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Abstract

The regression analyses undertaken commonly in remote sensing are aspatial, ignoring the locational information associated with each

sample site at which the variables under study were measured. Typically, basic ordinary least squares regression analysis is used to derive a

relationship that is believed to be uniformly applicable across the study area. Although such global analyses may appear satisfactory, often

with large coefficients of determination derived, they may provide an inappropriate description of the relationship between the variables

under study. In particular, a global regression analysis may miss local detail that can be significant if the relationship is spatially non-

stationary. Local statistical approaches, such as geographically weighted regression, include the spatial coordinates of the sample sites in the

analysis and may provide a more appropriate basis for the investigation of the relationship between variables. The potential value of

geographically weighted regression to the remote sensing community is illustrated with reference to the relationship between the normalised

difference vegetation index (NDVI) and rainfall over north Africa and the Middle East over an 8-year period. For each year, spatial non-

stationarity was evident, particularly with regard to the slope parameter of the regression model. Moreover, the conventional ordinary least

squares regression models, while superficially strong (minimum R2 = 0.67), were relatively poor local descriptors of the relationship. Relative

to this, the geographically weighted approach to regression provided considerably stronger relationships from the same data sets (minimum

R2 = 0.96) as well as highlighting areas of local variation. The implications of the difference in the outputs from the two types of regression

analysis are illustrated with reference to the use of the derived NDVI–rainfall relationships in mapping desert extent. For example, with the

data relating to 1987 the southern limit of the Sahara was generally estimated to lie at a more southerly position when the relationship derived

from OLS rather than geographically weighted regression was used.
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1. Introduction ysis (Cohen, Maiersperger, Gower, & Turner, 2003). Since
Regression techniques have been used widely in remote

sensing. Frequently, regression has been used to describe the

relationship between an environmental variable measured at

the Earth’s surface (e.g. biomass) and some measure of its

associated remotely sensed response (e.g. a vegetation

index). Often, the regression analysis is undertaken with

the aim of using the model formed to make predictions of

the environmental variable at other sites from their remotely

sensed response. Although a variety of approaches to

regression modelling exist (Curran & Hay, 1986), the

remote sensing community has tended to use uncritically

conventional ordinary least squared (OLS) regression anal-
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OLS regression has important limitations, its use may not

always be appropriate and alternatives should be evaluated

(Cohen et al., 2003; Curran & Hay, 1986).

Cohen et al. (2003) present an improved strategy for

regression modelling in remote sensing. Recognizing the

need to critically assess the techniques used commonly in

research and considering the merits of alternative methods,

they illustrate some of the different options to OLS regres-

sion that may be of immense value to the remote sensing

community. One aspect that is infrequently addressed is that

the regression analyses commonly used in remote sensing

are global techniques, with a single set of model parameters

taken to apply uniformly in space. Such analyses are based

implicitly on an assumption that the relationship is spatially

stationary. The assumption of spatial stationarity in a rela-

tionship may often be untenable, particularly when consid-
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ering the large area of coverage provided by remote sensing,

and a local technique may be more appropriate (Maselli,

2002). The aim of this article is to outline to the remote

sensing community a recent refinement to regression mod-

elling, geographical weighting, that has attracted interest

within the geographical research community (Fothering-

ham, Brunsdon, & Charlton, 2002) and which has attractive

features for use with remotely sensed data. In particular,

geographically weighted regression is a local technique that

allows the regression model parameters to vary in space.

This paper will briefly introduce the salient features of

geographically weighted regression and then illustrate its

application in comparison to standard OLS regression with

regard to the widely used relationship between the normal-

ised difference vegetation index (NDVI) and rainfall.
2. Geographically weighted regression

The basic linear regression model that has been used

widely in remote sensing may be expressed in the form

y ¼ a þ bxþ e: ð1Þ

In this model, the two variables to be related are y, the

dependent variable, and x, the independent variable. Typi-

cally in remote sensing studies, y is a remotely sensed

variable and x the environmental variable of interest. The

remaining parts of the model are its parameters, a which

represents the intercept and b which expresses the slope of

the relationship between the two variables, and an error

term, e. If there is more than one independent variable, the

regression model is typically expressed as

y ¼ b0 þ b1x1 þ . . .þ bnxn þ e ð2Þ

in which b0 is the intercept and b1–bn represent the slope

coefficients for the independent variables x1–xn, respective-

ly. This type of model is aspatial, with the location of the

sites at which the variables were measured deemed irrele-

vant to the analysis.

