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1.  INTRODUCTION

The variability of weather at different time scales,
such as daily, monthly, seasonal and beyond, is one of
the factors that determine the growth of field-grown
crops. The key weather parameters for crop prediction
are rainfall, temperature and solar radiation, sec-
ondary parameters being humidity and wind speed.
Crop predictions require forecasts of these variables
several weeks or even months ahead to enable in-
formed management decisions. However, weather is
chaotic and therefore detailed day-to-day weather
forecasting is effectively impossible >~2 wk ahead. In
spite of that, seasonal climate forecasts are able to pro-
vide an insight into future climate evolution, because
on timescales of seasons and longer, variability in the
oceans can lead to significant fluctuations in weather
statistics (Neelin et al. 1998). An example of a climatic
phenomenon in which ocean dynamics play an essen-
tial role is the El Niño-Southern Oscillation (ENSO;
Trenberth et al. 1998), which is predictable on a sea-
sonal timescale.

Seasonal forecasts can be formulated using mathe-
matical models of the climate system. Such dynamical
seasonal forecasts are an extension of the numerical
methods used to predict the weather a few days ahead.
Dynamical models represent the climate system by a
set of computer-solved equations, to predict its evolu-
tion several months in advance. As mentioned above,
the ocean plays an important role at these time scales.
Thus, fully coupled ocean-land-atmosphere models
are required in order to predict seasonal climate by
dynamical means (Stockdale et al. 1998). In addition to
dynamical predictions, empirical seasonal forecasts
(Moura & Hastenrath 2004) can also be used in an
attempt to find statistical links between current ob-
servations and general weather conditions some time
in the future. However, in this contribution only dy-
namical methods will be considered.

Palmer et al. (2004), Hagedorn et al. (2005) and Saha
et al. (2006), among many others, show and describe
results on the seasonal forecasting problem from the
meteorological point of view. The present study offers
an overview of recent improvements and future devel-
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opments in seasonal forecasting that are relevant for
agricultural management. Results from the EU-funded
DEMETER (Development of a European Multi-model
Ensemble system for seasonal to inTERannual predic-
tion) project are used to illustrate the potential to pro-
duce useful, reliable probabilistic predictions of sea-
sonal climate fluctuations and their application to crop
yield forecasting.

The paper is organized as follows. Section 2 intro-
duces the concept of ensemble predictions that deal
with both initial condition and climate model un-
certainties. Section 3 discusses the multi-model en-
semble approach as a pragmatic solution to the
problem of forecast uncertainty. Section 4 outlines a
strategy to assess the usefulness of seasonal forecast
information for end users. Section 5 then offers a
brief summary and describes future developments in
the field.

2.  PREDICTABILITY AND ENSEMBLE PREDICTION

Assessment of the extent to which climate is pre-
dictable may be linked to the applications for which
the forecasts are being used. For instance, a plausible
definition of predictability could be: a variable x is pre-
dictable if the forecast probability distribution function
(PDF) of x differs sufficiently from the climatological
PDF of the same variable to influence relevant decision
makers in making better decisions than without fore-
cast information. The prediction of PDFs is intrinsic to
systems with uncertainty, as is the case for the climate
system.

Predictions of climate system evolution on seasonal
timescales suffer mainly from 2 sources of uncertainty:
initial condition and model uncertainty. To address the
first source of uncertainty, forecast models are run
many times from slightly different initial conditions,
consistent with the error introduced to estimate the
best possible initial-condition. The resulting ensemble
of forecasts can be used to produce a forecast PDF of
the target variable. However, for seasonal ensemble
prediction it is essential to take into account not only
initial condition uncertainty, but also uncertainty in the
model equations themselves. Uncertainty in model
equations arises mainly because the process of para-
meterization, the way in which sub-gridscale motions
are represented in weather and climate models, is not
a precisely defined procedure (Palmer et al. 2005). At
present, there is no underlying theoretical formalism
from which a PDF of model uncertainty can be esti-
mated. A more pragmatic approach relies on the fact
that global climate models have been developed some-
what independently at different climate institutes. An
ensemble comprising such quasi-independent models

is referred to as a multi-model ensemble (Barnston et
al. 2003, Palmer et al. 2004).

