, transport food to the region and
distribute it to the affected population. As a result,
assistance often reaches the affected people after they
have already suffered adverse health effects, divested
productive resources or migrated away from their farms
(Broad & Agrawala 2000; Haile 2005). Food aid
organizations in Africa are increasingly interested in
seasonal climate forecasts because of their potential to
increase lead-time. For example, in August 2004,
stakeholders concerned with food security early
warning and response in East Africa initiated a periodic
food security outlook forum, associated with the
Greater Horn of Africa Climate Outlook Forum, with
the goal of projecting likely food security impacts
associated with the climate outlook to inform response
(Ericksen 2004).

In contrast to many climate-sensitive decisions at the
farm level, market and food security early warning
applications can often use forecast information at
various points within the growing season. The combi-
nation of increased spatial scale (Gong et al. 2003) and
usefulness of forecasts at shorter lead-times increases
the predictability potentially available for such
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applications. On the other hand, institutional con-
straints to responding to food crises (Broad & Agrawala
2000) are likely to require a higher threshold of forecast
certainty than individual livelihood decisions.

Operational crop forecasting systems exist in many
regions to support market and policy applications (e.g.
Motha & Heddinghaus 1986; Cantelaube & Terres
2005) and food security early warning systems (e.g.
Verdin & Klaver 2002). These are often based on
monitoring weather and crop conditions during the
growing season. In some instances, they incorporate
regionally calibrated crop models to simulate growth or
water stress up to the current point within the growing
season, then sample weather for the remainder of the
season from past years to estimate yield forecast
uncertainty. Skilful seasonal forecasts provide
additional information that can increase the accuracy
of within-season production forecasts based on moni-
toring and simulation alone, particularly early in the
growing season (Stephens et al. 2000; Hansen et al.
2004; Cantelaube & Terres 2005). Integrating prob-
abilistic forecasts of food production from integrated
climate–crop models into models of household vulner-
ability (Dilley & Boudreau 2001) has potential to
improve aid assessments and targeting at a relatively
long lead-time.
5. EX ANTE ASSESSMENT OF BENEFIT
Ex ante impact assessment seeks to assess the potential
outcomes of an innovation in advance of its adoption,
while ex post assessment seeks to assess actual outcomes
following adoption. Because the use of seasonal climate
forecasts within agriculture is a relatively new inno-
vation, ex ante methods are, in most cases, the only way
to estimate their benefits. Pilot studies have compiled
some evidence of use of forecasts for farm decisions,
but have, generally, not tried to quantify the resulting
production or livelihood benefits. Even after farmers
learn to use forecast information routinely, ex post
assessment of benefits would require multiple years due
to the stochastic nature of climate variability and
forecast responses—longer than typical funding cycles
allow. Furthermore, there are few, if any, regions in the
developing world where rural communities have had
access to operational climate information tailored to
their needs for sufficient time to allow ex post
assessment of use and benefits.

Ex ante impact assessment serves two related roles in
applied agricultural research: providing evidence of
potential benefit of proposed interventions to support
mobilization of resources, and providing insight to
target interventions where the positive impact is likely
to be greatest (Thornton submitted). Resource mobil-
ization has to do with allocation of scarce resources
between a particular intervention or institution, and
others that compete. Targeting relates to an institution
or program’s allocation of scarce resources among its
own competing activities.

(a) Confidence and credibility

Increasing competition for dwindling resources for
applied research has driven the international agricul-
tural research community to become proactive about
Phil. Trans. R. Soc. B (2005)
both quantifying the benefits of past activities (i.e.
ex post impact assessment), and providing evidence of
the likely benefits of proposed interventions (i.e. ex ante
assessment). Likewise, donors increasingly require
ex ante evidence of benefit before they will invest
heavily in new agricultural innovations. The appli-
cation of seasonal climate prediction is a new
innovation that potentially competes for scarce
resources with technologies such as crop genetic
improvements that have relatively long records of ex
post evidence of impact. On the positive side, it shares
with integrated natural resource management (INRM)
a relatively short history, heavy demands on manage-
ment and context-specific implementation that prevent
robust ex post impact evaluation (Barrett 2003). Yet, the
broad suite of interventions that fall under INRM are
generally well funded within the international agricul-
tural research community. Climate applications face
the additional challenge of engaging climate and
agricultural institutions that often do not have a history
of substantive cooperation.

