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Abstract

Volatility has been one of the most active and successful areas of research in time se-
ries econometrics and economic forecasting in recent decades. This chapter provides
a selective survey of the most important theoretical developments and empirical in-
sights to emerge from this burgeoning literature, with a distinct focus on forecasting
applications. Volatility is inherently latent, and Section 1 begins with a brief intuitive
account of various key volatility concepts. Section 2 then discusses a series of differ-
ent economic situations in which volatility plays a crucial role, ranging from the use
of volatility forecasts in portfolio allocation to density forecasting in risk management.
Sections 3–5 present a variety of alternative procedures for univariate volatility mod-
eling and forecasting based on the GARCH, stochastic volatility and realized volatility
paradigms, respectively. Section 6 extends the discussion to the multivariate problem of
forecasting conditional covariances and correlations, and Section 7 discusses volatility
forecast evaluation methods in both univariate and multivariate cases. Section 8 con-
cludes briefly.

Keywords

volatility modeling, covariance forecasting, GARCH, stochastic volatility, realized
volatility

JEL classification: C1, C5, G1
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1. Introduction

In everyday language, volatility refers to the fluctuations observed in some phenomenon
over time. Within economics, it is used slightly more formally to describe, without a
specific implied metric, the variability of the random (unforeseen) component of a time
series. More precisely, or narrowly, in financial economics, volatility is often defined
as the (instantaneous) standard deviation (or “sigma”) of the random Wiener-driven
component in a continuous-time diffusion model. Expressions such as the “implied
volatility” from option prices rely on this terminology. In this chapter, we use the term
volatility in the looser descriptive sense, characteristic of economics and econometrics,
rather than the precise notion often implied in finance. Nonetheless, much of our discus-
sion will be motivated by the need for forecasting the volatility of financial asset return
series.

Return volatility is, of course, central to financial economics. Indeed, as noted by
Campbell, Lo and MacKinlay (1997):

“ . . . what distinguishes financial economics is the central role that uncertainty
plays in both financial theory and its empirical implementation. . . Indeed in the
absence of uncertainty, the problems of financial economics reduce to exercises in
basic microeconomics” (p. 3).

This departure of finance from standard microeconomics is even more striking once one
recognizes that volatility is inherently unobserved, or latent, and evolves stochastically
through time. Not only is there nontrivial uncertainty to deal with in financial markets,
but the level of uncertainty is latent. This imbues financial decision making with com-
plications rarely contemplated within models of optimizing behavior in other areas of
economics.

Depending on the data availability as well as the intended use of the model estimates
and associated forecasts, volatility models are cast either in discrete time or continuous
time. It is clear, however, that the trading and pricing of securities in many of today’s
liquid financial asset markets is evolving in a near continuous fashion throughout the
trading day. As such, it is natural to think of the price and return series of financial assets
as arising through discrete observations from an underlying continuous-time process. It
is, however, in many situations useful – and indeed standard practice – to formulate the
underlying model directly in discrete time, and we shall consider both approaches in the
chapter. Formally, there is also no necessary contradiction between the two strategies,
as it is always, in principle, possible to deduce the distributional implications for a
price series observed only discretely from an underlying continuous-time model. At the
same time, formulation and estimation of empirically realistic continuous-time models
often presents formidable challenges. Thus, even though many of the popular discrete-
time models in current use are not formally consistent with an underlying continuous-
time price processes, they are typically much easier to deal with from an inferential
perspective, and as such, discrete-time models and forecasting procedures remain the
method of choice in most practical applications.
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1.1. Basic notation and notions of volatility

We first introduce some notation that will allow us to formalize the discussion of the
different models and volatility concepts considered throughout the chapter. As noted
above, although it is often natural to think about the process being forecasted as evolving
in continuous time, many of the key developments in volatility forecasting have been
explicitly formulated in terms of models for discretely sampled observations. In the
univariate case, with observations available at equally spaced discrete points in time,
we shall refer to such a process as

