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Abstract. Meteorological data are often recorded at a number of spatial locations. This gives rise to the

possibility of pooling data through a spatial model to overcome some of the limitations imposed on an extreme

value analysis by a lack of information. In this paper we develop a spatial model for extremes based on a standard

representation for site-wise extremal behavior, combined with a spatial latent process for parameter variation over

the region. A smooth, but possibly non-linear, spatial structure is an intrinsic feature of the model, and dif®culties

in computation are solved using Markov chain Monte Carlo inference. A simulation study is carried out to

illustrate the potential gain in ef®ciency achieved by the spatial model. Finally, the model is applied to data

generated from a climatological model in order to characterize the hurricane climate of the Gulf and Atlantic

coasts of the United States.
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1. Introduction

A common application of extreme value theory is to the quanti®cation and estimation of

extreme levels of meteorological processes such as wind speeds, rainfall or sea-levels. The

basis of the argument is well-known. The data, X1; . . . ;Xn, representing hourly wind

speeds say, are taken to be independent observations from a common distribution F, whose

tail is characterized by an extreme value model. A suitable subset of the extreme values of

the Xi series is extracted and used to ®t this model, which in turn summarizes the tail

behavior of F. Simple modi®cations at the modeling level are generally applied to handle

temporal dependence or non-stationarity in the Xi process.

There are many examples of this type of analysis in the literature. In contrast, there are

relatively few examples where the spatial characteristics of an extreme value process have

been studied, despite the fact that meteorological processes are generally recorded on a

spatial scale. A notable exception is in the hydrological literature where the issue of

pooling spatial data, whilst allowing for spatial dependence and non-homogeneity, has

been given high prominence (N.E.R.C. (1975), Hosking & Wallis (1988), Buishand

(1989), Dales & Reed (1989), for example). Explicit spatial regression models for

extremes have also been developed (Coles & Tawn (1991, 1996), for example), but only

for instances where linear models for the extreme value parameters in terms of speci®ed

covariates proved suf®cient. In this paper we propose a methodology that is applicable



when there is a spatial cohesion to the variation in extremal behavior, but without the

requirement of simple linear forms. The main advantage in spatial modeling is the pooling

of informationÐa key strategy in extreme value analysis to overcome dif®culties caused

by the sparsity of dataÐbut there are others as well. First, the model can be used for

interpolation to sites where little or no data may have been collected. Secondly, the

methodology is formally Bayesian, enabling inferences and predictions to incorporate

uncertainties in process variation and parameter estimates.

Our methodology is based on recent developments in non-linear spatial statistics. The

model structure is simple: at each location, conditional on model parameters, a standard

extreme value model is assumed to characterize the data-generating process at extreme

levels. Our extra assumption is that across locations the unobservable model parameters

are themselves a realization of a smooth stochastic spatial process. Thus, nearby locations

are more likely than distant sites to have extreme value data with similar characteristics, to

an extent determined by the strength of spatial dependence in the underlying spatial

process. Estimating the realized but unobserved parameter process associated with the

observed data is the analogue of identifying the regression model in a more classical

analysis, without the restriction of simple linear forms.

Inference for this model is considerably less straightforward. The model parameters

constitute a latent spatial process, the uncertainty of which must be accounted for in any

analysis. Conventional procedures for inference, such as maximum likelihood, are

intractable in these circumstances. However, recent advances in sample-based inference,

most notably Markov chain Monte Carlo techniques, have been shown to work well for

inferring spatial latent process models in other applications (Diggle et al. (1998), for

example). The scope of this work is to examine the performance of the latent process

model structure for describing spatial variation in the extremal behavior of a process.

The paper is structured as follows. In Section 2 we review a point process

characterization for univariate extremal behavior. In our spatial construction, this serves

as a conditional model for extremes given a realization of the latent spatial process of

extreme value parameters. The complete model speci®cation, together with details of the

Markov chain Monte Carlo scheme used for inference, is given in Section 3. Our research

into this area was motivated by a requirement to model the extremal characteristics of the

hurricane process along the eastern and southeastern United States coastlines. We describe

this application in Section 5. Preceding the application, in Section 4, we undertake a

simulation study to investigate the viability of our model for inferring spatially coherent

extreme value processes and to assess its utility compared with a classical site-by-site

analysis.