Although, there are good theoretical reasons to
expect that farmers and other agricultural stakeholders
should benefit (§2), there are still few well documented
ex post demonstrations of adoption and benefit in
developing countries, relative to many other agricul-
tural development interventions. Some rather funda-
mental expressions of doubt about the potential utility
to farmers in developing countries appear in the
literature, citing examples of lack of use and barriers
to use of available seasonal forecasts by smallholder
farmers (Hulme et al. 1992; Blench 1999; Broad &
Agrawala 2000; Eakin 2000). Hansen (2004) summar-
izes some of these concerns in a set of questions: is
there enough predictability at the farm scale to be
useful? Do smallholder farmers have the capacity to
respond to climate forecasts? Will climate forecasts that
could be wrong expose farmers to unacceptable risk?
Can smallholder farmers with limited education under-
stand probabilistic climate forecasts? Is the application
of seasonal climate forecasts inherently biased against
the poor? With the exception of farmers’ ability to
understand probabilistic forecasts, well designed, data-
driven ex ante assessments can help answer these
concerns for particular contexts.

Credible evidence of acceptability and benefit to
farmers may contribute to mobilizing funds and
influencing the agendas of institutional partners. On
the other hand, much of the support for forecast
applications for agriculture has come from sources that
do not traditionally fund agricultural research and
development, and that have not yet demanded the level
of evidence that traditional agricultural donors typically
require.

(b) Targeting interventions

The potential to benefit from seasonal climate forecasts
lies in the intersection of predictability of relevant
components of climate variability, vulnerability (more
correctly, sensitivity) to the adverse impacts of climate
variability and ability to modify climate-sensitive
decisions (Hansen 2002). Ex ante impact assessment,
using integrated climate–crop–economic modelling,
can provide a quantitative basis for selecting priorities
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for allocating scarce resources among regions, farming
systems and interventions. Examples of the use of ex
ante modelling to target regions or populations seem to
be absent from the climate applications literature.
There are, however, a few examples of analysis that are
relevant to setting priorities for forecast system
development (Mjelde et al. 1997; Jones et al. 2000)
and policy (Mjelde et al. 1996).

(c) Ex ante assessment and integrated modelling
Decision modelling within a value-of-information
framework (Hilton 1981) has been the standard
approach for estimating the potential value of advance
climate information. A standard economic definition of
the value of information is the expected value of the
outcome of optimal decisions using the new infor-
mation minus the expected value of outcome of optimal
decisions based on the prior information

VF ZEfUPðx�jF;Q; eÞgKEfU ðPðx�jQ;Q; eÞÞg;

ð5:1Þ

where F is the information embodied in a forecast
system, U($) is a utility function that represents the
subjective value associated with an outcome, P is an
economic outcome (e.g. income), x* is the optimal
value of a vector of relevant decisions, Q is the prior
information, and vector e represents the current state
of all conditions besides information and decisions that
influence outcomes. The prior information is generally
assumed to be the historic climatology, although
Sherrick et al. (2000) showed that this assumption
may under-value forecast information due to farmers’
biased perceptions of climatology.

The potential benefits of a forecast system for
particular decisions can be estimated quantitatively by
sampling hindcasts (i.e. past predictions) and climatic
outcomes in a retrospective analysis. In the case of
decisions related to production management or farmer
livelihoods, this involves coupling climate prediction
models, agricultural production models and economic
resource accounting and decision models. In the
relatively simple case of management of an individual
crop with the goal of maximizing expected profit,
forecast value can be estimated as

VFynK1
Xn

iZ1

ðPTyðx
�jFi; qi ; eT ÞKCx�jFi

Þ

KnK1
Xn

iZ1

ðPTyðx
�jQ; qi ; eT ÞKCx�jQÞ; ð5:2Þ

where y is crop yield, P is crop price, Cx is cost of
production associated with management strategy x, qi
is observed weather in year i, T is the current year, and
n is the number of hindcast years. For each hindcast
year, crop yield is estimated as a function of observed
weather and of management that is optimized for the
hindcast. Net income is estimated with a simple
enterprise budget, typically on a unit area basis.

Equation (5.2) is expressed in terms of forecasts of
crop yields rather than seasonal climate anomalies
because economic outcomes are a function of pro-
duction outcomes and not climate, and because of the
absence of any direct relationship between seasonal
Phil. Trans. R. Soc. B (2005)
climatic means and production response. Forecasts of
crop yields can be derived from statistical production
functions—historically the mainstay of ex ante model-
ling of the value of agricultural innovations—or from
dynamic crop simulation models integrated with
climate forecasts. Because they explicitly model the
dynamic process underlying interactions, crop simu-
lation models have the potential to provide more
realistic and robust representation of the interactions
between climate and management that are the source of
value from seasonal forecasts, and reduce the accumu-
lation of errors that result when yield is forecast as a
statistical function of predicted seasonal climatic
anomalies (Barrett 1998). A related argument is the
practical difficulty of obtaining sufficient empirical data
on crop!weather!management!soil interactions at
the appropriate scale and across a sufficient range of
variability to fit statistical production functions.