(1.1)yt ≡ y(t), t = 1, 2, . . . ,

where y(t) in turn may be thought of as the underlying continuously evolving process.
We shall assume throughout that the conditional second moments of the yt process exist,
and refer to the corresponding conditional mean and variance as

(1.2)µt |t−1 = E[yt | Ft−1],
and

(1.3)σ 2
t |t−1 = Var[yt | Ft−1] = E

[
(yt − µt |t−1)

2
∣∣ Ft−1

]
,

respectively, where the information set, Ft−1, is assumed to reflect all relevant informa-
tion through time t − 1. Just as the conditional mean may differ from the unconditional
mean by effectively incorporating the most recent information into the one-step-ahead
forecasts, µt |t−1 �= E(yt ), so will the conditional variance in many applications in
macroeconomics and finance, σ 2

t |t−1 �= Var(yt ). This difference between conditional
and unconditional moments is, of course, what underlies the success of time series
based forecasting procedures more generally. For notational simplicity we will focus
our discussion on the univariate case, but many of the same ideas readily carry over to
the multivariate case. In the case of vector processes, discussed in detail in Section 6, we
shall use the notation Yt , with the corresponding vector of conditional means denoted
by Mt |t−1, and the conditional covariance matrix denote by Ωt |t−1.

As previously noted, most of the important developments and applications in volatil-
ity modeling and forecasting have come within financial economics. Thus, to help fix
ideas, we focus on the case of return volatility modeling and forecasting in the remainder
of this section. To facilitate subsequent discussions, it will sometimes prove convenient
to refer to the corresponding “price” and “return” processes by the letters p and r , re-
spectively. Specifically, let p(t) denote the logarithmic price of an asset. The return over
the discrete interval [t − h, t], h > 0, is then given by

(1.4)r(t, h) = p(t) − p(t − h).

When measuring the returns over one time unit, h = 1, indicating, say, daily returns,
we will generally drop the second indicator, so that

(1.5)r(t) ≡ r(t, 1) = p(t) − p(t − 1).
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Also, for discrete-time models and procedures, we shall follow the convention set out
above, indicating the timing of the returns by subscripts in lieu of parentheses,

(1.6)rt = pt − pt−1.

Similarly, we shall refer to the multivariate case involving vectors of returns by the
upper case letter, Rt .

Consider the discretely sampled return process, rt . This one-period return is readily
decomposed into an expected conditional mean return and an innovation, where the
latter may be expressed as a standardized white noise process scaled by the time-varying
conditional volatility. Specifically, using the notation in Equations (1.2) and (1.3),

(1.7)rt = µt |t−1 + εt = µt |t−1 + σt |t−1zt ,

where zt denotes a mean zero, variance one, serially uncorrelated disturbance (white
noise) process. This is the decomposition and volatility concept underlying the popu-
lar, and empirically highly successful, ARCH and GARCH type models discussed in
Section 3. One reason that this approach is very convenient and tractable is that – con-
ditional on the null hypothesis that all relevant information is observed and the model
correctly specified – the volatility is known, or predetermined, as of time t − 1.

The assumption that all relevant information is observed and used in the formation of
conditional expectations in accordance with the true model is obviously strong, but has
powerful and very convenient implications. In contrast, if some relevant information is
not directly observable, then it is only possible to exploit a genuine subset of the full
information set, say �t−1 ⊂ Ft−1. Under this scenario, the “true” conditional variance
will be unobservable, even under correct model specification, and the volatility process
becomes genuinely latent,

E
[(

rt − E[rt | �t−1]
)2 ∣∣ �t−1

] �= σ 2
t |t−1 ≡ E

[
ε2
t

∣∣ Ft−1
]
.

Treating the volatility process as latent effectively transforms the volatility estimation
problem into a filtering problem in which the “true” volatility cannot be determined
exactly, but only extracted with some degree of error. This general line of reasoning is
relevant for our discussion of stochastic volatility models in Section 4, and for the rela-
tionship between continuous and discrete-time modeling and forecasting procedures.