The regression model parameters derived following the

above approach are assumed to apply globally over the

region from which the measurements used in the analysis

were derived. Such use of regression models is based

implicitly upon the assumption of spatial stationarity in

the relationship between the variables under study. Unfor-

tunately, relationships are often not stable in space. The

remote sensing literature contains many examples of rela-

tionships that appear to vary spatially (e.g. Foody, Boyd, &

Cutler, 2003; Grist, Nicholson, & Mpolokang, 1997; Li,

Tao, & Dawson, 2002). Moreover, the differences between

regression models established at different locations can be

large with both the magnitude and sign of the model

parameters varying. Many reasons may be put forward to

account for such a situation. These range from the view that

the conventional global regression model has not been
adequately specified through to the existence of intrinsic

differences in the relationship over space (Fotheringham et

al., 2002). However, as a relationship established at one

location may differ greatly from those at others, spatial non-

stationarity may be a major limitation to the role of remote

sensing as a source of environmental information if con-

ventional global statistical techniques continue to be used

inappropriately.

Because of spatial non-stationarity, it may be more

appropriate to undertake a local rather than global analysis

since the relationship may be a function of location (Fother-

ingham et al., 2002). If non-stationarity is evident the global

model, even if apparently strong (e.g. high R2), will provide

only an average impression of the relationship between the

variables under study. It would be quite possible for the

parameters from the global model to differ markedly from

those derived from an analysis undertaken locally and,

indeed, for the global model parameters to not represent

the true relationship anywhere within the region of study.

Non-stationarity in a relationship, therefore, has a great

impact on the use of regression for both descriptive and

predictive purposes. If a relationship is spatially non-sta-

tionary, a regression model developed at one small region

may not have strong predictive power when applied to

another site and one developed globally, over a large region,

may have weak local predictive power within that region

(Osborne & Suarez-Seoane, 2002).

Geographically weighted regression is a technique that

expands standard regression for use with spatial data. Since

remote sensing is a major source of spatial data on the

environment, geographically weighted regression may be a

valuable technique to add to the remote sensing toolbox. A

key feature of the technique is that it allows the parameter

estimates to vary locally. With geographically weighted

regression, the relationship between the variables may be

expressed as

yðhÞ ¼ aðhÞ þ bðhÞxþ e ð3Þ

for the simple bivariate situation or

yðhÞ ¼ b0ðhÞ þ b1ðhÞx1 þ . . .þ bnðhÞxn þ e ð4Þ

for the multivariate version, where h indicates that the

parameters are to be estimated at a location for which the

spatial coordinates are provided by the vector h. The derived
parameter estimates may be mapped to show the nature of

their variation in space. This can help reveal spatial varia-

tions in the relationship between the variables that would

pass unnoticed in a global analysis, in which the estimated

parameters are assumed to be constant over space.

In geographically weighted regression, the parameter

estimates are made using an approach in which the contri-

bution of an observational site to the analysis is weighted in

accordance to its spatial proximity to the specific location

under consideration. The weighting of an observation in the

analysis is, therefore, not constant but a function of location.
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The weighting associated with an observation declines the

further the observation is from the location for which

predictions and parameter estimates are required. Specifi-

cally, in matrix form, the parameter estimates are obtained

from

b̂ðhÞ ¼ ðXTWðhÞXÞ�1
XTWðhÞy ð5Þ

in which W(h) is a weighting matrix. The off-diagonal

elements of the matrix W(h) are set to zero and its diagonal

elements represent the geographical weighting associated

with each site at which measurements were made for the

specific location under consideration; note that the model

parameters can be predicted for locations other than those at

which the variables have been measured (Fotheringham et

al., 2002). The weights act to ensure that observations near

to the location at which the parameter estimates are to be

made have more influence on the analysis than those further

away. This is implemented with a spatial kernel function,

the bandwidth of which defines the distance decay in the

weighting function and is specified by the analyst. Often, a

fixed kernel size with a Gaussian function has been used.

