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Abstract 

Texas dryland upland cotton yields have historically exhibited greater variation and more 

distributional irregularities than the yields of other crops, raising concerns that 

conventional parametric distribution models may generate biased or otherwise inaccurate 

crop insurance premium rate estimates.  Here, we formulate and estimate regime-

switching models for Texas dryland cotton yields in which the distribution of yield is 

conditioned on local drought conditions.  Our results indicate that drought-conditioned 

regime-switching models provide a better fit to Texas county-level dryland cotton yields 

than conventional parametric distribution models.  They do not, however, generate 

significantly different Group Risk Plan crop insurance premium rate estimates. 

 

 

Key words: cotton, yield distribution, regime-switching, crop insurance, group risk plan, 

actuarial rating, adverse selection. 

JEL Classifications: Q10, Q14, Q18 

 

 

 

 

 

 



 2

The modeling of crop yield distributions continues to receive considerable attention in the 

academic crop insurance and agricultural risk management literature.  The importance of 

properly modeling yield distributions stems in part from the dramatic growth in 

participation in the U.S. crop insurance program after the enactments of the 1994 Crop 

Insurance Reform Act and the 2000 Agricultural Risk Protection Act (Goodwin, 

Vandeveer and Deal; Glauber).  In 2004, total coverage under the program reached $46.6 

billion, an increase of 67% over 1998 levels. 

 Accurate assessment of yield distributions, particularly their lower tails, is necessary 

for precise computation of crop insurance premium rates.  Inaccurate rates can lead to 

adverse selection, in which producers whose rates are low relative to expected 

indemnities participate in greater proportion than producers whose rates are high relative 

to expected indemnities.  Adverse selection raises the ratio of indemnities paid to the 

premiums collected, undermining the actuarial performance of the federal crop insurance 

and reinsurance program (Skees and Reed; Miranda; Goodwin). 

 Numerous studies have highlighted the challenges associated with the statistical 

modeling of crop yields for the rating of crop insurance (Day; Gallagher; Taylor; 

Goodwin and Ker; Just and Weninger; Ker and Goodwin; Ramirez, Misra and Field; Ker 

and Coble; Atwood, Shaik and Watts; Sherrick et al.).  Most published studies have 

developed statistical models of yields for crops and regions in which yield variation is 

relatively regular and for which crop abandonment is relatively rare (e.g., Iowa corn).  In 

most of these studies, standard parametric distribution methods are applicable and the 

debate centers on the appropriateness of one standard distributional form versus another 
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(e.g., the normal versus the beta distribution) (Day; Gallagher; Taylor; Just and 

Weninger; Ramirez, Misra and Field; Atwood, Shaik and Watts; Sherrick et al.). 

 However, very little attention has been given to the modeling of yield distributions for 

crops and regions in which yields exhibit highly irregular behavior.  Of particular interest 

are crops and regions that exhibit high post-planting abandonment rates in years of 

unfavorable weather.  In such regions, near-zero individual and aggregate yields are 

observed with some frequency, making common unimodal continuous probability 

distributions inadequate for explaining yield variation.  The correct choice of 

distributional form for the yields of such crops remains an unsettled but important 

question. 

 In this paper, we undertake a statistical case study of Texas dryland upland cotton, 

which in recent years has exhibited poor actuarial performance under the U.S. crop 

insurance program.  During the 1989-2004 period, indemnities paid to Texas cotton 

producers exceeded premiums collected in every year but 1994 (see Figure 1) and the 

typical insured Texas cotton producer received a $2.79 of indemnity per dollar of 

premium paid.  During this period, Federal subsidies and premium discounts to Texas 

cotton producers averaged $116 millions per year, accounting for 12% of total subsidies 

provided by the federal crop insurance program nationally (Risk Management Agency).  

Even when federal premium subsidies were taken into account, indemnities paid to Texas 

cotton producers exceeded premiums collected in eleven of sixteen years between 1989 

and 2004. 
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Figure 1. Producer Loss Ratio (Indemnities Divided by Producer-Paid Premiums) vs. 
Loss Ratio (Indemnities Divided by Total Premium, Including Federal Subsidies) for 
Texas Dryland Upland Cotton, 1989-2004 
 

 

 Texas dryland cotton yields exhibit greater variation and irregularities than yields of 

other major crops.  For example, between 1972 and 2004, the average coefficient of 

variation of Texas county-level cotton yields was 38%, as compared to 19% for Iowa 

corn yields.  In addition, Texas cotton acreage abandonment rates averaged around 13%, 

as compared to 4% for Iowa corn.  Thus, the conventional parametric distributions that 

may be used to successfully model Iowa corn yields may not provide sufficient flexibility 

to accurately capture the idiosyncrasies of Texas cotton yields. 

 In this paper, we compare the performance of alternative distributional models for 

Texas dryland cotton yields.  In order to establish a baseline, we use historical county-

level yield data to fit conventional parametric distributions that have been used or have 
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otherwise been proposed to rate crop insurance products: the normal, lognormal, and beta 

distributions.  We then propose and estimate alternative regime-switching models in 

which the distribution of yield is conditioned on exogenous indicators of drought.  We 

also examine the implications of the various distributional forms for the computation of 

actuarially fair Group Risk Plan (GRP) crop insurance premium rates. 