For now, however, we proceed under the convenient assumption that we are deal-
ing with correctly specified models and the associated full information sets, so that
the conditional first and second moments are directly observable and well specified.
In this situation, the one-period-ahead volatility defined in (1.3) provides an unbiased
estimate of the subsequent squared return innovation. Consequently, model specifica-
tion and forecast evaluation tests can be constructed by comparing the realization of the
squared return innovations to the corresponding one-step-ahead forecasts,

(1.8)ε2
t = σ 2

t |t−1z
2
t = σ 2

t |t−1 + σ 2
t |t−1

(
z2
t − 1

)
.



hesfor v.2006/01/10 Prn:18/01/2006; 16:35 F:hesfor1015.tex; VTEX/Judita p. 7
aid: 1015 pii: S1574-0706(05)01015-3 docsubty: REV

Ch. 15: Volatility and Correlation Forecasting 783

1 1

2 2

3 3

4 4

5 5

6 6

7 7

8 8

9 9

10 10

11 11

12 12

13 13

14 14

15 15

16 16

17 17

18 18

19 19

20 20

21 21

22 22

23 23

24 24

25 25

26 26

27 27

28 28

29 29

30 30

31 31

32 32

33 33

34 34

35 35

36 36

37 37

38 38

39 39

40 40

41 41

42 42

43 43

The second term on the right-hand side has mean zero, confirming the unbiasedness of
the conditional variance. However, there is typically a large amount of noise in the one-
period squared return innovations relative to the underlying volatility, as manifest by a
large idiosyncratic error component governed by the variance of z2

t . In fact, for daily or
weekly return data, this variance term is an order of magnitude larger than the period-
per-period variation in the volatility process. Hence, even if the conditional variance can
be seen as the proper forecasts of the corresponding “realized volatility”, as given by
the squared return innovation, the latter provides a poor ex-post indicator of the actual
volatility over the period, and would consequently not provide a very reliable way of
judging the quality of the forecasts. We return to this point below.

Before doing so, however, it is useful to think of the returns as arising from an un-
derlying continuous-time process. In particular, suppose that this underlying model in-
volves a continuous sample path for the (logarithmic) price process. The return process
may then, under general assumptions, be written in standard stochastic differential equa-
tion (sde) form as

(1.9)dp(t) = µ(t) dt + σ(t) dW(t), t � 0,

where µ(t) denotes the drift, σ(t) refers to the point-in-time or spot volatility, and W(t)

denotes a standard Brownian motion. We will be more specific regarding the additional
properties of these processes later on in the chapter. Intuitively, over (infinitesimal)
small time intervals, �,

r(t,�) ≡ p(t) − p(t − �) � µ(t − �) · � + σ(t − �)�W(t),

where �W(t) ≡ W(t) − W(t − �) ∼ N(0,�). Of course, for � = 1, and constant
drift, µ(τ) ≡ µt |t−1, and volatility, σ(τ) ≡ σt |t−1, for t − 1 < τ � t , this reduces
to the discrete-time return decomposition in (1.7) with the additional assumption that
zt is i.i.d. N(0, 1). Importantly, however, the drift, µ(t), and instantaneous volatility,
σ(t), for the continuous-time model in (1.9) need not be constant over the [t −1, t] time
interval, resulting in the general expression for the one-period return,

(1.10)r(t) = p(t) − p(t − 1) =
∫ t

t−1
µ(s) ds +

∫ t

t−1
σ(s) dW(s).

The semblance between this representation and the previous one-period return for the
discrete-time model in (1.7) is clear. The conditional mean and variance processes in
the discrete formulation are replaced by the corresponding integrated (averaged) real-
izations of the (potentially stochastically time-varying) mean and variance process over
the following period, with the return innovations driven by the continuously evolving
standard Brownian motion. For full generality, the above continuous-time model can be
extended with a jump process allowing for discontinuities in the price path, as discussed
further in Section 4.