However, the specification of the bandwidth of this kernel

function and assumption of its constancy across the study

area are problematic issues. Indeed the use of this approach

may exaggerate the degree of non-stationarity present (Paez,

Uchida, & Miyamoto, 2002a, Paez, Uchida, & Miyamoto,

2002b). An alternative approach is to use a kernel with

variable bandwidth and various methods to produce a

spatially varying kernel are available (Fotheringham et al.,

2002). With this approach a bi-square function is used

commonly to specify the weights such that the weight of

the jth observation at the specific location of interest,

regression point i, is

wij ¼ ½1� ðdij=bÞ2�2 when dijVb

wij ¼ 0 when dij > b

where dij is the Euclidean distance between the locations of

the sites and b the bandwidth. This bandwidth is adaptive in

size and acts to ensure that the same number of non-zero

weights are used for each regression point in the analysis. In

addition to the estimation of model parameters at each

location of interest, a local estimate of the R2 may be

derived. These regression model parameters and diagnostic

statistics are interpreted in the same way as with a conven-

tional global regression, although the local estimates of the

R2 should not be interpreted with the same confidence as

that from a global model (Fotheringham et al., 2002).

Parameter estimation is highly dependent on the weight-

ing function and kernel used. For example, as the bandwidth

increases the parameter estimates will tend towards the

estimate from a global model and their spatial pattern will

appear increasingly generalised if mapped. The selection of

an appropriate bandwidth and weighting function, therefore,
requires care and in some instances may benefit from a

measure of how well the model fits the data, accommodat-

ing for model complexity, such as the Akaike Information

Criterion (Fotheringham et al., 2002).

In summary, when using a global regression technique, it

is assumed that the relationship under study is spatially

stationary. The model’s parameters are therefore taken to

be constants, applying uniformly over space. However, the

relationship may be spatially varying. In such circumstances,

the parameters of the global model may not represent

conditions locally within the study area. A local technique

such as geographically weighted regression allows the mod-

el’s parameters to vary in space. Although the technique is

inappropriate for extrapolating a relationship beyond the

region in which the model was established, it does allow

the parameters to vary locally within the study area and may

provide a more appropriate and accurate basis for descriptive

and predictive purposes. A fuller description of geographi-

cally weighted regression is provided by Fotheringham et al.

(2002) and examples of its application include those pre-

sented by Brunsdon, McClatchey, and Unwin (2001) and

Paez et al. (2002a).
3. Example: the NDVI–rainfall relationship

Vegetation amount and condition are a function of

environmental variables such as rainfall. Consequently, a

strong relationship, involving a brief time–lag in the veg-

etation response to rainfall, would be expected between

vegetation indices, such as the NDVI[(infrared reflectance

(IR)� red reflectance (R))/(IR +R)] and rainfall (Li et al.,

2002; Potter & Brooks, 1998; Richard & Poccard, 1998).

Many studies have focused on the relationship between

the NDVI and rainfall. These studies have been undertaken

over a range of spatial and temporal scales and in a variety

of environments (e.g. Grist et al., 1997; Li et al., 2002;

Santos & Negri, 1997; Wang, Price, & Rich, 2003).

Although they have often differed in detail, notably in

terms of how the variables are expressed (e.g. maximum

monthly NDVI, mean annual NDVI, total annual rainfall,

etc.), each has essentially sought to link the variation in

some measure of the NDVI of a region to a measure of the

rainfall incident upon it. Commonly, in studies of a large

areas, composite NDVI images generated over periods of

days (e.g. du Plessis, 1999; Eklundh, 1998), months or

annually (e.g. Kawabata, Ichii, & Yamaguchi, 2001;

Richard & Poccard, 1998; Wang, Price, & Rich, 2001)

have been used and related typically to rainfall in the

immediate few months prior to and including that of image

acquisition or on an annual basis (e.g. Grist et al., 1997;

Richard & Poccard, 1998; Santos & Negri, 1997). Al-

though the studies reported in the literature differ in detail,

a strong positive relationship between rainfall and NDVI

has often been observed (e.g. Grist et al., 1997; Wang et

al., 2003). Since rainfall data are difficult to acquire over
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large areas the NDVI has often been used to indicate

rainfall. For example, the NDVI has often been used for

applications ranging from the mapping and monitoring of

desert extent and dynamics (e.g. Foody, 2001; Tucker,

Dregne, & Newcomb, 1991) through to the estimation of

rainfall itself (Grist et al., 1997).