Estimating yield response, y(x, q,e), to manage-
ment, observed weather and initial conditions is
relatively straightforward. On the other hand, identify-
ing optimal crop management x* requires estimating
yields for the range of management options under
consideration for each hindcast. Because of the
complex response surfaces that crop simulation models
tend to produce, relatively slow but robust search
algorithms must be used instead of the more efficient
gradient search algorithms (Royce et al. 2001).
Alternatively, a hybrid approach involving fitting a
production function to simulated response to manage-
ment, allows analytical solution by differentiation, but
is limited to reasonably well behaved response surfaces
of low dimensionality.

Farmers in various contexts have identified a fairly
broad range of responses to seasonal forecast infor-
mation beyond field-scale crop management (table 1).
The general formulation (equation (5.1)) can be
adapted to the farm level to handle decisions involving
allocation of land and other scarce resources among
crops and other enterprises or to account for risk and
risk tolerance. Well developed farm planning methods
can efficiently identify optimal allocation of resources,
again under the assumptions of climatological infor-
mation and forecast information.

Efforts to estimate the value of climate forecasts have
relied heavily on decision modelling in a value-of-
information framework. Based on developments in
impact evaluation for other agricultural technologies,
robust ex ante evaluation of the impacts of seasonal
climate forecasts is likely to require and increasingly
employ a wide range of quantitative and qualitative
approaches (Thornton submitted).
6. FOSTERING AND GUIDING RESPONSES:
MODELS FOR MANAGEMENT
(a) Modelling for agrotechnology transfer

Crop simulation was initially seen as a way to integrate
knowledge of individual processes, obtain insights into
interactions, and use predictive ability to test hypoth-
eses. As their ability to simulate complex genotype!
environment!management interactions advanced,
crop models were increasingly seen as a way to enhance



Table 1. Potential farm decision responses to seasonal climate forecast information that farmers in Machakos and Makindu,
Eastern Province, Kenya, identified during workshops (August 2004).
(The decision types represent the author’s classification of farmer responses.)

type of decision examples

intensification: quantities of productive
resources used per unit land or labour

fertilizer use. Planting density. Pest management. Irrigation. Multiple cropping. Can
include cultivar/seed selection

portfolio: resource allocation decisions allocation of land among competing crops, farm enterprises, land uses. Allocation of
household labour amount farm enterprises, off-farm enterprises, household care

asset exchanges and management consumption versus precautionary savings versus investment. Borrowing, debt
servicing. Leasing land. Procurement of resources, services. Precautionary
maintenance. Storage

timing timing of planting and other field operations. Timing of marketing. Forward
contracts
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the transferability of results of traditional agronomic
research in the face of environmental heterogeneity.

The advances in food security and rural welfare
associated with the green revolution in Asia and Latin
America have been difficult to reproduce in marginal
rainfed regions. Heterogeneity of the environment has
been advanced as one explanation for low rates of
adoption of improved technology, and weak returns on
investment in extension services in Africa relative to
other parts of the developing world. ‘An important
reason for the failure of earlier programmes was their
top-down nature and limited recognition of the wide
diversity and heterogeneity of farmers and fields as a
prime characteristic of livelihoods and farming systems
in (less-favoured areas)’ (Kuyvenhoven et al. 2004).

Because the production outcomes of management
are highly dependent on soils, climate and topography
and on farmers’ goals, assets, social status and access to
markets and services, spatial heterogeneity of these
variables creates a need to tailor management to local
conditions (Byerlee 1987; Rhohrbach & Okwach 1999;
Snapp et al. 2003). Experimental methodology
developed in the crop sciences to control for the effects
of variability in space and time, is not well suited to the
task. Farming systems research (FSR), advanced as a
way to understand the context-specific needs and
opportunities of farmers, shares with agronomic
experimentation the location specificity problem and
need to aggregate to recommendation domains in order
to scale up results, with an inevitable tradeoff between
relevance and cost (Menz & Knipscheer 1981). The
ten-year international benchmark sites network for
agrotechnology transfer (IBSNAT) project was
developed under the assumption that appropriate use
of crop models could compensate for the limitations of
traditional research methods in the face of environ-
mental heterogeneity (IBSNAT 1993). Well validated
process-oriented models were seen as relatively rapid
and cost-effective means of transferring research results
to locations other than where they were developed and
tested, and tailoring technology to specific environ-
ments without having to replicate field research at every
location.