2. Tail characterization

The archetypal extreme value problem can be expressed in the following way: given

independent data X1;X2; . . . ;Xn, that are, say, hourly observations from a process with

marginal distribution F, what inferences can be made about the tail of F? Various

characterizations have been proposed, most of which are special cases of a point process
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characterization developed by Pickands (1971); see also Leadbetter et al. (1983). For

applications this can be interpreted in the following way: the 2-dimensional point process

Pn �
j

n� 1
;Xj

� �
; j � 1; . . . ; n

� �
:

restricted to the region Au � �0; 1�6�u;?� for large u, approximates a Poisson process

with intensity measure in the parametric family

L��a; b�6�x;?�� � �bÿ a�m 1� x
s
�xÿ m�

� �ÿ1
x

�
; �1�

where m [ �ÿ?;?�; s [ �0;?� and x [ �ÿ?;?�, with the case x � 0 obtained by

taking the limit as x?0. The coef®cient m is an arbitrary scaling that determines the time-

scale of the parameters; for applications it is convenient to let m � n=ny where ny

is the number of observations in a year. Thus, m is the number of years of observations.

Then, by standard properties of a Poisson process and (1), the annual maximum

Mny
� max�X1; . . . ;Xny

� has distribution function

PrfMny
� xg � expfÿL��0; ny=n�6�x;?��g

� exp ÿ 1� x
s
�xÿ m�

� �ÿ1
x

�

" #
: �2�

This is the distribution function of the generalized extreme value distribution, g�m; s; x�;
thus the connection between the point process characterization and the classical

characterization of extremal behavior is immediate. In particular, the parameters �m; s; x�
in the Poisson intensity function (1) are, respectively, the location, scale and shape

parameters of the associated generalized extreme value distribution of the annual

maximum. In the usual way, it follows that the n±year return level of the annual maxima

process is given by

qn � m� s
x

1ÿ ÿ log 1ÿ 1=n� �f gÿx
h i

: �3�

In a similar way, the standard models for threshold exceedances are also derived

immediately from the point process representation. Considering a point �Ti;Xi� of the

process, for which Xi4u,

Pr�Xi4xjXi4u� � 1� x
s �xÿ m�� �ÿ1=x

�

1� x
s �uÿ m�� �ÿ1=x

�

� 1� x�xÿ u�
s� x�uÿ m�

� �ÿ1=x

�
; �4�
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which is the usual representation of the generalized Pareto distribution function on

reparameterizing fs� x�uÿ m�g?s.

Smith (1989) was the ®rst to advocate using the point process characterization as a

modeling tool; other applications include Smith (1994), Coles (1994) and Coles & Tawn

(1996). The advantage of working with this representation relative to methods based on

the annual maxima distribution is that the behavior of all extreme values, in the sense of

having exceeded a high threshold, is characterized. This objective is also achieved with

more familar threshold techniques, such as the modeling of threshold exceedances by the

generalized Pareto distribution (4). However, there are considerable modeling advantages

to using the point process representation explicitly, which stem largely from the invariance

of the parameters to the threshold choice u, and the fact that the threshold exceedance rate

is not marginalized out of the analysis as in the standard threshold models.

As discussed, adopting a likelihood analysis based on (1), all such extreme values

contribute to the inference as follows. Letting u be a high threshold and

e � f�ti; x�i��; i � 1; . . . ;NAu
g be the set of points for which x�i�4u, the likelihood

function is derived as

LAu
�m; s; x;e� � exp ÿL�Au�f g

YNAu

i�1

dL�ti; x�i��

� exp ÿm 1� x
s
�uÿ m�

� �ÿ1
x

( )YNAu

i�1

1

s
1� x

s
�x�i� ÿ m�

� �ÿ1
xÿ1

( )
: �5�

Equation (5) can be maximized numerically to obtain the maximum likelihood estimate of

�m; s; x� and hence return levels by substitution into (3).

3. Spatial models

3.1. Model structure

The point process model in Section 2 provides a convenient characterization and

inferential basis for the tail behavior of a spatial process at each point location.

Furthermore, the method can be applied independently to data at a ®nite set of locations

and the estimates examined to obtain an informal impression of the degree of spatial

variability or homogeneity in the extreme data (Coles (1994), for example). To identify

formally any spatial structure, or to improve inferences by exploiting such relationships,

requires the speci®cation of a spatial model. One approach is to postulate simple linear

relationships for the parameters �m; s; x� in terms of spatial location Coles & Tawn (1990,

1996). Ignoring spatial independence, the form of such relationships can be investigated

and optimized within a likelihood analysis. A generic procedure for modifying such

inferences to account for dependencies in data is described by Liang & Self (1996). This
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amounts to maximum likelihood under the assumption of independence, followed by

corrections to standard asymptotic formulae for parameter variances and covariances to

account for observed dependence in the data. A similar procedure in the speci®c context of

modeling spatially dependent extremes had been suggested earlier by Smith (1991). Often,

however, the nature of the spatial variation is too complex to be easily described a priori by

simple linear forms, so that other techniques are required.