Other ways to represent model uncertainty are e.g.
the stochastic physics (Palmer 2001) or the perturbed-
parameter approaches (Murphy et al. 2004). The rela-
tive merits of these methods will be evaluated in the
EU-funded project ENSEMBLES (www.ensembles-
eu.org). ENSEMBLES will carry out predictions of cli-
mate variability and assess the human impact on cli-
mate, taking into account that these predictions are
inherently probabilistic because of the uncertainties in
the initial conditions, the representation of key pro-
cesses within models and in climatic external forcing
factors. The project will, for the first time, develop a
common ensemble climate forecast system for use
across a range of time (seasonal, decadal and longer)
and spatial scales (global, regional, and local).

3.  MULTI-MODEL SEASONAL PREDICTION

Until other methods are thoroughly assessed, the
multi-model approach seems to be the most adequate
to produce reliable probabilistic climate forecasts. The
advantages of the multi-model approach have been
illustrated in, among other research efforts, the DEME-
TER project. A thorough description of the DEMETER
coupled models, the DEMETER hindcast integrations,
the archival structure, and the common diagnostics
package used to evaluate the hindcasts can be found in
Palmer et al. (2004) and at www.ecmwf.int/research/
demeter/index.html. Briefly, the DEMETER system
comprises 7 global coupled ocean–atmosphere models.
Uncertainties in the initial state were represented
through an ensemble of 9 different ocean initial condi-
tions. Atmospheric and land-surface initial conditions
are taken directly from the ERA-40 (ERA: European
Centre for Medium-Range Weather Forecasts [ECMWF]
Re-analysis) atmospheric re-analysis (Uppala et al.
2005). The performance of the DEMETER system has
been evaluated from a comprehensive set of predic-
tions for past cases, or hindcasts, over a substantial part
of the ERA-40 period (1958–2001). However, only
hindcasts for the period 1980–2001 will be discussed in
this paper, as this is the period for which all 7 coupled
models participating in the project have generated
hindcasts. Each year, four 9-member 6 mo long en-
semble hindcasts were performed with each model,
starting on the first day of February, May, August, and
November at 00:00 h GMT.

Given that biases in the simulations made with the
state-of-the-art dynamical models used in seasonal
forecasting (Palmer et al. 2004, Saha et al. 2006) are
non-negligible, bias correction of the systematic error
in the mean is carried out on the DEMETER ensemble
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simulations. Anomalies for the prediction and the ref-
erence values are calculated as the difference between
the value for a given season and the corresponding cli-
matology. The anomalies have been computed using
1 yr out cross-validation, i.e. new model and reference
climatologies have been estimated every season by
removing the target year.

One of the main results of the experiment is that the
DEMETER multi-model forecast system provides, on
average, more skilful seasonal forecasts than is pos-
sible using a single-model ensemble system. One
example of the multi-model superiority is given in
Fig. 1, showing predictions of sea surface temperature
anomalies initialized on November 1 over the period
1980–2001. Given the relevance of the ENSO phenom-
enon in seasonal forecasting, the sea surface tempera-
ture has been averaged over the east and central trop-
ical Pacific for Months 2 to 4 (December to February)
of the integration. Fig. 1a is based on hindcasts per-
formed with the ECMWF model only. Whilst there is

obvious skill in predicting interannual variations
(the correlation between the ensemble mean and the
ERA-40 reference is 0.96), this single-model ensemble
system does not reproduce the statistical properties of
the reference because in some cases the verification
lies outside the range of the ensemble of predictions.
Fig. 1b is for the full DEMETER multi-model ensemble
system, consisting of 7 coupled models, i.e. 63 mem-
bers. Every model has received the same weight in
the process of constructing the multi-model ensemble,
an approach that will be used in the rest of this paper.
The possibility of giving different weights to each
single model will be discussed in Section 5. In Fig. 1b
the verification lies within the range of the ensemble
for every hindcast. This is one example among
many (e.g. Barnston et al. 2003, Hagedorn et al.
2005) demonstrating that the multi-model ensemble is
intrinsically more useful and skilful than sets of fore-
casts produced with any single (e.g. national) model
(Doblas-Reyes et al. 2005).

