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Precipitation Modeling
and Contract Valuation:
A Frontier in Weather Derivatives
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eather derivatives debuted in
the mid "90s when deregula-
tion of the energy and utility
industries started in the U.S.
Growing competition and uncertainty in
demand prompted energy and utility compa-
nies to seek for effective hedging tools to sta-
bilize earnings. Price hedging alone was no
longer adequate; a combined framework of
price and volumetric risk management was
called for. Since weather conditions are among
the key factors determining the demand of
energy, managing volumetric risk 1s tanta-
mount to managing weather risk. Specifically,
for the electricity and natural gas sectors, tem-
perature is the key factor affecting the demand.
According to the Weather Risk Management
Association (WRMA), the total notional value
of OTC weather contracts was around $4 bil-
lion by 2001; 80% of the contracts or 90% of
the notional value were for temperature deriv-
atives. Meantime, trading of temperature deriv-
atives on the Chicago Mercantile Exchange
(CME) has also been on the rise. Currently, the
CME hists temperature futures for 15 U.S. cities
and 5 European cities. The total number of
contracts traded n 2003 was 14,234,

The second important category of wea-
ther derivatives is arguably precipitation con-
tracts. In contrast to temperature derivatives,
the development of the precipitation deriva-
tives market 1s sull in its infancy. According to
the WRIMA, deals based on rain and snow
made up around 3% of the global weather

market in the winter of 2000. The current
proportion is not much higher judging by the
sparsity of new contracts coming out.

The slow growth by no means reflects a
lack of interest or demand. In fact, end-users
such as farmers and hydroelectric power
producers are very keen on precipitation con-
tracts. The difficulty is in finding the coun-
terparty who is willing or able to provide a
reasonable quote. The hesitation on the part
of financial institutions 1s in turn due to the
difficulty and challenge in properly modeling
precipitation. Modeling precipitation and
valuing related derivative contracts are indeed
a frontier in the field of weather derivatives.

This article makes an earnest attempt to
fill this important gap in the literature and the
industry. We propose, calibrate, and compare
three precipitation models: a gamma distribu-
tion, a mixture of exponentials, and kernel den-
sity. Based on the data for Chicago Midway
Airport (1950-2003), we find that the latter
two models dominate the first model in terms
of fit. In the remainder of the article, we first
discuss the application of precipitation contracts
by describing several deals; we then delineate the
modeling, calibration, and related issues; and
finally, we summarize and conclude the article.

APPLICATION OF
PRECIPITATION CONTRACTS

Precipitation, be it rain or snow, exerts
a significant impact on the revenue of many
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businesses. Farming is an obvious example. Drought or
flood can both adversely affect the crop yield. Operators
of certain outdoor recreational services (e.g., golf and
skiing) have much to dread about excess precipitation or
the lack of it. Hydroelectric generators are very keen on
the accumulative precipitation over any given time period.
Lack of precipitation means a low water level in reser-
voirs, which in turn means a shortage of power supply.
The reduced power output not only leads to a loss of rev-
enue, sometimes it also means purchasing power at unfa-
vorable prices from other generators in order to make up
the supply shortage. Below, we describe three deals, two
of which involve hydroelectric power generators.

Case 1: Southern Hydro Partnership versus Credit
Lyonnais Rouse Derivatives (Source: ARTEmis, htep://
www.artemis.bm/index.htm). Southern Hydro Partners
(SHP) 1s a hydroelectric power generator in South East
Australia, with most of its facilities located 1n Victoria
and New South Wales. With rainfall levels being signifi-
cantly below the historical average for several years, the
company decided to enter into a precipitation contract
with Credit Lyonnais Rouse Derivatives (subsequently
becoming Calyon in May 2004) in 2003. SHPs primary
goal was to stabilize cashflows and revenue. The precip-
itation contract was for a three-year period. To save
hedging cost, the contract was structured as a collar
whereby SHP would receive payments from Calyon
should the rainfall be lower than a specified threshold
level, and pay Calyon should the rainfall be above a cer-
tain level.

Case 2: Sacramento Municipal Utility District versus
Aguila (Source: Environmental Finance, October 2001).
Sacramento Municipal Utility District (SMUD) 1s Amer-
ica’s sixth largest community-owned electric utlity in
terms of customers served. The utility generates half of
its electricity and buys the rest. The generated portion is
primarily from hydroelectric and cogeneration power
plants. In September 2000, SMUD entered into a five-
year precipitation contract with Aquila (an energy trading
firm based in Kansas City) to protect against low rainfall
levels. Similar to the deal in Case 1, the contract was struc-
tured as a collar whereby Aquila would pay SMUD annu-
ally up to $20 million when the water low through the
hydro plants is below a certain amount, while SMUID)
would pay Aquila $20 million in years when precipitation
is abundant. To further reduce the cost of hedging, the
payments to Aquila was capped at $50 million.