As an alternative, we propose a model based on a latent spatial process to describe

smooth variation in extreme value parameters over the region of interest; conditional on

these parameters, threshold exceedances at each location are assumed to follow the

limiting Poisson process with intensity given by (1). This type of model formulation is

commonplace within the discipline of spatial statistics, but novel within extreme value

modeling. Thus, we assume the parameters �m�z�, s�z�, x�z��, as de®ned in Section 2 but

indexed now by spatial location z, vary smoothly over space according to a stochastic

spatial process. Explicitly, we model m�z� as

hm�m�z�� � fm z; bm

� �
� Sm z; am

ÿ �
; �6�

with similar expressions for the parameters s and x. In this speci®cation hm is a known link

function, fm is a regression function with unknown parameters, bm, and Sm is a zero-mean,

stationary, spatial stochastic process with unknown parameters am. Moreover, we assume

that Sm; Ss and Sx are Gaussian and mutually independent, though this latter assumption

could easily be relaxed. Now, data are observed at a ®nite number of locations z1; . . . ; zk

and, with a slight abuse of notation, we denote the extreme value parameters at location zj

by �mj; sj; xj� � m zj

ÿ �
; s zj

ÿ �
; x zj

ÿ �ÿ �
. Similarly, ej denotes the set of exceedances of a high

threshold uj at location zj. Then, conditional on the realized values of �mj; sj; xj�, ej is

assumed to follow the Poisson process approximation of Section 2, denoted by:

ejj mj; sj; xj

� �
*p mj; sj; xj

� �
; �7�

independently for each location z1; . . . ; zk.

The point of this formulation is that spatial variation in the extreme value parameters,

over and above that which can easily be modelled through the regression functions fm; fs
and fx, is absorbed into the respective stochastic components Sm; Ss and Sx. There are,

however, some limitations imposed by this model construction. First, the asymptotic point

process characterization is now assumed only conditionally. After marginalization over

the uncertainty in the latent process parameters mz; sz; xz� �, the point process structure is

perturbed and, for example, the distribution of the annual maximum is no longer

generalized extreme value. The second restriction is the spatial independence of the

conditional processes (7). This implies that having allowed for spatial variation in the

underlying extreme value parameters, observations from location to location are

independent. This is a serious limitation of the model. In practice, the spatial dimension

of meteorological events generally induces a spatial dependence beyond that which can be
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explained by the spatial structure in mz; sz; xz� �. Further research is required to generalize

the model structure to accommodate spatial dependence in the observations conditional on

the latent parameter process. However, for the application in Section 5, in which the

spatial characteristics at extreme levels of a simulated database of hurricane wind speeds

are required, the present model structure is adequate.

3.2. Inference

The motivation for our proposed model is that it provides a convenient representation for

non-linear spatial variations in the extreme value parameters. However, its complexity

renders impractical standard estimation procedures such as maximum likelihood, so the

utility of the representation depends on the availability of an alternative inference

procedure. Conveniently, the latent process framework is especially amenable to analysis

by Markov chain Monte Carlo methodology. This requires a Bayesian speci®cation of the

model, giving, at least, formal priors on each of the parameters. Then, a Markov chain is

designed for which the equilibrium distribution is the objective posterior distribution,

p� ? �. Simulation from the chain then leads to a series which, after convergence, can be

interrogated to estimate p� ? � and, consequently, summary features of the model

parameters. This is now a standard procedure in statistical modeling; see Smith & Roberts

(1993) for a general overview, and Coles & Powell (1996) for applications in extreme

value modeling.

The most general Markov chain Monte Carlo formulation is based on the Metropolis±

Hastings algorithm. This requires the speci®cation of a proposal transition density q t
0 j tÿ �

from which, given a current value of the series ti � t, a proposal value t
0

for ti�1 can be

simulated. To obtain p as the equilibrium distibution of the simulated chain a rejection step

is included:

ti�1 � t0 with probability D(ti, t )
ti with probability 17D(ti, t )

�
where

D�t; t0� � min 1;
p�t0�q�tjt0�
p�t�q�t0jt�

� �
: �8�

Under mild conditions on q, which, in particular, ensure the chain is recurrent, the

sequence ftig is bound to converge to the target posterior distribution p. In slightly greater

generality, if t is a vector of components, t � �t�1�; . . . ; t�d��, then the above algorithm can

be applied in cycles to the tj by simply replacing p�t� in (8) with the conditional density

pj�tjjtÿj�, where tÿj � �t1; . . . ; tjÿ1; tj�1; . . . ; td� and iterating over j; this is the single-

component Metropolis±Hastings algorithm.