The relationship between NDVI and rainfall is known to

vary spatially, notably due to the effects of variation in

properties such as vegetation type and soil background (du

Plessis, 1999; Li et al., 2002; Nicholson & Farrar, 1994),

with the sensitivity of NDVI values to fluctuations in

rainfall, therefore, varying regionally (Richard & Poccard,

1998). Additionally, the problems of satisfying the under-

lying assumptions and concerns, such as non-stationarity, in

analyses of the relationship between NDVI and rainfall

have been discussed explicitly (e.g. Eklundh, 1998). How-

ever, it is common for basic regression analysis to be used

in studies based on the relationship (e.g. du Plessis, 1999;

Grist et al., 1997; Potter & Brooks, 1998). That is, a basic

ordinary least squares regression analysis is commonly used
Fig. 1. Examples of the data used. Shown are data relating to 1987. (a) NDVI dat

monthly composite images, (b) rainfall, specifically the total annual rainfall for th

map; some class names have been abbreviated). In this and following figures, reg
to study the relationship between the variables globally

over the area of study. Even though the relationships

observed have generally been strong (e.g. Grist et al.,

1997; Wang et al., 2003), the global regression may provide

a distorted view of the relationship. In particular, the global

relationship may provide a poor description of the relation-

ship locally and may result in important detail being

missed. To illustrate the limitation of global techniques

such as OLS regression and the potential of geographically

weighted regression, the relationship between the NDVI

and rainfall over a large area, spanning a region centered on

north Africa and the Middle East, will be assessed as an

example.

3.1. Data

The NDVI and rainfall data sets used were extracted

from the Climatology Interdisciplinary Data Collection

generated by the NASA Goddard Distributed Active Ar-

chive Center. Specifically, NDVI data generated from
a, specifically the maximum value composite for the year determined from

e year (mm), and (c) land cover (ISLSCP global vegetation and land cover

ions outside the study area are masked-out in black.



Table 1

Summary of the results

Year OLS regression Geographically weighted regression

a b R2 Non-stationarity

R2 a b

1986 0.049895 0.0004940 0.6995 0.9721 0.01 0.01

1987 0.061118 0.0004993 0.7095 0.9691 0.04 0.00

1988 0.062425 0.0004544 0.7205 0.9722 0.05 0.00

1989 0.063133 0.0004608 0.7528 0.9718 0.07 0.00

1990 0.071436 0.0005074 0.6683 0.9693 0.07 0.00

1991 0.064343 0.0004375 0.7151 0.9697 0.00 0.00

1992 0.078344 0.0004448 0.6880 0.9633 0.00 0.00

1993 0.076150 0.0004706 0.7292 0.9738 0.05 0.00

The table shows the regression model parameters and coefficient of determination for the OLS regression analyses together with the coefficient of

determination and significance of non-stationarity for the model parameters derived from the geographically weighted regression analyses. The final columns

indicate the significance of the spatial variation in the local parameter estimates derived from a Monte Carlo test.
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NOAA AVHRR imagery and rainfall data from the Global

Precipitation Gauge Analysis for each month in the 8-year

period 1986–1993 inclusive were used. Both data sets

have a 1j spatial resolution, the same as data sets used in

many studies of the NDVI–rainfall relationship (e.g. Potter

& Brooks, 1998; Richard & Poccard, 1998). Using the

ISLSCP map depicting land cover of 1987, an area

centered on north Africa and the Middle East covered by

the classes of desert, shrubs and bare ground, grassland (c3

and c4), and wooded grassland only were selected for the
Fig. 2. Results of the OLS regression for the data relating to 1987. (a) Summary

analysis.
analysis (Fig. 1c). For the purposes of this illustrative

example, all 1667 1j pixels representing the land area of

the region were used.

For each year covered by the data set, a maximum

value composite NDVI image was generated and the total

annual rainfall calculated (Fig. 1). The relationship be-

tween the derived NDVI (dependent variable) and rainfall

(independent variable) products was then established for

each year using both conventional OLS and geographically

weighted regression analysis. This allowed an assessment
of the regression relationship and (b) map of residuals from the regression
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of the spatial and temporal stationarity of the relationship

between NDVI and rainfall over the region. The geograph-

ically weighted regression analyses were undertaken using

an adaptively defined kernel with a bi-square function in

which the bandwidth was determined by minimisation of
Fig. 3. Results of the geographically weighted regression for the data relating to 19

parameter, b, (c) the residuals, and (d) the local estimate of the coefficient of det
the Akaike Information Criterion (Fotheringham et al.,

2002). A Monte Carlo significance testing approach was

used to determine if the model parameters displayed

significant non-stationarity (Fotheringham et al., 2002;

Hope, 1968).
87. The images show the spatial variation in (a) the intercept, a, (b) the slope
ermination (R2).
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3.2. Results

For the data sets acquired for each of the 8 years, the OLS

regression analysis revealed a strong and highly significant

(99% level of confidence) relationship between NDVI and

rainfall (Table 1). A degree of inter-annual variation in the

parameters of the regression equations was evident but the

general nature of the relationship appeared relatively stable.