Case 3: Golf Course Operator versus Société Générale
SA (Source: Bloomberg News and Commentary, heep://
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www.bloomberg.com/news/index.html). Mr. Dieter
Worms operates a golf course, Gut Apeldor Gold Club,
in Hennstedt which is about 100 kilometers north of
Hamburg in Germany. The business suffered in 2001
when the weather was mainly wet. In the subsequent year,
Mr. Worms entered into a derivative contract with Société
Geéneérale SA, the third largest bank in France. The deal
covered the period from May to September, within which
Mr. Worms would receive compensation should the total
number of rainy days go beyond 50. Specifically, once the
number of days with rainfall of more than a millimeter
passed 50, Société Générale SA would pay Mr. Worms for
every wet day.

Finally, the Swedish Meteorological and Hydrolog-
ical Institute and Energy-Koch Trading have teamed up
to launch a Nordic Precipitation Index. This index is
based on 17 stations, 9 in Norway, and 8 in Sweden. Con-
cerned companies in the Nordic region can enter into
contracts based on this index for their risk management.'

PRECIPITATION MODELING
AND CONTRACT VALUATIONS

Modeling Daily Precipitations

As pointed out by Dischel [2000], in contrast to the
modeling of temperature, modeling precipitation presents
several challenges.” The first challenge is the accurate mea-
surement of precipitation. Most techniques involve phys-
ically collecting raindrops and measure the precipitation
amount accordingly. Factors such as local wind can affect
the collection accuracy. Secondly, spatial correlation is an
elusive measure. Unlike temperature which is highly cor-
related across nearby regions, rainfall can be very local-
ized. A tremendous basis risk is present for any
precipitation contracts when the measurement site (usu-
ally government operated) 1s far away from the site in
question. The third challenge is in selecting a proper dis-
tribution to describe the precipitation data. Again, unlike
temperature which can adequately be deseribed by a
simple distribution such as Gaussian, the statistical prop-
erty of precipitation is far more complex and a more
sophisticated distribution is called for.

Notwithstanding, some authors have attempted to
model precipitation statistically. For instance, Sansd and
Guenni [1999] proposed a model for tropical rainfall at a
single location for a fixed period (e.g., 10 days). The
amount of rainfall is modeled as a tansformed normal
variable with dynamic parameters, while the event of rain
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or dry is modeled by truncating the same normal vari-
able—mnegative draws from the normal distribution cor-
respond to dry days. Sansé and Guenni [2000] later
extended their model to a multi-site setting. Wilks [1998],
on the other hand, proposed a multi-site model for daily
precipitation using a combination of two-state Markov
process (for the rainfall occurrence) and a mixed expo-
nential distribution (for the precipitation amount). He
found that the mixture of exponential distributions offered
a much better fit than the commonly used gamma dis-
tribution (e.g., Katz [1977]; Richardson and Wright
[1984]; and Wilks [1989]).

In the following, we propose a single-site model in
a spirit similar to Wilks [1998]. For comparison purposes,
we examine three approaches of modeling the
precipitation: a gamma distribution, a mixture of expo-
nentials, and kernel density.

Let X be a binary variable that takes a value of 1 if
it rains on day t and 0 otherwise. X is an n-th order Markov
chain if X is independent of X, for all k > n. For
simplicity, we will consider only first order Markov chains,
i.e., n = 1. Let p be the probability that day fis wet. Then
for the first order Markov chain, we have

=Pt (I = Py }Qeu (1)

where g, and g, are the one-step transition probabilities.
Conditional on X, = 1 (i.e., a wet day), the amount
of rainfall Y, can be modeled as a random variable that fol-
lows a particular distribution.” When Y’ follows a gamma
distribution, the probability density function is

./fuﬂm'ht ( }‘ ) = hzrr (('I' ) (F))

where a and b are distribution parameters which can be
estimated using the maximum likelihood method. When
Y, follows a mixture of two exponential distributions,
the probability density function and cumulative den-
sity function are
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respectively. The parameters o, B, and B, can also be
estimated using the maximum likelthood method.
Seasonalities can easily be built into the framework.
For instance, we can allow the one-step transition proba-
bility q,, to vary with the time of the year as follows:

“ . 2mi _ 2ri ~
gy =€y +; ¢, sin %1 + ¢,, COS %t (5)

where 7 is time, m 1s a small integer to be set by the user,
and ¢, ¢, and ¢, (1= 1,2, ..., m) are parameters to be
estimated.