 The paper is organized as follows: in the next section, we discuss the Texas county-

level dryland cotton yield data used in the analysis and the methods used to extract 

exogenous secular trends from the data.  In the subsequent section, we fit the detrended 

yield data to common parametric distributional forms.  In the following section, we 

introduce and estimate a pair of regime-switching models for detrended yields.  In the 

final section, the implications of distributional assumptions for the computation of GRP 

fair premium rates are analyzed. 

    

Detrending Yields 

Our research employs 1972-2004 Texas upland cotton county-level yields published by 

the National Agricultural Statistics Service (NASS).  Cotton production practices in 

Texas include irrigated and dryland (i.e., non-irrigated) cotton.  Our analysis focuses on 

dryland cotton yields in forty-five Texas counties in which dryland practices are 

dominant.  For each of these counties, thirty-three annual dryland cotton yield 

observations are utilized. 

 Secular trends in yields due to exogenous technical change pose a challenge for the 

modeling of yield distributions and for the rating of crop insurance products (Ker and 

Goodwin; Ker and Coble; Goodwin and Mahul; Ozaki et al.).  Lack of sufficient data 
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compounds the problem, raising uncertainty about the exact form of the trend and the 

yield distribution (Goodwin and Mahul; Ozaki et al.). 

 We initially considered several detrending methods suggested in literature, including 

first- and higher-ordered polynomials (Atwood, Shaik and Watts; Sherrick et al.; 

Goodwin and Mahul; Oazki et al.) and autoregressive integrated moving average models 

(Goodwin and Ker; Ker and Goodwin).  However, none of these methods proved 

satisfactory, due primarily to overfitting problems. 

 For the purposes of this study, we elected to use a bi-linear spline to model yields 

trends.  In general, this detrending method generates higher R-square goodness-of-fit 

measures than the aforementioned methods.  The bi-linear spline model allows up to two 

distinct linear trends in the data.  In particular, the trend yield in period t, tŷ , is presumed 

to be a function of time: 

(1)  ( ) ( ) ( )∗∗∗ −+−+== ttttytfyt ,0max,0minˆ 21 ββ .  

The breakpoint ∗t  between linear segments and the slopes 1β  and 2β  of the linear 

segments are endogenously determined and estimated by nonlinear least squares.  The bi-

linear spline model appeared to be free of the overfitting problems exhibited by more 

flexible models, but provided a necessary additional degree of flexibility not offered by a 

simple linear trend model.  In this analysis, the breakpoint year for most counties occurs 

in the late 1980s. 

 Given the trend yields implied by the bi-linear spline model, detrended county-level 

Texas dryland cotton yields were computed by normalizing observed yields to 2004 

equivalents as follows: 
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(2)  
t

t
d
t y

y
yy

ˆ
ˆ2004×= . 

Here, d
ty  is the detrended yield in year t, ty  is the yield realized in year t and tŷ  is the 

fitted trend yield in year t. 

 Table 1 shows descriptive statistics for the detrended yields.  Contrary to the findings 

of negative skewness in most studies involving other crops (Gallagher; Goodwin and 

Ker), our detrended Texas dryland cotton yields exhibit positive skewness in 35 of 45 

counties, suggesting that probability is amassed at the lower tail of the yield distribution.  

Based on White’s test, homoscedasticity could be rejected at a 5% significance level in 

only 6 of the 45 counties, indicating that heteroscedasticity is not a concern.   

[Place Table 1 Approximately Here] 

 

Parametric Distribution Models 

In order to establish a baseline against which to evaluate the effectiveness of alternative 

distribution models for Texas county-level dryland cotton yields, we begin by fitting 

common parametric distributions to the detrended county-level yields.  The three 

parametric distributions examined are the normal, lognormal, and beta distributions. 

 Common parametric distributions often present problems for the modeling of yield 

distributions and in the rating of crop insurance products.  The beta distribution, for 

example, is very sensitive to assumptions about the maximum and minimum possible 

yield, often producing unreasonable “U-shapes” when the data exhibits substantial 

variation (Ker and Coble; Goodwin and Mahul).  The lognormal distribution is often 

criticized for possessing positive skewness, a property generally believed not be exhibited 

by yield distributions. 
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 Maximum likelihood estimates for the parameters and goodness-of-fit statistics for 

each of the three parametric distributions are presented in Table 2.  To assess goodness-

of-fit, we compute the Anderson-Darling statistic ( 2A ) 

(3)  ( ) ( ) ( )( ) ( )( )[ ]∑
=

−+−+−−−=
n

i
ini yFyFinnA

1
1

2 ˆ1lnˆln121  

where ( )iyF̂  is the fitted cumulative probability density of the specified distribution at a 

given observation and n is the sample size.  The Anderson-Darling statistic allows one to 

test whether the data is generated by a specified distribution and its critical values depend 

upon the specific distribution that is tested1.  An alternative to the chi-square and 

Kolmogorov-Smirnov D goodness-of-fit tests, the Anderson-Darling statistic 2A  places 

more weight on the tail of the distribution. 