In principle, subject to the regularity conditions, the transition density q, or densities qj

0
0
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in the case of the single-component Metropolis±Hastings algorithm, can be chosen

arbitrarily. In practice, choices must be made that facilitate easy simulation and lead to

reasonable convergence properties of the chain. Computations can also be simpli®ed by

exploiting conditional independencies within the model structure. The structure of our

model is most clearly seen from Figures 1(a) and 1(b) which give, respectively, the

directional acyclic graph and conditional independence graph of the model. By adopting

uniform and independent priors, denoted generically by p� ? �, for each of the parameters

we obtain an analysis that is closest in spirit to a conventional likelihood analysis, though

there would be little additional complexity in adopting a fully Bayesian approach by

adding extra nodes to the model to serve as hyperparameters for any subset of the

regression or correlation parameters. Combining the speci®cation of uniform priors with

the model format identi®ed in Figures 1(a) and 1(b) leads to the following algorithm for

recursive simulation of parameter values.

Given a current parameter value hi � �l; r; n; am; bm; as; bs; ax; bx�, the next point in the

chain, hi�1, is generated in the following way.

Step 1: Set q a0mjam

ÿ �
! 1 on am ÿ ea; am � ea

� �
, a random walk process. Then

D am;a
0
m

ÿ � � min 1;
f a0mj . . .
ÿ �

q amja0m
ÿ �

f amj . . .
ÿ �

q a0mjam

ÿ �( )

� min 1;
f lja0m; bm

� �
p a0m
ÿ �

f ljam; bm

� �
p am

ÿ �
8<:

9=;
� min 1;

f lja0m; bm

� �
f ljam; bm

� �
8<:

9=;;

Figure 1. The directional acyclic graph and conditional independence graph of the model used to describe the

non-linear spatial variation of the GEV parameters l;a; n.
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a ratio of multivariate Normal densities. With probability D am;a
0
m

ÿ �
, the am component of

hi�1 is set at a0m; otherwise it remains at am.

Step 2: Set q b0mjbm

� �
! 1 on bm ÿ eb; bm � eb

h i
, a random walk process. Then

D bm; b
0
m

� �
� min 1;

f b0mj . . .
� �

q bmjb0m
� �

f bmj . . .
� �

q b0mjbm

� �
8<:

9=;
� min 1;

f ljam; b
0
m

� �
p b0m
� �

f ljam; bm

� �
p bm

� �
8<:

9=;
� min 1;

f ljam; b
0
m

� �
f ljam; bm

� �
8<:

9=;;

again, a ratio of multivariate Normal densities. With probability D bm; b
0
m

� �
, the bm

component of hi�1 is set at b0m; otherwise it remains at bm.

Step 3: The components of l � m1; . . . ; mk� � are updated singly according to a
transition density qj�m0jjmj�, to be speci®ed below.

D mj; m
0
j

� �
� min 1;

f m0jj . . .
� �

q mjjm0j
� �

f mjj . . .
� �

q m0jjmj

� �
8<:

9=;
� min 1;

f ejjm0j; sj; xj

� �
f m0jjlÿj; am; bm

� �
qj mjjm0j
� �

f ejjmj; sj; xj

� �
f mjjlÿj; am; bm

� �
qj m0jjmj

� �
8<:

9=;:

Now set

qj�m0jjmj� � f �m0jjlÿj; a; bm�; �9�

corresponding to the simulation of m0j from the univariate conditional distribution of one
component of a k-dimensional multivariate Normal in accordance with standard
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multivariate Normal theory (Theorem 3.2.4 of Mardia (1972), for example). In this case
we obtain the simpli®cation,

D�mj; m
0
j� � min 1;

f ejjm0j; sj; xj

� �
f ejmj; sj; xj

� �
8<:

9=;; �10�

a likelihood ratio based on the exceedances at zj only, with likelihoods of the form (5).

Step 4: Repeat steps 1±3 interchanging, respectively, r and n with l, so that all
components of hi are updated in one complete iteration.