The rationale for using system modelling for
agrotechnology transfer in the face of environmental
heterogeneity is relevant to the use of seasonal forecasts
for climate risk management. Climate variability adds a
time dimension to environmental heterogeneity.
Phil. Trans. R. Soc. B (2005)
Regionally adapted and tested crop models allow one
to quickly explore the production outcomes of a range
of management alternatives under a range of climate
scenarios (realized or predicted), and for a range of soil
conditions. System modelling is arguably the only
tractable way to do so. Although agronomic trials can
be replicated in space, at significant cost, to provide
information on management outcomes across space,
extending replicated trials over enough years to provide
robust results across the range of climate variability is
not feasible. Furthermore, adaptive climate risk
management is not a packaged technology, but an
information input with implications for potentially
many aspects of the farming and livelihood system
(table 1). Because of differences in resource endow-
ment, goals, livelihood strategies and risk tolerance,
these applications are likely to be more context-specific
than many agronomic technologies.
(b) Farm management decision support systems

Although, modelling tools that came out of the
IBSNAT project and similar efforts during the 1980s
and early 1990s targeted researchers, the goal was to use
models as ‘.the means by which knowledge of systems
and their performance is made portable and accessible
to users whose livelihood and welfare depend on this
performance’ (IBSNAT 1993). Yet, the mechanism for
transferring the resulting knowledge to farmers was not
always clear. Increased on-farm use of PCs in developed
countries raised the prospect of developing model-
based decision support systems (DSS) to deliver the
benefits of modelling to farmers more directly through
support of tactical farm management decisions.

There have been several attempts to develop and
deliver agricultural simulation models via farmer DSS,
primarily in Australia and the USA (McCown 2002).
To address the problem of model complexity, most
provide simplified user interfaces to crop models, or
databases of pre-run simulations. PC-Yield addressed
the data availability problem by packaging DSS soft-
ware with a subscription to daily field-specific weather
data updates via the Internet (Welch et al. 2002). The
FARMSCAPE project provided on-site weather
stations and soil characterization for client farmers
(Carberry et al. 2002). Limited experience suggests that
significant early and ongoing stakeholder participation
is also a necessary condition for success (Carberry et al.
2002; McCown 2002; Welch et al. 2002).
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Despite some modest successes, uptake of model-
based farm DSS has, generally, been disappointing.
A review of crop model applications in developing
countries (Matthews & Stephens 2002) brought a
growing awareness to the forefront, that crop simu-
lation models have not fulfilled early expectations as
a tool for transferring technology to farmers. From a
review of 14 DSS projects, McCown (2002) provides a
thoughtful analysis of reasons for the low level of farmer
adoption, and suggests several niches where DSS might
play a significant role in farm decision-making. One of
the key lessons is that, while farmers might be willing to
use a DSS as a tool to assist in low-level, routine tasks,
they tend to resist any proxy—human or software—for
their own management process. Two other obser-
vations about farm DSS are significant to this
discussion. First, several authors have noted instances
where interactions and experimentation around model-
based DSS have challenged farmers’ perceptions, and
stimulated learning and the formulation of new
heuristics (i.e. rules of thumb). Once the new heuristics
are learned, the DSS is no longer needed. Second,
there appears to be a trend toward delivering the
knowledge embodied in model-based DSS through
expert intermediaries, rather than directly to farmers
via the software.

(c) From decision support to discussion support

The shift in focus away from the traditional notion of
DSS toward the use of modelling to stimulate dialogue,
highlight options and tradeoffs, and foster co-learning
and consensus building lead to the relatively new
notion of models as ‘discussion support systems’
(Meinke et al. 2001; Nelson et al. 2002; Bontkes &
van Keulen 2003). ‘In this ‘mutual understanding’
relationship, intervention intent shifts from educating
and persuading to recognition of and respect for other
ways of viewing the world..Intervention emphasis
shifts from prescribing action to facilitating learning in
actions’ (McCown 2002). This transition in thinking
about the role of agricultural simulation models
parallels an ongoing shift within the broader agricul-
tural development community away from a linear
model of technology development and transfer,
towards increasing recognition that farmers are not
passive recipients but innovators who actively exper-
iment and repackage technology to meet their needs
and circumstances.