[Place Table 2 Approximately Here] 

 As seen in Table 2, the beta distribution is rejected at a 10% significance level for 12 

of 45 counties while the normal distribution is rejected for 8 of 45 counties and the 

lognormal distribution is rejected for 34 of 45 counties.  Based on the Anderson-Darling 

test, the parametric distributions may be ranked from best to worst fitting as follows: 1) 

normal distribution, 2) beta distribution and 3) lognormal distribution. 

 Figure 2 illustrates the estimated dryland cotton yield distributions for Howard 

County.  In the figure, the histogram represents the historical detrended yields and the 

plotted curves represent the fitted parametric distributions.  This figure suggests bi-

modality of cotton yields for Howard County.  This figure further suggests that 

parametric distributions provide a poor fit for the lower tails of the yield distribution. 

                                                 
1 The parametric distributions were estimated using SAS, which automatically generates the critical values 
of the Anderson-Darling statistic. 
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Figure 2. Fitted Parametric Distributions for Dryland Upland Cotton Yields in Howard 
County, Texas 
 

 

Regime-Switching Models 

To address suspected misspecification problems associated with conventional parametric 

distributions, we estimate an alternative regime-switching model that is an extension of 

Quandt’s λ  and Goldfeld and Quandt’s D mixture models.  The basic idea underlying 

this approach is that the probability distribution of the yield may be conditioned on 

exogenous environmental conditions or regimes.  Under different regimes, the parameters 

of the conditional yield distribution may differ. 

 Specifically, we posit that the probability distribution of the yield depends upon 

whether drought conditions exist.  The yield ty  is drawn from a normal distribution with 
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mean 1µ  and variance 2
1σ  if drought condition exists, or from a normal distribution with 

mean 2µ  and variance 2
2σ , otherwise.  Whether drought conditions exist depends upon a 

pair of exogenous random variables, one observable and the other unobservable.  In 

particular, we assume that a drought occurs if, and only if, ∗<+ zz tt ε~  where tz  is an 

observable index of drought conditions during the critical month of the growing season, 

∗z  is an unknown critical threshold to be estimated, and tε
~  is an unobserved error term, 

assumed to be an i.i.d. normal random variable with zero mean and variance 2
~εσ . 

 Under this assumption, the log likelihood of observing yield ty  in year t, conditional 

on contemporaneously observed drought index tz , is 

(4)  ( )tt zyzl ,,,,,, ~
2
2

2
121 εσσσµµ ∗  

  ( ) ( ) ( ) ( )[ ]∑
=

∗∗ −+−=
T

t
tttt yfzzFyfzzF

1

2
22~

2
11~ ,;,0;,;,0;log σµσσµσ εε  

where F and f are, respectively, the cumulative distribution function and the probability 

density function of a standard normal variable.   

 We consider two alternative indices of drought conditions, both of which are 

published by the National Climatic Data Center (NCDC): 1) average rainfall throughout 

the climate division in which the county is located and 2) the Palmer Drought Severity 

Index for the climate division in which the county is located.  In all cases, the values of 

the indices during the critical third month of the cotton growing season are used to assess 

drought conditions.  Since the month in which cotton is planted in Texas varies across 

geographic region, ranging from February in South Texas to June in the Plains Region, 

the critical third month depends upon where the county is located. 
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 A challenge arises in computing estimates for the regime switching model due to the 

high irregularity of the likelihood function.  In order to rule out globally suboptimal local 

optima, an extensive grid search was conducted in both ∗z  and εσ ~ .  Maximum 

likelihood estimates for the two regime-switching models are reported in Tables 3 and 4.  

Hereafter the two regime-switching models are referred to as the “rainfall index” and the 

“Palmer index” regime-switching models.  In the two regime-switching models, the 

maximum likelihood estimates for εσ ~  are zero in some counties, which implies the two 

regimes are perfectly discriminated by the observed index variable.  

 One would expect to observe lower yields if drought condition exists; i.e. 21 µµ < .  

However, the possibility that 1µ  exceeds 2µ  cannot be completely ruled out.  This is the 

case, for example, for Refugio County for both regime-switching models and for Hill 

County for the Palmer index regime-switching model.  In practice, a low yield can arise 

not only with extreme drought but also with extreme moisture.  The critical thresholds, 

∗z ,  in the counties where 21 µµ <  in Tables 3 and 4 are very high, indicating that in 

these counties, yields are drawn from a distribution associated with very high rainfall.   

[Place Table 3 Approximately Here] 

[Place Table 4 Approximately Here] 

 In order to evaluate the adequacy of our regime-switching models, we limit the 

analysis to a comparison between the models and the normal distribution model, which 

was found previously to provide the best fit among conventional parametric distributions.  