4. Application to simulated data

In Section 5 we apply the algorithm of Section 3 to model data which, notionally, represent

999 hurricane wind speed measurements at each of 55 equally spaced locations along the

eastern and southeastern coastlines of the United States. Our approach there is to linearize

the coastline so that the data locations z1; . . . ; z55f g can be represented by the points

1; . . . ; 55f g. on the real line. In this section we mimic the application by simulating data

according to the model

Xi; j*g�mj; sj; xj�; i � 1; . . . ; 999; j � 1; . . . ; 55; �11�

where the parameter sets �mj; sj; xj� are generated from models having the form of (6) for

each parameter. The choice of the g�mj; sj; xj� distribution for the marginal distribution at

each site, conditional on parameter values, guarantees fast convergence to the limiting

Poisson process. Moreover, nominally setting m � n in equation (1), ensures that the

extreme value parameters of ej are also �mj; sj; xj�.
Complete determination of the model requires, for each parameter, a speci®cation of the

link function, the regression equation and the latent process parameters. We look at a range

of model formulations, though in each case we set:

�i� mj � a� gj� Sm� j�
�ii� log�sj� � d� Ss� j�;

where Sm� j� and Ss� j� for j � 1; . . . ; 55 are independent point realizations of a zero mean

Gaussian process with respective variances a2
m and a2

s, and correlation functions of the

form

r�i; j� � exp ÿ �bd�i; j��cf g; �13�
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where d� ? , ? � is a metric and �a, b, c� are speci®ed parameters. Thus, the model is linear in

distance for l with spatial noise determined by Sm, but admits no spatial regression other

than noise on a logarithmic scale for r. The parameter values �a; g; d� � �10; 0:3; 2:45�
were chosen for reasonable consistency with the data to be introduced in Section 5.

For the correlation functions of both Sm and Ss we set c � 1:8, thus guaranteeing

continuous sample paths. A range of possible values for both the variance and correlation

parameters of Sm and Ss were considered, including combinations of high(H),

moderate(M) and low(L) values of the variance and correlation of both Sm and Ss. In

each case, the corresponding values of am; as; bm and bs are summarized in Table 1.

A number of different formulations for the shape parameter n were also considered;

results are presented separately for each case in the subsequent sections.

Having generated data according to the latent spatial process model, our interest focuses

on the ef®ciency of the inferential scheme described in Section 3 for parameter and return

level estimation, both point-wise and globally. To assess the gain in ef®ciency by

accounting for the spatial structure we compare results obtained against those of a

separate-site likelihood analysis. In all cases the spatial analysis was carried out using

100,000 iterations of the Metropolis±Hastings algorithm described in Section 3, of which

the ®rst 20,000 terms were discarded. After this point, at which both informal and formal

assessments of chain convergence seemed satisfactory, every 10th point of the series was

retained and the resulting series interrogated to estimate the posterior distribution. The

separate-site likelihood analysis was carried out by maximizing (5) based on site-speci®c

data, but sometimes constrained to ensure a constant estimate of n across sites.

Comparison of the spatial and non-spatial analyses is complicated by the large number

of parameters involved. Since most extreme value analyses are aimed at the estimation of

extreme return levels, we focus mainly on global measures of the accuracy of return level

estimation. Two such measures are:

Q1 �
X

j

�q̂j ÿ qj�2
qj

and Q2 � max jq̂j ÿ qjj

where, conditional on parameter values, qj is a speci®ed annual maximum quantile at

location j (see equation (3)), and q̂j is its estimate. To compare the spatial analysis with that

Table 1. Parameter settings in simulation example.

Variance Correlation

L M H L M H

a2 b

m 10 40 60 36 18 10

s 0.01 0.03 0.06 36 18 10
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of a maximum likelihood analysis we calculate the ratio of the corresponding values of Q1

and Q2 obtained under the respective inference procedures. Thus, we de®ne

E1 �
Q1�mle�

Q1�spatial� and E2 �
Q2�mle�

Q2�spatial� : �14�

4.1. Homogeneous n � ÿ 0:2

Spatial homogeneity in the shape parameter is a phenomenon that has often been observed

in analyses of environmental data (Dales & Read (1989); Coles & Tawn (1996), for

example). In this example we ®x n � ÿ 0:2, corresponding to bounded but reasonably

long-tailed marginal distributions, and assume n to be constant but unknown in the

modelling process. A summary of the comparison between maximum likelihood

estimation and the spatial model, as determined by the measures E1 and E2 based on

three different return periods, is given in Table 2. To make the comparison fair, the

maximum likelihood estimates were also constrained so that n was held constant across all

locations; without this constraint the spatial model overwhelmingly outperforms

maximum likelihood.

The actual values in Table 2 should be treated with some caution as each value is based

on a single simulated spatial dataset. Consequently, the values have some degree of

sampling variability. This is presumably why there is no uniformity in the ef®ciency

values as either the spatial variance or correlation increases. Nonetheless, taking the

results as a whole, some patterns emerge. The spatial model generally outperforms

maximum likelihood in both ef®ciency measures, and increasingly so at high return

periods. This conclusion holds for almost all parameter combinations but the precise effect

of both the scale and correlation of spatial variation is unclear. Unfortunately, the

computing time required to undertake this analysis precludes a more systematic study.