Intuitively, the volatility for the continuous-time process in (1.9) over [t −1, t] is inti-
mately related to the evolution of the diffusive coefficient, σ(t), which is also known as
the spot volatility. In fact, given the i.i.d. nature of the return innovations governed by
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the Brownian motion process, the return variation should be related to the cumulative
(integrated) spot variance. It is, indeed, possible to formalize this intuition: the con-
ditional return variation is linked closely and – under certain conditions in an ex-post
sense – equal to the so-called integrated variance (volatility),

(1.11)IV(t) ≡
∫ t

t−1
σ 2(s) ds.

We provide more in-depth discussion and justification for this integrated volatility mea-
sure and its relationship to the conditional return distribution in Section 4. It is, however,
straightforward to motivate the association through the approximate discrete return
process, r(t,�), introduced above. If the variation in the drift is an order of magni-
tude less than the variation in the volatility over the [t − 1, t] time interval – which
holds empirically over daily or weekly horizons and is consistent with a no-arbitrage
condition – it follows, for small (infinitesimal) time intervals, �,

Var
(
r(t)

∣∣ Ft−1
) � E

[ 1/�∑
j=1

σ 2(t − j/�) · �

∣∣∣ Ft−1

]
� E

[
IV(t)

∣∣ Ft−1
]
.

Hence, the integrated variance measure corresponds closely to the conditional variance,
σ 2

t |t−1, for discretely sampled returns. It represents the realized volatility over the same
one-period-ahead forecast horizon, and it simply reflects the cumulative impact of the
spot volatility process over the return horizon. In other words, integrated variances are
ex-post realizations that are directly comparable to ex-ante volatility forecasts. More-
over, in contrast to the one-period-ahead squared return innovations, which, as discussed
in the context of (1.8), are plagued by large idiosyncratic errors, the integrated volatil-
ity measure is not distorted by error. As such, it serves as an ideal theoretical ex-post
benchmark for assessing the quality of ex-ante volatility forecasts.

To more clearly illustrate these differences between the various volatility concepts,
Figure 1 graphs the simulations from a continuous-time stochastic volatility process.
The simulated model is designed to induce temporal dependencies consistent with the
popular, and empirically successful, discrete-time GARCH(1, 1) model discussed in
Section 3.1 The top left panel displays sample path realization of the spot volatility or
variance, σ 2(t), over the 2500 “days” in the simulated sample. The top panel on the right
shows the corresponding “daily” integrated volatility or variance, IV(t). The two bottom
panels show the “optimal” one-step-ahead discrete-time GARCH(1, 1) forecasts, σ 2

t |t−1,

along with the “daily” squared returns, r2
t . A number of features in these displays are

of interest. First, it is clear that even though the “daily” squared returns generally track

1 The simulated continuous-time GARCH diffusion shown in Figure 1 is formally defined by dp(t) =
σ(t) dW1(t) and dσ 2(t) = 0.035[0.636−σ 2(t)] dt +0.144σ 2(t) dW2(t), where W1(t) and W2(t) denote two
independent Brownian motions. The same model has previously been analyzed in Andersen and Bollerslev
(1998a), Andersen, Bollerslev and Meddahi (2004, 2005), among others.
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Figure 1. Different volatility concepts. We show the “daily” spot volatility, σ 2(t), the integrated volatility,
IV(t), the discrete-time GARCH based volatility forecasts, σ 2

t |t−1, and the corresponding squared returns, r2
t ,

from a simulated continuous-time GARCH diffusion.