Limiting the analysis to this comparison has the advantage that the normal distribution 

model may be viewed as a parametric restriction of the regime-switching model, allowing 

the comparison to be performed using the likelihood ratio test.  The likelihood ratio 
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equals the maximum sample likelihood under the restriction of normality divided by the 

maximum sample likelihood without the restriction.  The negative of twice the log of 

likelihood ratio is asymptotically a Chi-square statistic with 3 degrees of freedom under 

the null hypothesis that the yields are normally distributed. 

 Tables 3-4 present the likelihood ratio tests of the regime-switching models against 

the alternative of a normal distribution.  At the 5% significance level, the normal 

distribution model may be rejected in favor of the rainfall index regime-switching model 

in 39 of 45 counties and in favor of the Palmer index regime-switching model in 37 of 45 

counties.  These results suggest that in most Texas counties, a regime-switching 

distribution explains the variation cotton yields significantly better than the normal 

distribution (see Figure 3 and 4). 

 

 

 
Figure 3. Fitted Distributions for Dryland Upland Cotton Yields in Howard County, 
Texas 
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Figure 4. Fitted Distributions for Dryland Upland Cotton Yields in Howard County, 
Texas 
 

 

Rating Crop Insurance Contract 

Our research has been motivated in part by the need to compute accurate crop insurance 

rates, which depend largely upon how well the lower tail of the yield distribution is 

captured.  Fair premium rates for Group Risk Plan (GRP) crop insurance computed using 

regime-switching models are now compared to the rates computed using normal and 

empirical distribution methods similar to those currently employed by the Risk 

Management Agency.   

 A GRP insurance contract pays an indemnity if and only if the realized county yield 

y~  falls below a specified trigger yield, which is set equal to an elected coverage level α  

times the published expected area yield ey .  Specifically, per dollar of coverage, 



 14

(5)  Indemnity
⎭
⎬
⎫

⎩
⎨
⎧ −

= e

e

y
yy

α
α ~

,0max . 

Indemnities and premium rates are based on published National Agricultural Statistics 

Service county yield estimates.  The expected county yield for Group Risk Plan set equal 

to the historical average NASS county yield, adjusted for secular trend. 

 Given a specific probability density function for county yields f, the fair premium 

rate, that is the expected indemnity per dollar of coverage, is computed as 

(6)  ( ) ( )dyyfyy
y

ey e
e ∫ −=

α
α

α
π

0

1  

RMA also applies geographic smoothing methods are applied to GRP premium rates, 

rendering a final premium rate for each county that is as a weighted average of the raw 

premium rates for the county and its neighbors (Skees, Black and Barnett). 

 Table 5 provides a comparison of GRP rates at the 85% coverage level, for the 2006 

crop year, computed using an empirical distribution model, a normal distribution model, 

a rainfall index regime-switching model, and a Palmer index regime-switching model.  

Among the 45 Texas counties examined, the regime-switching models appear to produce 

slightly higher GRP premium rates than the empirical and normal distribution models.  

As seen in Table 5, the average GRP premium rates across all 45 counties are 15.2 and 

15.1 percent for the Palmer and rainfall index regime-switching models, respectively, and 

14.6 and 14.7 for the empirical and normal distribution models, respectively.  

 However, the most striking feature of the results presented by Table 5 is that there 

appears to be very little difference among the GRP premium rates computed using 

alternative distributional forms.  In order to assess formally whether the differences in 

computed premium rates are statistically significant, we employed nonparametric 
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bootstrapping techniques to compute estimates of the standard errors of the differences 

among the various computed premium rates.  Given the estimated standard errors, we 

tested the differences between the rates generated by the empirical distribution and the 

rates generated by the normal distribution model, the rainfall index regime-switching 

model, and Palmer index regime-switching model.  Of the 135 pairs of premium rate 

estimates compared, only 5 pairs were found to differ at the 5% level of significance 

(these are indicated by an asterisk in Table 5).  Thus, we find no evidence that regime-

switching models produce GRP premium rates that are significantly different from those 

computed using empirical or normal distribution models, suggesting that there is no 

compelling reason to use more complicated regime-switching models to compute Texas 

dryland cotton crop insurance premium rates. 

[Place Table 5 Approximately Here] 

 

Summary and Conclusions 

In this paper, we have undertaken a statistical case study of Texas dryland cotton yields, 

which historically have exhibited greater variation and distributional irregularities than 

the yields of other crops grown in other parts of the country    As a more flexible 

alternative to conventional unimodal parametric distribution models, we estimated 

regime-switching models in which the distribution of yield is conditioned on local 

drought conditions as measured by rainfall or the Palmer Drought Severity Index.  A 

comparison of the fit provided by the various distributional forms based on likelihood 

ratio and Anderson-Darling goodness-of-fit tests indicated that regime-switching models 
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provide a significantly better fit to observed Texas dryland cotton yields than more 

conventional parametric models. 