Table 2. Ef®ciency comparisons in simulated example with n � ÿ 0:2. Ef®ciencies are computed for p1 � 0:01,

p2 � 0:0005 and p3 � 0:0001 corresponding to the 100-, 2000- and 10,000-year return level estimates

respectively.

E1 E2

Var Cor p1 p2 p3 p1 p2 p3

L M 1.17 1.59 1.68 1.51 1.83 2.09

M L 1.21 1.59 1.54 1.54 2.06 2.02

M M 1.30 1.55 2.11 1.20 1.43 1.94

M H 0.82 0.96 1.10 1.06 1.03 0.97

H M 1.32 1.96 2.10 1.05 1.31 1.49
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The example with the moderate values of correlation and scale parameters is also

illustrated in Figure 2. This shows the tendency for the spatial estimates of both parameters

and return levels to follow the spatial variation in the simulated values with less erratic

variation than the corresponding site-by-site maximum likelihood estimates.

4.2. Homogeneous n � 0:2

We now repeat the analysis of Section 4.1 but with n � 0:2, corresponding to marginal

distributions with unbounded upper tails. In this case the results are summarized in

Table 3.

Despite the change in tail form, the conclusions are much the same as for the bounded

tail case. The spatial method is almost uniformly more ef®cient than maximum likelihood

for estimation at all return levels, though the precise dependence of the ef®ciency

Figure 2. Spatial behavior, with 95% con®dence intervals for simulated GEV parameters (a) l, (b) a and

(c, d) n-year return levels, for n� 2000, 10,000 years, estimated by non-linear models (dotted lines) and

maximum likelihood (vertical bars) respectively.
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improvement on the scale and correlation of the spatial variation is not apparent from such

a limited study.

4.3. Non-homogeneous n

Our simulations so far have been based on models in which the shape parameter n is

constant across locations, and this homogeneity assumption has been incorporated into

both the maximum likelihood and spatial analyses. We now consider two further

scenarios: ®rst, the situation where n is genuinely homogeneous, but this constraint is not

explicitly modelled; and second, the situation where n is also spatially varying, with

spatial variation also of the form (6).

In the ®rst of these cases, for both n � ÿ 0:2 and n � 0:2, the results are summarized in

Table 4. In the spatial analysis we assume only a model of the form (6) for n, and make the

comparison with maximum likelihood analyses where, respectively, homogeneity and

non-homogeneity for n is assumed. Again, at all return levels, the results give convincing

evidence for the superiority in ef®ciency of the spatial analysis, especially with respect to

Table 4. Ef®ciency comparisons in simulated example with constant n not assumed in spatial model. Ef®ciencies

are computed for p1 � 0:01, p2 � 0:0005 and p3 � 0:0001 to obtain the 100-, 2000- and 10,000-year return level

estimates respectively. In the case where data are simulated with n varying x�j� � ÿ 0:2� Sx.

E1 E2

n MLE model for n p1 p2 p3 p1 p2 p3

ÿ 0.2 Homogeneous 1.28 1.44 1.40 1.45 1.63 1.60

Non-Homogeneous 1.27 1.91 2.17 1.52 2.94 4.56

0.2 Homogeneous 1.49 2.03 1.79 2.36 2.87 2.48

Non-Homogeneous 1.47 5.80 8.90 2.59 19.9 42.2

varying Non-Homogeneous 1.01 1.28 1.53 1.22 1.37 3.85

Table 3. Ef®ciency comparisons in simulated example with n � 0:2. Ef®ciencies are computed for p1 � 0:01,

p2 � 0:0005 and p3 � 0:0001 to produce the 100-, 2000- and 10,000-year return level estimates respectively.

E1 E2

Var Cor p1 p2 p3 p1 p2 p3

L M 1.42 1.32 1.39 1.88 2.06 2.29

M L 1.61 1.01 1.03 1.54 1.43 1.36

M M 1.18 1.66 1.89 1.17 1.25 1.40

M H 1.10 0.93 0.87 2.98 1.34 0.86

H M 0.87 1.06 1.13 1.89 1.76 1.74
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the non-homogeneous maximum likelihood analysis, and most notably in the n � 0:2
case.

For the non-homogeneous n case we simulated data with n� j� � ÿ 0:2� Sx� j�, where

Sx is a Gaussian process with correlation function (13) and parameters

ax; bx; cx
ÿ � � �18; 0:1; 1:6�. Over the 55 locations, this gave rise to values of n in the

range [ÿ 0.36, 0.03], so a comparison with the homogeneous n � ÿ 0:2 case is the most

appropriate. The results, also shown in Table 4, show that the spatial analysis has improved

ef®ciency in this situation also, although it is perhaps surprising that the gains are

apparently no greater than in the homogeneous n case.