As an example, Fig. 2 summarizes the main results derived

from the data for 1987, the year to which the ancillary data

on land cover relates. With a minimum correlation of

r = 0.817 (R2 = 0.6683) observed, it may be tempting to

assume that the regression relation derived for each year

provided an accurate description of the relationship for that

period and one that may be applied uniformly over the entire

region. Furthermore, the results of each OLS regression

G.M. Foody / Remote Sensing
Fig. 4. Summary of the estimates for the intercept parameter, a, over the pe

(maximum–minimum).
analysis indicate a large amount of unexplained variance,

and this may drive further work that aims to increase the

understanding of the variables responsible for the variation

in NDVI values observed (Potter & Brooks, 1998).

From the geographically weighted regression analyses,

however, it was apparent that the relationship between

NDVI and rainfall was spatially non-stationary. By adopting

the geographically weighted regression approach, the

strength of the relationship between NDVI and rainfall

increased markedly, with a minimum of 96.3% of the

variation in the NDVI values explained by that in rainfall

(R2 = 0.9633; Table 1). Thus, the amount of variance unex-

plained may not be as large as would be believed from the

OLS analysis. Fig. 3 summarizes the results derived from

the geographically weighted regression analysis for the data

relating to 1987.
riod 1986–1993. (a) Mean value, (b) standard deviation, and (c) range
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3.3. Discussion

Superficially, the OLS regression analysis results

appeared to show a strong and statistically significant

relationship between NDVI and rainfall (Table 1). However,

it is evident that this relationship was non-stationary and

that the variation in rainfall could explain a larger amount of

the variation in NDVI than was apparent from the basic

OLS regression analysis. Although, both regression model

parameters appeared to vary significantly in space (Figs. 4

and 5) the variation was most apparent with the slope

parameter. In particular, there was evidence for significant

spatial non-stationarity in the slope parameter for each year

(Table 1, Fig. 6). This was most apparent in the central part

of the eastern Sahara, which contained a marked clustering

of locations with relatively high or low slope parameters and

G.M. Foody / Remote Sensing290
Fig. 5. Summary of the estimates for the slope parameter, b, over the peri

(maximum–minimum).
was associated with considerable variation in parameter

values in time (Figs. 5 and 6). These results indicate a

major degree of spatial and temporal variation in the

relationship between rainfall and the NDVI in this region.

There may be many reasons for this, relating, for example,

to variations in soil type and land cover as well as issues

connected with the generation and accuracy of the data sets

used (e.g. Foody, 2001; Ringrose, Matheson, Matlala,

O’Neill, & Werner, 1994). For example, patterns in the

mapped intercept values (Fig. 4) appear to correspond with

some patterns in soil and, in particular, land cover distribu-

tion (Fig. 1c), and there are also concerns relating to the

analyses undertaken (e.g. in effectively treating the data as if

relating to specific points, kernel and bandwidth selection as

well as the effect of Earth’s curvature on the measures of

distance used, etc.). The key issue here, however, is that the
od 1986–1993. (a) Mean value, (b) standard deviation, and (c) range



Fig. 6. Spatial distribution of the estimate of the slope parameter, b, for each year.
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local variation in the relationship between the NDVI and

rainfall would have gone unnoticed in a conventional,

global, OLS regression analysis. Moreover, the strength of

the relationship derived from the OLS regression analysis,

while very strong, could lead to inappropriate and unpro-

ductive effort being directed towards accounting for the

apparently large unexplained variance in the relationship.

The outputs of the geographically weighted regression may

provide a more appropriate starting point for efforts directed

at increasing the ability to explain the variation in the NDVI

values observed.