 Our findings, however, indicate that the Group Risk Plan premium rates computed 

under alternative distributional assumptions do not systematically or significantly differ 

from one another.  These findings suggest that although regime-switching models provide 

a more accurate description of Texas dryland county yield distributions than parametric 

distributions overall, they possess no clear advantage in describing the lower tail of the 

distribution, which is the only portion of the distribution that is relevant for crop 

insurance actuarial ratemaking.  Thus, the empirical and normal distribution models 

commonly used in actuarial ratemaking appear to provide reasonable premium rate 

estimates and are thus arguably preferable to the regime-switching models examined here 

due to their simplicity. 
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Table 1. Summary Statistics for 1972-2004 Detrended Dryland Upland Cotton County-
Level Yields, Selected Texas Counties (Yields Measured in Pounds per Acre) 
COUNTY Mean Standard 

Deviation Minimum Maximum Skewness Kurtosis 

ANDREWS 126.9 84.1 15.8 319.3 0.83 -0.23 
BAILEY 153.6 106.6 14.2 436.4 0.81 0.47 
BORDEN 189.7 115.4 11.7 482.6 0.30 -0.40 
BRISCOE 163.9 82.7 45.3 354.9 0.56 -0.45 
CAMERON 245.8 120.0 31.3 540.9 0.25 0.09 
CHILDRESS 244.1 92.6 49.1 415.9 -0.02 -0.34 
COCHRAN 179.9 129.4 7.3 488.0 0.88 0.34 
COLLINGSWORTH 264.3 95.1 116.1 473.5 0.58 -0.20 
CONCHO 241.7 115.9 4.3 585.4 0.54 1.35 
COTTLE 199.8 80.6 36.9 376.4 -0.10 0.23 
CROSBY 261.2 102.7 99.7 567.7 0.58 0.98 
DAWSON 187.8 101.7 24.7 420.5 0.08 -0.70 
DICKENS 274.8 114.9 77.4 638.8 0.89 2.25 
DONLEY 260.2 97.3 86.8 454.5 0.07 -0.72 
ELLIS 421.7 140.9 102.8 681.0 -0.13 -0.30 
FISHER 233.3 117.3 6.1 431.2 0.05 -0.81 
FLOYD 271.1 128.9 43.9 547.7 0.27 -0.43 
GAINES 146.4 78.3 10.8 344.2 0.50 -0.07 
GARZA 268.1 137.1 59.0 663.1 0.69 0.73 
GLASSCOCK 83.1 52.3 12.9 256.6 1.15 2.25 
HALE 294.9 143.9 37.7 590.1 0.36 -0.58 
HALL 255.2 90.4 85.3 426.5 0.24 -0.74 
HASKELL 250.8 109.2 24.4 457.5 -0.10 -0.45 
HILL 489.7 159.6 215.0 845.1 0.67 0.09 
HOCKLEY 211.6 108.3 7.3 512.4 0.83 0.75 
HOWARD 139.4 86.7 13.3 344.1 0.04 -0.71 
KNOX 247.1 104.7 28.3 489.4 -0.10 -0.01 
LAMB 257.7 160.7 15.2 629.7 0.54 -0.51 
LUBBOCK 265.6 125.1 53.3 629.7 0.53 0.74 
LYNN 235.8 107.2 43.4 494.1 0.25 -0.05 
MARTIN 143.3 90.6 8.1 293.7 -0.04 -1.39 
MIDLAND 88.8 48.4 19.5 222.6 0.66 0.37 
MITCHELL 219.4 126.2 2.5 450.8 -0.01 -0.72 
MOTLEY 195.7 77.3 29.0 401.8 0.14 0.58 
NAVARRO 426.4 133.2 200.4 740.8 0.65 0.31 
NOLAN 206.2 106.6 14.1 394.5 -0.05 -0.81 
PARMER 242.7 145.0 15.7 695.0 1.05 1.57 
REFUGIO 593.5 220.9 77.7 1099.6 0.09 0.19 
SAN PATRICIO 692.9 198.8 312.0 986.5 -0.27 -1.17 
SWISHER 246.8 138.0 51.1 556.4 0.42 -0.51 
TERRY 198.6 102.5 43.5 391.5 0.31 -0.86 
TOM GREEN 191.8 82.6 7.7 475.2 0.93 3.57 
WILLACY 397.1 172.1 40.3 824.8 -0.38 0.80 
WILLIAMSON 509.8 119.9 220.2 748.5 0.03 -0.04 
YOAKUM 137.6 87.1 3.7 335.6 0.46 -0.63 
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Table 2. Maximum Likelihood Estimates for Parametric Distributions Models of 
Detrended Dryland Upland Cotton County-Level Yields, Selected Texas Counties, 1972-
2004 