The single-model hindcasts showed in Fig. 1
consist of 9-member ensembles, an ensemble
size much smaller than the 63-member multi-
model ensemble. A question arising from this
is whether the multi-model superiority over
the single-model ensemble is only due to the
larger ensemble size. Hagedorn et al. (2005)
discussed in detail the rationale behind the
multi-model concept and demonstrated that
the superiority is not only caused by the
increased ensemble size. To illustrate to what
extent the multi-model can be better than a
single model, a set of 54-member ensemble
hindcasts were carried out over the period
1987–1999 with the ECMWF coupled model.
Fig. 2 shows a comparison between this sin-
gle-model set of hindcasts and the multi-
model with the same (54 members) ensemble
size. The 54-member multi-model ensemble
was constructed by randomly choosing 54
members out of the 63 available. The multi-
model scores were computed for the common
period (1987–1999). The Brier skill score (BSS,
Jolliffe & Stephenson 2003), a probabilistic
measure of forecast skill, is used as the metric.
The BSS is based on the Brier score (BS) that,
for a given event (such as ‘the value is above
the climatological normal value’), measures
the distance between the accumulated PDF of
the forecast and of the observation or refer-
ence. The reference PDF takes the value of 1 if
the event occurs and zero otherwise; thus, the
larger the BS of a forecast system, the lower its
skill, because the distance between both PDFs
will be large also. To obtain the BSS, the BS is
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Fig. 1. Ensemble seasonal predictions of sea surface temperature anom-
alies (K) averaged over the east-central tropical Pacific (Niño3 region:
5° N–5° S, 150°–90° W) for the period 1980–2001. Hindcasts were started
on November 1 and the values shown correspond to the 1 mo lead sea-
sonal averages for December, January and February. (a) ECMWF single-
model experiment carried out within the DEMETER project. The refer-
ence anomaly often lies outside the forecast range. (b) DEMETER
multi-model ensemble, with 7 models and 63 ensemble members. The
reference anomaly almost always lies within the ensemble. The proba-
bilistic skill of the DEMETER multi-model ensemble is greater than for 

the single-model ensemble
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normalized by a measure of no skill that is usually the
BS obtained using the climatological frequency of the
event as forecast probability, BSc. The BSS can then
be written as BSS = 1 – BS/BSc. If the BSS is >0 (<0),
the corresponding forecast system has a better (worse)
forecast quality than a climatological probability fore-
cast, with an upper limit of 1.

For 2 m temperature, the DEMETER multi-model
shows higher BSS than the single model for the major-
ity of predictions. This means that, for most regions,
events and lead times for which the forecast system is
skilful enough, the multi-model offers the best option
as a forecast system. In the case of sea-level pressure
(Fig 2b), the better performance of the multi-model is
more obvious, the BSS threshold for which the multi-
model always outperforms the single model being 0.1.
This figure illustrates that, although in some cases
(depending on the variable, lead time, etc) the single-
model ensemble can be more skilful than a multi-
model with the same ensemble size, the overall effect
when all the different options are taken into account
is a better performance of the multi-model. Unfortu-
nately, this feature is not as clearly evidenced in pre-
dictions of precipitation (not shown) due mainly to the
low skill typically obtained for this variable.

Seasonal forecasts have shown to be skilful for vari-
ables and regions highly relevant for agricultural pro-
duction (e.g. Challinor et al. 2005). Fig. 3 offers several
illustrative examples from the DEMETER multi-model
system with 1 mo lead seasonal predictions averaged
for Australian winter 2 m temperature (Fig. 3a) and
precipitation (Fig. 3b), which are useful for the man-
agement of cereal yield, and Ukrainian spring 2 m
temperature (Fig. 3c), relevant to winter wheat yield.
These hindcasts are skilful in predicting interannual
variations of seasonal averages, as indicated by the
correlations between the reference and the ensemble
mean of 0.64, 0.79 and 0.66 for the 3 time series men-
tioned above (correlations statistically significant at
the p < 0.05 level). The skill of probability forecasts of
several events is also high (not shown), emphasizing
the usefulness of the multi-model ensemble.

Agricultural regions are not the only ones that
can benefit from multi-model ensemble predictions.
River flow management is an essential component of
economies in certain developing countries and could
also benefit from incorporating seasonal forecast infor-
mation in their knowledge construction process (Hart-
mann et al. 2002, Verdin et al. 2005). Fig. 3d displays
the 1 mo lead winter (December to February) precipi-
tation averaged over the Amazon catchment area. As
for the other time series in Fig. 3, the precipitation over
the Amazon area is highly predictable with a statisti-
cally significant (at p < 0.05 level) correlation between
the ensemble mean and the reference of 0.77.
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Fig. 2. Scatter plots of multi-model (6 models, 54 ensemble
members) vs. single-model (54 ensemble members) Brier skill
score (BSS) for seasonal predictions of (a) 2 m temperature
and (b) sea-level pressure, collected over 8 regions (Northern
extra-tropics, tropics, southern extra-tropics, North America,
Europe, West Africa, East Africa and Southern Africa),
2 lead times (1 mo and 3 mo) and 4 events (anomalies above
and below zero, above the upper tercile and below the lower
tercile). Hindcasts were started on May 1. Climatological
terciles were computed with the count method, using 1 yr out 

cross-validation
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4.  TOWARDS AN INTEGRATED
SEASONAL-TO-INTERANNUAL