the overall level of the volatility in the first two panels, as an unbiased measure should,
it is an extremely noisy proxy. Hence, a naive assessment of the quality of the GARCH
based forecasts in the third panel based on a comparison with the ex-post squared returns
in panel four invariable will suggest very poor forecast quality, despite the fact that by
construction the GARCH based procedure is the “optimal” discrete-time forecast. We
provide a much more detailed discussion of this issue in Section 7 below. Second, the
integrated volatility provides a mildly smoothed version of the spot volatility process.
Since the simulated series has a very persistent volatility component the differences are
minor, but still readily identifiable. Third, the “optimal” discrete-time GARCH fore-
casts largely appear as smoothed versions of the spot and integrated volatility series.
This is natural as forecasts, by construction, should be less variable than the corre-
sponding ex-post realizations. Fourth, it is also transparent, however, that the GARCH
based forecasts fail to perfectly capture the nature of the integrated volatility series. The
largest spike in volatility (around the 700–750 “day” marks) is systematically under-



hesfor v.2006/01/10 Prn:18/01/2006; 16:35 F:hesfor1015.tex; VTEX/Judita p. 10
aid: 1015 pii: S1574-0706(05)01015-3 docsubty: REV

786 T.G. Andersen et al.

1 1

2 2

3 3

4 4

5 5

6 6

7 7

8 8

9 9

10 10

11 11

12 12

13 13

14 14

15 15

16 16

17 17

18 18

19 19

20 20

21 21

22 22

23 23

24 24

25 25

26 26

27 27

28 28

29 29

30 30

31 31

32 32

33 33

34 34

35 35

36 36

37 37

38 38

39 39

40 40

41 41

42 42

43 43

estimated by the GARCH forecasts while the last spike (around the 2300–2350 “day”
marks) is exaggerated relative to the actual realizations. This reflects the fact that the
volatility is not constant over the “day”, and as such the (realized) integrated volatility
is not equal to the (optimal) forecast from the discrete-time GARCH model which only
utilizes the past “daily” return observations. Instead, there is a genuine random com-
ponent to the volatility process as it evolves stochastically over the “trading day”. As
a result, the “daily” return observations do not convey all relevant information and the
GARCH model simply cannot produce fully efficient forecasts compared to what is the-
oretically possible given higher frequency “intraday” data. At the same time, in practice
it is not feasible to produce exact real-time measures of the integrated, let alone the spot,
volatility, as the processes are latent and we only have a limited and discretely sampled
set of return observations available, even for the most liquid asset markets. As such, an
important theme addressed in more detail in Sections 4 and 5 below involves the con-
struction of practical measures of ex-post realized volatility that mimic the properties of
the integrated volatility series.

1.2. Final introductory remarks

This section has introduced some of the basic notation used in our subsequent discus-
sion of the various volatility forecasting procedures and evaluation methods. Our initial
account also emphasizes a few conceptual features and practical considerations. First,
volatility forecasts and measurements are generally restricted to (nontrivial) discrete-
time intervals, even if the underlying process may be thought of as evolving in con-
tinuous time. Second, differences between ARCH and stochastic volatility models may
be seen as direct consequences of assumptions about the observable information set.
Third, it is important to recognize the distinction between ex-ante forecasts and ex-post
realizations. Only under simplifying – and unrealistic – assumptions are the two iden-
tical. Fourth, standard ex-post measurements of realized volatility are often hampered
by large idiosyncratic components. The ideal measure is instead, in cases of general in-
terest, given by the so-called integrated volatility. The relationships among the various
concepts are clearly illustrated by the simulations in Figure 1.

The rest of the chapter unfolds as follows. Section 2 provides an initial motivating
discussion of several practical uses of volatility forecasts. Sections 3–5 present a variety
of alternative procedures for univariate volatility forecasting based on the GARCH,
stochastic volatility and realized volatility paradigms, respectively. Section 6 extends
the discussion to the multivariate problem of forecasting conditional covariances and
correlations, and Section 7 discusses practical volatility forecast evaluation techniques.
Section 8 concludes briefly.

2. Uses of volatility forecasts

This section surveys how volatility forecasts are used in practical applications along
with applications in the academic literature. While the emphasis is on financial appli-
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cations the discussion is kept at a general level. Thus, we do not yet assume a specific
volatility forecasting model. The issues involved in specifying and estimating particular
volatility forecasting models will be discussed in subsequent sections.

We will first discuss a number of general statistical forecasting applications where
volatility dynamics are important. Then we will go into some detail on various applica-
tions in finance. Lastly we will briefly mention some applications in macroeconomics
and in other disciplines.