 NORMAL LOGNORMAL BETA 
COUNTY NAME Mean Std Dev A-Sq Shape Scale A-Sq Scale Alpha Beta A-Sq 
ANDREWS 127 84 1.000* 0.73 4.61 0.258 335 1.23 1.85 0.736* 
BAILEY 154 107 0.498 0.95 4.71 1.135* 458 1.09 2.06 0.373 
BORDEN 190 115 0.494 0.87 4.97 1.234* 507 1.30 2.15 0.406 
BRISCOE 164 83 0.527 0.56 4.96 0.369 373 1.90 2.32 0.459 
CAMERON 246 120 0.462 0.68 5.34 1.801* 568 1.82 2.36 0.666* 
CHILDRESS 244 93 0.192 0.48 5.41 0.931* 437 2.49 1.94 0.345 
COCHRAN 180 129 0.730* 1.00 4.84 0.933* 512 0.96 1.65 0.529 
COLLINGSWORTH 264 95 0.419 0.37 5.51 0.176 497 2.90 2.44 0.808* 
CONCHO 242 116 0.272 0.84 5.29 2.484* 615 1.74 2.66 0.846* 
COTTLE 200 81 0.486 0.55 5.18 1.905* 395 2.37 2.31 0.749* 
CROSBY 261 103 0.361 0.42 5.48 0.665* 596 2.99 3.70 0.568 
DAWSON 188 102 0.436 0.73 5.03 1.413* 442 1.57 2.12 0.419 
DICKENS 275 115 0.715* 0.46 5.52 1.078* 671 2.68 3.70 1.085* 
DONLEY 260 97 0.185 0.42 5.48 0.598 500 3.09 2.82 0.163 
ELLIS 422 141 0.217 0.41 5.98 0.804* 715 3.10 2.14 0.329 
FISHER 233 117 0.516 0.90 5.22 2.470* 453 1.33 1.28 0.514 
FLOYD 271 129 0.173 0.60 5.46 0.766* 575 1.89 2.07 0.240 
GAINES 146 78 0.308 0.70 4.80 0.797* 361 1.66 2.37 0.286 
GARZA 268 137 0.320 0.60 5.44 0.678* 696 1.93 2.96 0.409 
GLASSCOCK 83 52 0.593 0.71 4.21 0.486 269 1.48 3.09 0.528 
HALE 295 144 0.480 0.62 5.54 0.742* 620 1.80 1.93 0.474 
HALL 255 90 0.328 0.39 5.47 0.274 448 2.85 2.08 0.492 
HASKELL 251 109 0.472 0.63 5.38 1.774* 480 1.97 1.82 0.495 
HILL 490 160 0.908* 0.33 6.14 0.490 887 3.38 2.64 1.392* 
HOCKLEY 212 108 0.743* 0.73 5.18 1.492* 538 1.75 2.62 0.826* 
HOWARD 139 87 0.773* 0.96 4.61 2.246* 361 1.16 1.88 0.921* 
KNOX 247 105 0.187 0.60 5.38 1.636* 514 2.24 2.42 0.397 
LAMB 258 161 0.475 0.83 5.30 0.657* 661 1.28 1.93 0.200 
LUBBOCK 266 125 0.326 0.55 5.45 0.892* 661 2.19 3.15 0.496 
LYNN 236 107 0.232 0.56 5.33 1.019* 519 2.14 2.51 0.367 
MARTIN 143 91 0.836* 0.99 4.63 1.653* 308 1.03 1.22 0.434 
MIDLAND 89 48 0.415 0.62 4.32 0.635* 234 1.76 2.75 0.418 
MITCHELL 219 126 0.242 1.17 5.03 2.763* 473 1.02 1.26 0.467 
MOTLEY 196 77 0.214 0.51 5.17 1.214* 422 2.68 3.05 0.481 
NAVARRO 426 133 0.472 0.32 6.01 0.236 778 3.67 2.91 0.990* 
NOLAN 206 107 0.190 0.80 5.11 1.660* 414 1.41 1.44 0.166 
PARMER 243 145 0.582 0.73 5.29 0.574 730 1.53 2.90 0.511 
REFUGIO 594 221 0.248 0.50 6.29 1.177* 1155 2.77 2.60 0.456 
SAN PATRICIO 693 199 0.613 0.32 6.50 0.890* 1036 3.69 1.81 0.400 
SWISHER 247 138 0.418 0.68 5.32 0.945* 584 1.54 2.03 0.372 
TERRY 199 102 0.453 0.61 5.13 0.698* 411 1.61 1.66 0.415 
TOM GREEN 192 83 0.557 0.67 5.12 2.476* 499 2.21 3.45 1.349* 
WILLACY 397 172 0.739* 0.74 5.81 3.613* 866 1.94 2.36 1.505* 
WILLIAMSON 510 120 0.238 0.25 6.20 0.309 786 5.27 2.81 NA** 
YOAKUM 138 87 0.444 0.95 4.63 1.001* 352 1.17 1.79 0.167 
Notes:  * Estimate is significant at the 10% level. 
** SAS does not compute the Anderson-Darling statistic if the shape parameter estimate is greater than 5. 
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Table 3. Maximum Likelihood Estimates for Rainfall Index Regime-Switching 
Distribution Models of Detrended Dryland Upland Cotton County-Level Yields, Selected 
Texas Counties, 1972-2004 
COUNTY NAME 1µ  2µ  1σ  2σ  ∗z  εσ ~  Likelihood 