4.4. Extrapolation and interpolation

Whilst the extrapolation of tail estimates to rare events is the usual objective of an extreme

value analysis, the spatial modelling approach adopted here also raises questions about

aspects of spatial interpolation. We look at two issues: the ®rst is the utility of the model

when data are too sparse at any location to enable a conventional extreme value analysis;

the second concerns the predictive capability of the model at locations for which no data

are recorded.

4.4.1. Sparse data. Extreme value analyses invariably require a delicate balance

between bias and varianceÐanalyses based on low thresholds incur bias due to

invalidity of asymptotic model arguments, while high thresholds lead to large variance

because of the lack of data. A well-speci®ed spatial model enables thresholds to be set

at higher levels than would normally be possible because of the information transfer

across sites. To examine this, we have repeated the simulation study with n � ÿ 0:2
and the moderate scale and correlation values, but using thresholds that yield just 5

exceedances at each location. Ef®ciencies are now calculated using (14), but where the

values of Q1 (mle) and Q2 (mle) are those obtained from the earlier analysis based on

lower thresholdsÐthus, we are comparing the ef®ciency of the spatial model relative to

a separate-site analysis that has the advantage of many more data.

The simulated values of E1 and E2 were found to be (0.16, 0.32, 1.26) and (0.55, 0.74,

1.56) respectively, for p � 0:01; 0:0005; 0:0001. Therefore, at short return periods there is

a substantial reduction in precision of return level estimates due to the loss of information.

However, for long extrapolations, the spatial modeling compensates for the reduction

of information to the extent that the ef®ciency of the spatial analysis exceeds that of

the earlier likelihood analysis based on the lower threshold. This lends further support to

the spatial modeling approach when the amount of data is very limited, provided that the

assumptions about spatial smoothness in the parameter values are not unreasonable.

4.4.2. Prediction. Another advantage of the spatial model, in combination with the

Monte Carlo inference, is the facility to obtain the posterior distribution of parameter

values associated with any site in the region. This simply requires the application of

step 3 of the Metropolis±Hastings algorithm for each of the parameters mj; sj and xj at
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any new location j. Adopting the same updating scheme as (9) for mj and similarly for

sj and xj, leads to acceptance probabilities equal to one in equation (10) since there are

no data at this location.

In Figure 3 we plot kernel density estimates of parameters and return levels at site j � 3

where data were simulated with moderate correlation and scale parameters de®ned in

Section 3. The plots compare the predictive distribution of parameter values and return

levels at this location in analyses that respectively include and exclude the site's own data.

In the latter case, estimates based on posterior modes are seen to be reasonably consistent

with those of the fuller analysis, but the reduction of information manifests itself in a

substantial increase in posterior variance. This opportunity to quantify prediction

uncertainty in interpolation represents a substantial advantage of the methodology we

have adopted in preference to more naive methods of parameter interpolation.

Figure 3. Kernel density ploys of the marginal posterior distributions for simulated GEV parameters (a) l, (b)

r and (c, d) n-year return levels, for n� 2000, 10,000 years, at site 3, as modelled by non-linear spatial

statistics applied to the 55 sites where data were available (dotted lines) and all sites except locations 3, 27

and 55 (solid curve).
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4.5. Summary

Across all model con®gurations, our simulations point to a de®nite advantage, at least in

terms of the ef®ciency measures E1 and E2, for the spatial model. It might be anticipated

that the advantage is likely to be greatest when the strength of spatial dependence is

greatest; unfortunately, the noise in our simulations prevent us from being able to con®rm

such a relationship. Moreover, computing time limits our capacity to undertake a more

detailed simulation study. Nonetheless, taken as a whole, the results suggest there is

suf®cient statistical bene®t to outweigh the extra computational demands required by the

spatial analysis. Furthermore, the options to model with very sparse datasets and to

interpolate to spatial locations without data represent substantial bene®ts of the spatial

model. The cost of the analysis is the increased computing time and the assumption of an

underlying smoothness in the spatial variation of the extreme value parameters.