The seasonal feature for the conditional daily pre-
cipitation amounts can be handled in a similar manner.
Specifically, the mean conditional precipitation for day ¢
can be modeled as

= - . 27 27
Y. =d, + ) [d, sin(—t)+d,, cos(—1t (
21y s Ayt d oot <] 1)
where m serves the same purpose as in (3), and d,. d

AR § b
and d, (i =1, 2, ..., m) are parameters to be estimated.

Model Calibration, Estimation,
and Comparisons

If the transition probabilities are constant, then the
maximum likelihood estimate for ¢, (¢,,) 1s the ratio of
(a) the total number of raining days where the previous
day 1s dry (wet) and (b) the number of dry (wet) days. To
estimate seasonal transition probabilities as defined in
Equation (5), we estimate the parameters using the
following linear regression model for those days where
the previous day rains:

5 . ;

1,()=¢,+ Y [é, sin(z—mt) +é,, cos(z—’"t)] +€,
= 365 365
where I(1) = 1 if day f rains and 0 otherwise. The term
£,1s the regression error. The conditional probability ¢,
can be estimated in the same way. In general, the larger
the number w1, the richer the seasonality pattern the model
can capture. However, a larger m will also reduce the
estimation accuracy. Based on our experiences, we usually
set m = 5. Exhibit 1 shows the estimated transition
probability g, and q,, for Chicago Midway Airport using
data from 1950 to 2003.
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Similarly, the mean conditional precipitation amount
can also be estimated using linear regression from Equation
(6). The result for Chicago Midway is shown in Exhibit 2.

Next, we need to estimate the conditional distribu-
tion of the precipitation amount. To dampen the season-
ality eftect, we normalize the precipitation amount Y, by
the seasonal mean '?, in Equation (6). The parameter esti-
mates for the mixed exponential distribution are presented
in Exhibit 3. (Note: precipitation is measured in inches
throughout the article.)

The parameter estimates for the gamma distribu-
tion are shown in Exhibit 4.

To see how good the fits are, we make the following
observation: Let F be the true probability distribution of
Y{/}_’F and M be the standard normal distribution; then
‘D’l(F(Y{ /Y)) will be a standard normal randomhvarialzle.
IfF is a good estimated of F, then Z = ®'(I(Y,/Y))
should be very close to a standard normal variable too.

We tested the above for both the gamma and the
mixture of two exponential distributions. For sanity
check, we also used kernel density estimate of the dis-

tribution F. As expected, the kernel density estimate
from the data set did pass the Kolmogorov-Smirnov test
for normality. On the other hand, for both the gamma
and the mixed exponential distributions, the sample Z
failed the Kolmogorov-Smirnov test. However, they are
not far from normal as shown by the first four moments
of Z in Exhibit 5. Note that the numbers outside (inside)
the parentheses are for the condition where it was dry
(wet) the day before.

A casual examination of the first four moments
suggests that the mixture of exponenuals provides a shghtly
better fit than the gamma distribution. This is consistent
with previous findings (e.g., Wilks [1998]). Kernel density
iIs in turn superior to the exponential mixture.

A Valuation Example

For precipitation derivatives, since the underlying is
not traded, the non-arbitrage option pricing theory devel-
oped in the financial markets is not applicable. Pricing is
typically a result of risk-return analysis. In other words,

ExHIiBIT 1
Seasonality in Transition Probabilities

—s— Conditional on Raining the Day Before
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Sample period: 1950-2003, Location: Chicago Midway Airport.
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EXHIBIT 2

Seasonality in Conditional Precipitation

—=— Conditional on Raining the Day Betore

= Conditional on not Rainning the Day Before

Mean Precipitation Amount (inch)

‘ 0 To 100 71%0 200 250 300 357,07 400
| Day of Year
} Sample period: 1950-2003, Location: Chicago Midway Airport.
|
~ EXHIBIT 3
Previous day’s state o B, B, mean Stdev
Dry 0.447 0.295 1.573 1.001 1.345
Rain 0.429 0.249 1.563 1.000 1.358
EXHIBIT 4
|
Previous day’s state a b Mean Stdev
Dry 0.720 1.390 1.001 1.391
Rain 0.682 1.465 1.000 1.465
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price equals the sum of expected payout plus a risk pre-
mium. Therefore, the key in valuation 1s the accurate pro-
jection of the payout distribution.