FORECAST SYSTEM

Seasonal forecasts are of value to a
wide cross-section of society, for per-
sonal, commercial and humanitarian
reasons (e.g. Thomson et al. 2000,
Pielke & Carbone 2002). However, the
application of seasonal forecast infor-
mation is not an automatic task. Users
of seasonal forecast information tend to
formulate 3 main requirements that are
difficult to achieve: (1) skilful and reli-
able predictions of climate variability
dealing with the common uncertainties
in climate prediction (Hartmann et al.
2002), which implies the use of a fully
probabilistic approach such as the one
based on the ensemble method, (2) the
integration of forecasts with appropri-
ate climate information (Verdin et al.
2005) obtained from historical records
(local climatologies, long-term trends,
etc.) to prepare the ‘climate knowledge’
that is actually used in decision making,
and (3) the provision of forecasts with
a specific spatial scale (Buizer et al.
2000), usually of a higher resolution
than the dynamical coupled models
currently in use, which implies down-
scaling the data using either dynamical
or statistical/empirical methods1.

Once seasonal forecast information
has been used in an application, its
beneficial impact needs to be verified
(Hartmann et al. 2002, McIntosh et
al. 2005). A general methodology for
assessing the value of ensemble climate
forecasts in end-user applications was
discussed in Morse et al. (2005). In par-
ticular, if users have quantitative appli-
cation models requiring weather infor-
mation as input, as in the case of crop
models, these models can be directly
linked to the output of individual mem-
bers of the forecast ensemble (Palmer
2002). The net result is a probability
forecast, not of weather or climate, but
of a variable directly relevant to the
user, e.g. a forecast PDF of crop yield
(Cantelaube & Terres 2005). The poten-
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1Working document available at http://www.
ecmwf.int/research/EU_projects/ENSEM-
BLES/documents/20050526_s2ddownscal-
ing.pdf)
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tial usefulness of the prediction system can then be
judged by asking whether the forecast PDFs of crop
yield are sufficiently different from climatological
PDFs, and sufficiently reliable, for the agronomist to be
able to make decisions or recommendations. 

A key component of the DEMETER project was to
demonstrate the value of seasonal predictions for
applications in health and agriculture. To achieve this
goal, the design of DEMETER was based on the con-
cept of an ‘end-to-end’ system (Buizer et al. 2000),
wherein users feed information back to the forecast
producers who, in turn, communicate with the users
to understand their needs. The end-to-end strategy
requires that (1) the wide range of climate forecast
products take into account the user requirements, (2)
the users develop or adapt their models to maximize
the benefit from the limited skill of current climate pre-
dictions, (3) the forecasts have statistical properties
similar to those of the meteorological reference used
to develop the end-user model, to reduce the need of
further calibration of end-user forecasts, and (4) the
forecast quality assessment process includes estimates
of the actual forecast value obtained by a set of users,
which requires the development of user-oriented veri-
fication strategies.

In order to quantitatively assess the benefits of this
approach, taking into account at the same time the
user requirements mentioned above, a collaborative
strategy was chosen with a leading role played by the
downscaling partners (Feddersen & Andersen 2005),
as well as partners with experience in malaria (Morse
et al. 2005, Thomson et al. 2006) and crop yield predic-
tion (Cantelaube & Terres 2005, Challinor et al. 2005).
For this latter case, whilst only a limited number of
years have so far been studied, there is evidence of
useful probabilistic skill over Europe. In particular, the
multi-model ensemble forecasts have proven more
skilful than forecasts made (using statistical/empirical
techniques) by the European Commission’s own crop
yield forecasters.

Scientists wishing to assess the extent to which there
is useful predictability for parts of the world of inter-
est to them or for their specific user applications
are strongly encouraged to retrieve the DEMETER
data from the ECMWF public data server http://
data.ecmwf.int. Most of the data, as well as the ERA-40
data used for validations, can be downloaded from this
site in several formats on a common 2.5° grid.