2.1. Generic forecasting applications

For concreteness, assume that the future realization of the variable of interest can be
written as a decomposition similar to the one already developed in Equation (1.7),

(2.1)yt+1 = µt+1|t + σt+1|t zt+1, zt+1 ∼ i.i.d. F,

where {yt+1} denotes a discrete-time real-valued univariate stochastic process, and F

refers to the distribution of the zero-mean, unit-variance innovation, zt+1. This represen-
tation is not entirely general as there could be higher-order conditional dependence in
the innovations. Such higher-moment dynamics would complicate some of the results,
but the qualitative insights would remain the same. Thus, to facilitate the presentation
we continue our discussion of the different forecast usages under slightly less than full
generality.

2.1.1. Point forecasting

We begin by defining the forecast loss function which maps the ex-ante forecasts ŷt+1|t
and the ex-post realization yt+1 into a loss value L(yt+1, ŷt+1|t ), which by assumption
increases with the discrepancy between the realization and the forecast. The exact form
of the loss function depends, of course, directly on the use of the forecast. However, in
many situations the loss function may reasonably be written in the form of an additive
error, et+1 ≡ yt+1 − ŷt+1, as the argument, so that L(yt+1, ŷt+1|t ) = L(et+1). We will
refer to this as the forecast error loss function.

In particular, under the symmetric quadratic forecast error loss function, which is
implicitly used in many practical applications, the optimal point forecast is simply the
conditional mean of the process, regardless of the shape of the conditional distribution.
That is,

ŷt+1|t ≡ Arg min
ŷ

E
[
(yt+1 − ŷ)2

∣∣ Ft

] = µt+1|t .

Volatility forecasting is therefore irrelevant for calculating the optimal point forecast,
unless the conditional mean depends directly on the conditional volatility. However,
this exception is often the rule in finance, where the expected return generally involves
some function of the volatility of market wide risk factors. Of course, as discussed
further below, even if the conditional mean does not explicitly depend on the conditional
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volatility, volatility dynamics are still relevant for assessing the uncertainty of the point
forecasts.

In general, when allowing for asymmetric loss functions, the volatility forecast will
be a key part of the optimal forecast. Consider for example the asymmetric linear loss
function,

(2.2)L(et+1) = a|et+1|I(et+1 > 0) + b|et+1|I(et+1 � 0),

where a, b > 0, and I(·) denotes the indicator function equal to zero or one depending
on the validity of its argument. In this case positive and negative forecast errors have
different weights (a and b, respectively) and thus different losses. Now the optimal
forecast can be shown to be

(2.3)ŷt+1|t = µt+1|t + σt+1|tF−1(a/(a + b)
)
,

which obviously depends on the relative size of a and b. Importantly, the volatility
plays a key role even in the absence of conditional mean dynamics. Only if F−1(a/

(a + b)) = 0 does the optimal forecast equal the conditional mean.
This example is part of a general set of results in Granger (1969) who shows that

if the conditional distribution is symmetric (so that F−1(1/2) = 0) and if the forecast
error loss function is also symmetric (so that a/(a + b) = 1/2) but not necessarily
quadratic, then the conditional mean is the optimal point forecast.

2.1.2. Interval forecasting

Constructing accurate interval forecasts around the conditional mean forecast for in-
flation was a leading application in Engle’s (1982) seminal ARCH paper. An interval
forecast consists of an upper and lower limit. One version of the interval forecast puts
p/2 probability mass below and above the lower and upper limit, respectively. The in-
terval forecast can then be written as

(2.4)ŷt+1|t = {
µt+1|t + σt+1|tF−1(p/2), µt+1|t + σt+1|tF−1(1 − p/2)

}
.

Notice that the volatility forecast plays a key role again. Note also the direct link be-
tween the interval forecast and the optimal point forecast for the asymmetric linear loss
function in (2.3).