Ratio 
ANDREWS 71 158 30 86 1.71 0.44 17.04* 
BAILEY 61 178 30 104 1.13 0.78             7.78 
BORDEN 77 267 43 75 1.38 1.22 17.04* 
BRISCOE 100 203 32 77 1.71 1.31 9.57* 
CAMERON 188 284 118 102 1.75 0.11             5.03 
CHILDRESS 139 276 60 74 0.80 0.13 14.08* 
COCHRAN 104 251 62 131 2.15 2.21             6.73 
COLLINGSWORTH 190 313 46 84 1.38 0.62 11.61* 
CONCHO 203 294 78 132 3.27 0.19 9.01* 
COTTLE 98 230 54 58 0.80 0.18 17.18* 
CROSBY 142 290 30 91 1.13 0.08 21.10* 
DAWSON 59 226 21 81 1.13 0.76 17.73* 
DICKENS 201 322 80 105 1.38 0.25 10.06* 
DONLEY 192 303 66 87 1.38 0.11 11.02* 
ELLIS 320 482 116 113 1.49 0.08 12.24* 
FISHER 168 371 74 43 3.18 2.52 9.43* 
FLOYD 213 327 84 136 2.15 0.16 10.65* 
GAINES 104 186 59 71 2.15 0.00 11.40* 
GARZA 105 304 49 120 0.80 0.00 18.44* 
GLASSCOCK 41 106 18 49 1.71 1.24 9.25* 
HALE 256 348 149 111 2.50 0.00             4.98 
HALL 185 301 58 74 1.38 0.00 18.28* 
HASKELL 170 301 89 85 1.38 0.27 11.72* 
HILL 315 537 70 140 1.05 0.33 11.43* 
HOCKLEY 131 232 26 110 1.13 0.13 16.30* 
HOWARD 35 179 21 64 1.13 0.97 19.91* 
KNOX 134 279 90 82 0.80 0.23 9.79* 
LAMB 112 295 36 156 1.13 0.43 14.44* 
LUBBOCK 166 290 55 123 1.13 0.15 10.05* 
LYNN 149 283 71 90 1.71 0.33 12.69* 
MARTIN 39 201 19 53 1.71 1.52 26.37* 
MIDLAND 42 112 14 41 1.71 0.83 16.38* 
MITCHELL 186 323 117 80 3.18 0.00 9.90* 
MOTLEY 100 224 39 59 0.80 0.14 17.71* 
NAVARRO 332 481 80 124 1.49 0.28 11.91* 
NOLAN 130 294 70 62 1.90 0.85 14.60* 
PARMER 122 276 28 144 1.13 0.97 8.51* 
REFUGIO 601 588 158 253 3.77 0.00             3.35 
SAN PATRICIO 676 706 136 229 3.77 0.00             4.17 
SWISHER 69 292 14 114 1.13 1.14 14.97* 
TERRY 73 236 19 84 1.13 1.14 13.53* 
TOM GREEN 178 241 55 126 4.11 0.24 12.62* 
WILLACY 361 447 202 91 2.54 0.00 10.83* 
WILLIAMSON 434 552 58 122 1.49 0.11 12.34* 
YOAKUM 71 176 41 81 1.71 0.72 10.35* 
Note: Asterisk (*) denotes variables significant at the 5% level. 
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Table 4. Maximum Likelihood Estimates for Palmer Index Regime-Switching 
Distribution Models of Detrended Dryland Upland Cotton County-Level Yields, Selected 
Texas Counties, 1972-2004 
COUNTY NAME 1µ  2µ  1σ  2σ  ∗z  εσ ~  Likelihood 

Ratio 
ANDREWS 68 194 30 72 0.91 3.72 16.66* 
BAILEY 122 260 71 127 3.29 1.88 10.67* 
BORDEN 59 252 30 81 -0.35 0.93 33.82* 
BRISCOE 92 180 40 80 -1.74 0.00 9.63* 
CAMERON 81 281 55 96 -2.06 1.05 12.61* 
CHILDRESS 163 297 59 66 -0.35 0.80 20.26* 
COCHRAN 130 341 80 117 3.29 2.57 12.10* 
COLLINGSWORTH 225 317 55 108 1.42 0.32 13.99* 
CONCHO 176 279 72 117 -1.00 0.04 8.12* 
COTTLE 152 245 66 62 0.49 0.18 14.06* 
CROSBY 132 288 18 90 -1.74 1.08 10.34* 
DAWSON 58 234 21 72 -1.74 2.95 15.97* 
DICKENS 230 341 77 125 1.42 0.45 11.76* 
DONLEY 214 304 70 96 0.49 0.00 9.85* 
ELLIS 266 456 106 120 -2.31 1.19             6.12 
FISHER 136 297 69 94 -0.35 0.00 21.84* 
FLOYD 236 319 93 149 0.91 0.00             7.25 
GAINES 108 201 55 71 0.91 1.19 10.98* 
GARZA 183 348 91 120 0.49 0.00 16.66* 
GLASSCOCK 40 109 17 48 -0.96 3.95 10.23* 
HALE 236 517 92 37 3.29 2.89 15.22* 
HALL 172 309 41 68 -0.35 2.59 12.59* 
HASKELL 167 305 83 84 -0.35 0.00 16.70* 
HILL 492 481 175 38 2.96 0.59 8.10* 
HOCKLEY 167 340 66 97 3.29 3.13 11.12* 
HOWARD 23 175 8 64 -1.74 2.93 22.40* 
KNOX 191 300 88 87 0.49 0.14 10.82* 
LAMB 118 316 43 152 -1.74 3.57 8.53* 
LUBBOCK 241 298 100 143 0.91 0.00             3.90 
LYNN 187 306 79 99 0.91 1.09 10.08* 
MARTIN 39 202 19 51 -0.96 2.76 28.81* 
MIDLAND 35 107 10 41 -1.74 2.18 14.76* 
MITCHELL 41 268 31 92 -2.11 1.10 22.78* 
MOTLEY 163 243 63 68 1.42 0.09 10.36* 
NAVARRO 283 457 62 121 -2.31 1.19             6.59 
NOLAN 113 267 67 78 -0.35 0.00 23.72* 
PARMER 171 304 66 161 0.14 3.15             7.44 
REFUGIO 617 506 228 142 2.72 0.00             3.48 
SAN PATRICIO 405 738 59 170 -2.01 1.34             7.68 
SWISHER 178 402 87 92 3.29 5.68             4.01 
TERRY 74 233 23 86 -1.74 0.84 17.01* 
TOM GREEN 140 226 57 77 -1.00 0.00 11.57* 
WILLACY 188 448 195 116 -2.06 0.22 18.02* 
WILLIAMSON 362 543 76 99 -2.31 0.69 11.06* 
YOAKUM 100 261 56 37 3.29 1.50 22.02* 
Note: Asterisk (*) denotes variables significant at the 5% level. 
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Table 5. Estimated Group Risk Plan Premiums as a Percent of Liability, Texas Dryland 
Upland Cotton, by County 
COUNTY NAME Empirical 