The dissimilarities in the models derived from OLS and

geographically weighted regression may impact markedly

on predictions derived from them. As a crude example, the

relationships between the NDVI and rainfall established for

1987 were used to plot the southern boundary of the Sahara

desert. Using each regression model, the annual rainfall for

the study area was predicted from the NDVI data, running

the models inversely simply to illustrate the issue. A contour

representing the 200-mm annual rainfall isoline was fitted to

the predicted rainfall data to represent the desert boundary
(Tucker et al., 1991). The location of the predicted boundary

of the Sahara desert differed depending on which regression

model was used (Fig. 7). In particular, it was evident that the

use of the relationship between NDVI and rainfall estab-

lished with the OLS regression resulted in the boundary

being plotted at a more southerly position than if that from

the geographically weighted regression analysis had been

used. Without an independent data set on which to evaluate

the accuracy of the boundary predictions, it is not possible

to assess their relative accuracy. However, the important

observation is that the two approaches yielded markedly

different predictions from the same data.

Geographically weighted regression and related ap-

proaches have considerable potential in remote sensing as

the data generally used have an explicit spatial character.

The technique is not problem-free, with concerns over

issues such as kernel and bandwidth selection together with

some shared with conventional regression analysis. How-

ever, geographically weighted regression can be more

appropriate than global techniques such as OLS regression

analysis and a suite of other related techniques, including



Fig. 7. Predictions of the location of the southern boundary of the Sahara from NDVI data. The image shows the NDVI data for 1987 and highlights an extract

shown below that illustrates the boundary position derived using the relationships between the NDVI and rainfall established for 1987 using OLS (thin white

line) and geographically weighted regression (thick grey line). Note the break in the contour for the boundary derived using the geographically weighted

regression arose as a result of the presence of a small area of a land cover class that had been excluded from all analyses and for which, therefore, parameter

estimates had not been made.
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some spatial regression models, if relationship is spatially

non-stationary (Fotheringham et al., 2002). It is hoped that

this article will raise awareness of the approach and lead to

further developments that will help in the full realization of

the potential of remote sensing as a source of environmental

data.
4. Summary and conclusion

Regression analysis is used widely in remote sensing.

From the range of regression techniques available, OLS

regression is generally used unquestioningly. OLS regres-

sion, however, may not always be appropriate and other

approaches have been suggested for use by the remote

sensing research community (Cohen et al., 2003; Curran

& Hay, 1986). One further refinement that could be added to

the suggestions made by previous authors is the use of

geographically weighted regression (Fotheringham et al.,

2002). With particular regard to the example focused on the

widely used relationship between the NDVI and rainfall the

following key conclusions may be made:

(1) Many relationships are spatially non-stationary (and

possibly temporally non-stationary). While an OLS

regression may show a strong relationship between the

variables, this may be a poor summary of the relation-

ship in reality. Although the outputs from a global

analysis are typically assumed to apply equally to all

parts of the region of study, they may actually apply to

no single location within it. That is, the global
relationship derived from an OLS regression analysis

may deviate considerably from that observed locally,

and may in fact never provide a true description of the

relationship at any site but rather some average

impression of the relationship over a region.

(2) For the NDVI–rainfall relationship, OLS regression

indicated very strong and significant relationships in

each year (minimum R2 = 0.6683). However, the geo-

graphically weighted regression analysis highlighted

local variation in both of the regression model

parameters and explained substantially more of the

variance (minimum R2 = 0.9633). By revealing local

variation that may be missed in a global analysis, the

geographically weighted regression approach may be

considered to act as a spatial microscope, identifying

interesting and unusual locations which may benefi-

cially direct future work (Fotheringham et al., 2002).

Thus, rather than the aspatial picture of uniformity

derived from a conventional, global, OLS regression the

geographically weighted regression analysis may be

used to reveal local patterns of relationships. Con-

sequently, the outputs of the geographically weighted

regression may form a more appropriate base than those

from the OLS regression for studies that aim to further

the understanding of the variables impacting on the

observed NDVI values, especially in focusing on local

issues.

(3) The predictions derived from the OLS and geograph-

ically weighted regression approaches differ as a

consequence of their dissimilarities in parameter values.

The importance of this issue was illustrated with
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reference to the use of the relationship between the

NDVI and rainfall in mapping of the southern boundary

of the Sahara. With the mapping based on the relation-

ship derived from the OLS regression analysis the

boundary was generally located at a more southerly

position than when based upon the relationship derived

from the geographically weighted regression.

Since spatial non-stationarity may be common and re-

motely sensed data have a strong spatial character, location-

al information should perhaps be included more commonly

in analyses than is currently the practice. Geographically

weighted regression is one technique that allows locational

information to be usefully included in a type of analysis that

is common in remote sensing and it is hoped that it will be

of value to the research community.
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