The daily precipitation model we have presented
can be used to value most of the precipitation contracts.
Since closed-form solutions are difficult to derive due
to the complexity of the model, we resort to Monte
Carlo simulations.

Let’s consider a one-inch put option on the cumu-
lative rainfall for the month of March at Chicago Midway
Airport. We simulate 10,000 daily precipitations using
each of the three first-order seasonal Markov chain models
estimated in the last section. From that we can derive the
simulated cumulative precipitation for the month of
March. Note that all the simulation paths start with a
rainy day on December 31 and end on March 31. The
snow amount is converted to rainfall equivalent.

Exhibit 6 presents the precipitation results for the
month of March from the historical simulation (of the
last 54 years) and the model-based simulation. The last
column of the table shows the value of the option (defined
by the mean value of the payoft).

From the table we can see that all three models under-

estimate the value of the put option relative to the historical
average. Most of the undervaluation 1s attributed to the
underestimation of the standard deviation of the cumulative
precipitation for the month of March. We find that this is
true for almost all the months. This bias can be corrected
by using a higher order Markov chain such as those discussed
m Dubrovsky, Buchtele, and Zalud |2004].

Consistent with our estimation results, the perfor-
mance of the exponential mixture and kernel density is
superior to that of the gamma distribution, and kernel
density is the best. This 1s not surprising in that the
kernel density approach is non-parametric and there-
fore is the most faithful to the data. Of course, every
benefit comes with a cost.

SUMMARY AND CONCLUSION

As the overall market for weather derivatives grows,
contracts on precipitation are gradually making their way
into the scene. However, compared with temperature
derivatives, the market share of precipitation derivatives
1s very minimal. The slow growth 1s not due to a lack of
mterest or demand. In fact, end-users such as farmers and

EXHIBIT 5

Distribution Mean Standard Dev. Skewness Kurtosis

Gamma -0.025 (-0.251) | 0.986 (0.985) 0.677 (0.652) 3.290 (3.180)
Mixture of Exp. | 0.0128 (0.009) | 0.963 (0.970) 0.306 (0.290) 2.861 (2.870)
Kernel Density | -0.001 (-0.003) | 0.996 (0.998) 0.017 (0.005) 3.163 (3.186)

EXHIBIT 6
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Distribution Mean Standard Dev. Skewness Kurtosis | Put Value
History 2.664 1.352 0.255 2.034 0.027
Gamma 2.574 1.154 0.683 3.603 0.016
Mixture of Exp. | 2.629 1.272 0.779 3.704 0.020
Kernel Density 2,629 1.298 0.8559 3.971 0.021

PRECIPITATION MODELING AND CONTRACT VALUATION: A FRONTIER IN WEATHER DERIVATIVES

FavLr 2004




hydroelectric power producers are very keen on precip-
itation contracts. The key culprit is the difficulty and chal-
lenge in properly modeling precipitation. When financial
institutions do not have a good handle on modeling, they
hesitate to provide quotes. So far, there isn’t any literature
on the valuation of precipitation derivatives.

The current article fills this important gap in the
literature and the industry. We propose, calibrate, and
compare three precipitation models: a gamma distribution,
a mixture of exponentials, and kernel density. Our analyses
show that the latter two models dominate the first.

Undoubtedly, many issues are still pending and fur-
ther research is required. For instance, spatial correlation
may be very important for certain contracts. If the con-
tract site and the measurement site are far away, it is imper-
ative that a proper gauge of correlation be in place.
Another issue is the modeling of extreme events: pro-
longed period of draught or sudden, severe flood.
Although most contracts concern cumulative precipita-
tions over a particular period, the same amount of cumu-
lative precipitation can have quite different consequences.
For instance, a three-inch precipitation over a month can
either occur evenly throughout or in the form of a down-
pour in 30 minutes. This will have quite different conse-
quences for a farmer. Future research needs to focus on
such important issues,

ENDNOTES

Cao and Wei gratefully acknowledge the financial support
from the Social Sciences and Humanities Research Council of
Canada. The views expressed here are solely the authors” and
are not those of the XL Weather & Energy Inc..

'See heep://www.entergykoch.eu.com/businessgroups/
SMHI_INDEX . pdf for details.

Several authors have proposed various valuation models
for temperature derivative. Examples include Brody et al. [2002],
Campbell and Diebold [2003], Cao and Wei [2000], and Cao
and Wei [2004]. The list of challenges was from Dischel [2000].

"We model precipitation as a year-round variable. Snow-
tall 1s converted to rainfall equivalent.
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