Distribution Model 
Normal 

Distribution Model 
Palmer Regime- 

Switching Model 
Rainfall Regime- 
Switching Model 

ANDREWS 22.1                  22.6                 22.0                    21.6
BAILEY 23.1                      24.0                    21.5                    24.9 
BORDEN 22.1                      20.2 27.3*                    22.0 
BRISCOE 15.1                      15.6                    15.6                    15.2 
CAMERON 14.4                      14.8 18.5*                    14.9 
CHILDRESS 10.1                      10.1                    10.8                      9.5 
COCHRAN 23.9                      25.2                    22.7                    23.8 
COLLINGSWORTH 8.4                        9.3                      7.9                      8.9 
CONCHO 13.3                      14.5                    14.2                    13.3 
COTTLE 11.3                      11.1                    11.4                    10.8 
CROSBY 10.7                      10.7 13.7*                    11.0 
DAWSON 19.2                      17.2                    20.7                    18.4 
DICKENS 10.3                      11.8                    10.6                    11.7 
DONLEY 10.5                        9.9                      9.4                      9.8 
ELLIS 8.1                        8.2                      8.5                      8.6 
FISHER 15.1                      15.5                    15.9                    16.0 
FLOYD 14.2                      14.3                    13.3                    13.3 
GAINES 17.1                      16.9                    16.0                    16.8 
GARZA 14.7                     15.8                    15.7                    16.7 
GLASSCOCK 20.1                     21.1                    21.4                    22.0 
HALE 14.4                     14.8                    14.6                    15.0 
HALL 9.1                       9.0                      9.7                      9.1 
HASKELL 11.9                     12.5                    13.0                    13.3 
HILL 6.4 7.9*                      7.3                      8.2 
HOCKLEY 13.4                     15.9                    13.9                    15.2 
HOWARD 23.6                     20.8                    26.9                    20.5 
KNOX 12.2                     12.0                    12.2                    11.6 
LAMB 21.3                     20.9                    21.7                    21.3 
LUBBOCK 13.9                     14.1                    13.5                    13.7 
LYNN 13.4                     13.4                    12.6                    13.6 
MARTIN 24.7                     21.3                    25.6                    27.4 
MIDLAND 17.9                     17.4                    19.1                    20.3 
MITCHELL 19.3                     18.7                    20.0                    19.3 
MOTLEY 10.6                     10.8                    10.6                    10.4 
NAVARRO 6.3                       7.3                      7.5                      7.0 
NOLAN 16.8                     16.1                    17.0                    17.1 
PARMER 18.3                     19.7                    17.7                    20.5 
REFUGIO 9.3                       9.8                      9.5                      9.6 
SAN PATRICIO 7.5                       6.3                      8.7                      5.9 
SWISHER 17.5                     18.0                    16.8 24.8* 
TERRY 16.6                     16.1                    17.9                    18.5 
TOM GREEN 10.1                     12.3                    12.1                    10.3 
WILLACY 12.5                     12.4                    12.3                    12.5 
WILLIAMSON 3.8                       4.3                      4.6                      3.5 
YOAKUM 21.9                      21.3                    21.4                    21.0 
AVERAGE 14.6                  14.7               15.2                    15.1
Note: An asterisk (*) indicates that the computed premium rate is statistically different from the empirical 
distribution premium rate at the 5% level   
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Footnotes 

1 The parametric distributions were estimated using SAS, which automatically generates 

the critical values of the Anderson-Darling statistic. 
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