The farm DSS projects that McCown (2002)
evaluated are all in developed countries. To what
degree can this experience translate to smallholder
farmers in developing countries? Limited experience
suggests that the prospects are quite good. In a set of
workshops with farmers in two villages in Zimbabwe,
Carberry et al. (2004) used APSIM crop simulations as
a basis for discussion about a range of farm manage-
ment questions. Despite initial scepticism on the part
of the research team and participating farmers, the
farmers found the simulation results to be credible and
relevant. The simulation model facilitated virtual
experimentation, allowing researchers to respond
quickly to questions that participating farmers raised
about crop response to fertilizer, management of a
limited supply of manure and impacts on competing
Phil. Trans. R. Soc. B (2005)
crops of planting delays forced by labour shortage. The
researchers concluded that the model facilitated a high
level of farmer–researcher dialogue and debate between
farmers, challenged farmers’ perceptions in a manner
that led to learning, and stimulated interest in on-farm
testing of innovations proposed by the farmers. In the
context of climate risk management, researchers used
the APSIM model effectively with a group of farmers
in western Tamil Nadu, India, as a basis for discussing
and debating possible management responses to
ENSO-based climate forecasts (Meinke et al. 2003;
Selvaraju et al. submitted). Shifts in aggregate crop area
statistics were consistent with farmer discussions about
the 2002 climate forecast and crop model results.
Gadgil et al. (2002) responded to a request from
farmers by using the PNUTGRO model to evaluate
climatic risk as a function of planting date for rainfed
groundnut in southwestern Andhra Pradesh, India.
The farmers appeared to value and learn from crop
model results that supported a later planting date
than normally recommended (Gadgil personal
communication).

(d) Model-based recommendations?

Although, crop models have contributed significantly
to discussions about climate applications between
researchers and collaborating groups of farmers, the
cost of such intensive interactions is high relative to the
number of farmers impacted. I am aware of several
researchers who are interested in using crop models as a
basis for formulating advisories for broad distribution
within farming communities. The trend in the USA
and Australia towards use of crop models by expert
intermediaries who advise farmers (McCown 2002)
seems to support such an approach.

What are the prospects for agricultural research and
extension services to routinely issue advisories based on
integrated climate–crop models? I do not see enough
evidence yet to fully answer this question. Because of
the potential impacts of recommendations on farmer
livelihoods and on the credibility of the provider, I
favour a cautious approach. Accounting for the
heterogeneity of soils and weather over a substantial
area would be quite labour- and data-intensive. Yet, in
the absence of such an effort, resulting recommen-
dations would either suffer the same weakness ident-
ified for blanket fertilizer recommendations in
heterogeneous rainfed environments (Rhohrbach &
Okwach 1999; Snapp et al. 2003; Kuyvenhoven et al.
2004), or would need to be only partially specified,
forcing farmers to refine them to suit their own
circumstances (Reece & Sumberg 2003). Any such
recommendations would require both substantial
ground-truthing and support for some degree of farmer
adaptation. Although, model-based analyses might be
useful to guide a set of agronomic field experiments or a
network of on-farm trials, these would need to be
repeated in time to sample sufficient range of seasonal
forecasts and realized weather to evaluate the robust-
ness of recommendations.

Just as DSS have, in come cases, prompted learning
and formulation of new heuristics that eliminated
further need for the DSS among farmers (McCown
2002), it seems likely that crop models integrated with
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seasonal forecasts may serve more as a vehicle
researchers and farmer advisors to learn principles of
climate risk management through accelerated experi-
ence and experimentation that they can then transfer
through their interaction with farmers.
7. CONCLUSIONS
Integrated climate–crop models have the potential to
make a genuine but limited contribution to the
application of seasonal climate prediction to small-
holder agriculture. I have highlighted three areas that
appear to warrant continued effort: translating climate
forecasts into more relevant information, providing ex
ante evidence of benefits of advance information, and
supporting efforts to improve management responses.
The ease in which crop models can provide insights
into the complex interactions between climate vari-
ations, management and crop response creates oppor-
tunities for learning that are not possible with other
research approaches. On the other hand, this ease and
flexibility carries the risk of overconfidence and misuse.
The potential benefits that integrated climate–crop
models offer can only be achieved if they are used
appropriately, with understanding of their capabilities
and limitations, and with cautious evaluation of model
predictions and of the insights that arises from model-
based decision analysis.
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