5. Application to simulated hurricane data

Understanding the spatial climate of the hurricane process in regions that are prone to

tropical storms is a major scienti®c and meteorological issue. The modelling of extreme

wind speeds generated by hurricanes is, however, complicated by the dif®culty of

measuring wind speeds during such events. On the other hand, relatively accurate

measurements of hurricane pressure ®elds can be made and historical records are fairly

complete for the last hundred years or so. Consequently, an approach for modeling extreme

hurricane wind speeds has developed based on the ®tting of tail models to simulated

hurricane wind speed data. Historical records of wind pressure ®elds are used for localized

calibration of meteorological wind-®eld models. Climatological models are then used to

convert the simulated wind-®elds into a notional wind speed, and these simulated data then

form the basis of an extreme value analysis. In an attempt to characterize hurricane

behavior in the United States, Batts et al. (1980) applied this technique independently at

each of 55 locations along the United States southern and eastern coastlines. In this section

we examine the spatial coherency at extreme levels of these simulated data using the

techniques of Section 3.

The data correspond notionally to the maximum wind speed for each of 999

independent hurricanes in the vicinity of each of 55 coastal locations. There are inevitably

limitations to the analysis: the wind-®eld model used in the simulations is quite crude; the

number of events simulated at each location is small; and the spatial dimension of

hurricane events is ignored. Nonetheless, there is still scienti®c bene®t in understanding

how localized input variations to the climatological model lead to regional variations in

output winds at extreme levels.

The analysis has the same form as the simulation study of Section 4. A comparison of

spatial estimates and maximum likelihood estimates for each extreme value parameter,

under the assumption of a constant shape parameter, n, is shown in Figure 4. Overall, there

is a general decrease in l moving from Texas to Maine, a corresponding slight increase in

r, while the constant shape parameter is estimated at around ÿ 0.2. As in Section 4, the
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spatial estimates are less variable and more precise than the maximum likelihood

estimates.

Since the hurricane data are simulated, calculation of quantiles of, say, the annual

maxima distribution additionally require an estimate of the yearly rate of occurrence of

hurricanes, a. Batt et al. (1980) obtained such estimates for each location by extraction

from empirical recordsÐa plot of a against location is given in Figure 5(a). Combining the

hurricane rate with the estimated GEV parameters leads to an estimate of the n-year return

level, that is the level exceeded in any year with probability 1/n, as

qn � m� s
x

an

N

� �x
ÿ1

� �
: �15�

Estimates of the 50-, 100- and 2000-year return levels, for consistency with previous

studies (e.g. Batts et al. (1980); Georgiou et al. (1983); Simiu et al. (1995)), are given in

Figures 5(b)±(d). Again, the main feature of this plot is the substantial reduction in

variability obtained in the spatial analysis relative to the site-by-site maximum likelihood

analysis. The homogeneity of n at a level of around ÿ 0.2, corresponding to bounded tail

estimates, is also consistent with current meteorological understanding Simiu et al. (1995).

6. Discussion

The idea of modelling parameter variation as a latent spatial process is familiar in spatial

statistics. For most applications, having so much data at each location would diminish the

advantage of a spatial model; for tail estimation, we have shown that spatial pooling of

information can still be extremely advantageous.

We see the speci®c model proposed in this paper as something of a prototype. What we

Figure 4. Spatial behavior of non-linear model for l and r when ®tted to simulated hurricane data (Batts et

al., 1980) with maximum likelihood estimates, under the assumption that n is held constant at all locations

compared with maximum likelihood estimates. Symbols follow the convention set in Figure 2.

SPATIAL REGRESSION MODELS 465



hope to have shown is that fairly simple, though admittedly computer intensive, models

and inference can lead to substantial gains in ef®ciency relative to a model which ignores

spatial structure in the data. Any number of re®nements could be made: other correlation

functions could be consideredÐKent's discussion of Diggle et al. (1998) suggests this

may indeed be bene®cial; correlated Gaussian processes for the different extreme value

parameters could be used; greater attention could be given to the speci®cation of prior

distributions; the linearization of the coastline could be avoided; re-parameterization to

speed up convergence of the Markov chain could be explored. In each case some slight

gain in modelling ¯exibility or in inferential ef®ciency is likely to accrue.

The biggest limitation of our model is the assumption of conditional independence of

data given the latent extreme value parameters. Most real-life examples would require a

more detailed consideration of spatial dependence, and the development of a spatial

regression model which can handle data that are spatially dependent after allowance for

parameter variation remains an important research objective.

Figure 5. (a) Rate of hurricane occurrence parameter a.(b)±(d) Spatial behavior with 95% con®dence

intervals for wind speed data simulated by Batts et al. (1980) n-year return levels, for n� 50, 100, and 2000

years, estimated by non-linear model (dotted lines) and maximum likelihood (vertical bars) respectively.
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Appendix

The data used in Section 5 are available by FTP from ftp.nist.gov as follows:

username: anonymous

password: your e-mail address

cd /pub/bfrl/emil/datasets/hurricane

this directory consisting of a separate ®le for the simulated data corresponding to each

location.
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