5.  DISCUSSION AND CONCLUSIONS

Many other developments have also taken place
recently, amongst them the relative benefits of the
application of non-uniform weighting to the models

contributing to the multi-model ensemble (Doblas-
Reyes et al. 2005). In principle, non-uniform weighting
is appropriate when the members of the ensemble are
not highly correlated and have unequal forecast qual-
ity. Stephenson et al. (2005) addressed the calibration
and combination of dynamical and statistical forecasts
to maximize the content information, introducing the
concept of ‘forecast assimilation’. 

As mentioned above, downscaling is a basic compo-
nent of the end-to-end strategy for climate prediction
(Palmer et al. 2004, Feddersen & Andersen 2005).
However, the downscaling of seasonal-to-interannual
ensemble forecasts is still in its infancy, although some
valuable work has already been carried out (e.g. Misra
et al. 2003, Misra & Kanamitsu 2004). Future work on
this topic will have to take into account (1) the com-
bined use of dynamical (regional models) and empiri-
cal/statistical methods because none of them has
proven to be clearly superior to the rest, (2) the correc-
tion of the systematic errors of the global models using
relatively short (15 to 30 yr) training samples to provide
probabilistic predictions, (3) the availability of ensem-
bles of forecasts (versus single deterministic predic-
tions) produced by different models that verify the
same date, which represents a limit to the feasibility of
the computationally expensive dynamical downscaling
methods, and (4) the generation of time series of sur-
face variables with high time resolution (e.g. daily),
which in some cases implies the need to couple empiri-
cal/statistical methods to weather generators. In addi-
tion, the traditional debate on the relative merits of em-
pirical/statistical and dynamical downscaling (Schmidli
et al. 2006) methods may have to face a different
framework in seasonal ensemble forecasting. Empiri-
cal/statistical downscaling methods will also have to
be considered as forms of calibration (Stephenson et al.
2005), because even regional climate models require
calibration of their high-resolution simulations.

Climate is not only predicted at the seasonal time
scale. There is a whole range of forecast systems,
from medium-range weather, through monthly up to
decadal and longer climate time scales, which are
available with a varying updating frequency, as de-
scribed in Rodwell & Doblas-Reyes (2006). Agricultural
management can make use of all these systems in an
integrated forecasting system, updating crop manage-
ment decisions. For instance, managers might have
access to seasonal forecasts once a month; this infor-
mation can be merged with that provided by monthly
forecasts available once a week to improve the first
few weeks of the seasonal forecast information. Simi-
larly, given that long-term decisions in agricultural
systems are made at the interannual timescale, adapta-
tion to ongoing climate change can be achieved by
training the users to employ climate forecast informa-
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tion from seasonal-to-interannual predictions. The
ENSEMBLES project will investigate these issues for
different end-user systems.

The forecast quality of seasonal predictions is thor-
oughly assessed in both research experiments and
operational systems. This information is made widely
available to the users because knowledge about the
skill of the forecasts is as important as the forecasts
themselves. However, as mentioned above an end-to-
end system necessitates a comprehensive forecast
quality assessment that includes the end-user predic-
tions, including a component of user-oriented verifica-
tion. Some attempts in this direction are described in
Morse et al. (2005) and Thomson et al. (2006), but
important aspects still need to be addressed. For
instance, end-user forecast variables such as crop yield
include in a non-linear way the effect of several
weather variables at the same time. Therefore, multi-
variate (e.g. both temperature and precipitation as a
2-dimensional variable) verification will be necessary
to allow for an adequate interpretation of the end-user
forecast quality assessment results.

In this paper, recent developments in seasonal fore-
casting of potential relevance for agricultural manage-
ment have been discussed. These developments empha-
size the importance of a fully probabilistic approach
encompassing all the elements involved in the fore-
casting process, from the dynamical ocean–atmosphere
models used to predict the climate in seasonal and inter-
annual timescales, through the models used to down-
scale the global output to finer scales, to the end-user
models. Regardless of the method used to represent
initial condition and model uncertainty, the key point is
that the climate forecast community is now capable of
producing ensemble forecasts adequate to be used as
extrinsic variables in application models in health, agri-
culture and hydrology, which in turn can produce useful
probability forecasts for variables of a specific applica-
tion. The final goal of these efforts is to develop an end-
to-end multi-scale (both in space and time) integrated
prediction system that will provide skilful predictions of
variables with socio-economic interest.
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