2.1.3. Probability forecasting including sign forecasting

A forecaster may care about the variable of interest falling above or below a certain
threshold value. As an example, consider a portfolio manager who might be interested
in forecasting whether the return on a stock index will be larger than the known risk-
free bond return. Another example might be a rating agency forecasting if the value of
a firm’s assets will end up above or below the value of its liabilities and thus trigger
bankruptcy. Yet another example would be a central bank forecasting the probability of



hesfor v.2006/01/10 Prn:18/01/2006; 16:35 F:hesfor1015.tex; VTEX/Judita p. 13
aid: 1015 pii: S1574-0706(05)01015-3 docsubty: REV

Ch. 15: Volatility and Correlation Forecasting 789

1 1

2 2

3 3

4 4

5 5

6 6

7 7

8 8

9 9

10 10

11 11

12 12

13 13

14 14

15 15

16 16

17 17

18 18

19 19

20 20

21 21

22 22

23 23

24 24

25 25

26 26

27 27

28 28

29 29

30 30

31 31

32 32

33 33

34 34

35 35

36 36

37 37

38 38

39 39

40 40

41 41

42 42

43 43

inflation – or perhaps an exchange rate – falling outside its target band. In general terms,
if the concern is about a variable yt+1 ending up above some fixed (known) threshold, c,
the loss function may be expressed as

(2.5)L(yt+1, ŷt+1|t ) = (
I(yt+1 > c) − ŷt+1|t

)2
.

Minimizing the expected loss by setting the first derivative equal to zero then readily
yields

ŷt+1|t = E
[
I(yt+1 > c)

∣∣ Ft

] = P(yt+1 > c | Ft )

(2.6)= 1 − F
(
(c − µt+1|t )/σt+1|t

)
.

Thus, volatility dynamics are immediately important for these types of probability fore-
casts, even if the conditional mean is constant and not equal to c; i.e., c − µt+1|t �= 0.

The important special case where c = 0 is sometimes referred to as sign forecasting.
In this situation,

(2.7)ŷt+1|t = 1 − F(−µt+1|t /σt+1|t ).
Hence, the volatility dynamics will affect the forecast as long as the conditional mean is
not zero, or the conditional mean is not directly proportional to the standard deviation.

2.1.4. Density forecasting

In many applications the entire conditional density of the variable in question is of
interest. That is, the forecast takes the form of a probability distribution function

(2.8)ŷt+1|t = ft+1|t (y) ≡ f (yt+1 = y | µt+1|t , σt+1|t ) = f (yt+1 = y | Ft ).

Of course, the probability density function may itself be time-varying, for example, due
to time-varying conditional skewness or kurtosis, but as noted earlier for simplicity we
rule out these higher order effects here.

Figure 2 shows two stylized density forecasts corresponding to a high and low volatil-
ity day, respectively. Notice that the mean outcome is identical (and positive) on the two
days. However, on the high volatility day the occurrence of a large negative (or large
positive) outcome is more likely. Notice also that the probability of a positive outcome
(of any size) is smaller on the high volatility day than on the low volatility day. Thus,
as discussed in the preceding sections, provided that the level of the volatility is fore-
castable, the figure indicates some degree of sign predictability, despite the constant
mean.

2.2. Financial applications

The trade-off between risk and expected return, where risk is associated with some
notion of price volatility, constitute one of the key concepts in modern finance. As such,
measuring and forecasting volatility is arguably among the most important pursuits in
empirical asset pricing finance and risk management.
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Figure 2. Density forecasts on high volatility and low volatility days. The figure shows two hypothetical
return distributions for a low volatility (solid line) and high volatility (dashed line) day. The areas to the left

of the vertical line represent the probability of a negative return.

2.2.1. Risk management: Value-at-Risk (VaR) and Expected Shortfall (ES)

Consider a portfolio of returns formed from a vector of N risky assets, Rt+1, with
corresponding vector of portfolio weights, Wt . The portfolio return is defined as

(2.9)rw,t+1 =
N∑

i=1

wi,t ri,t+1 ≡ W ′
t Rt+1,

where the w subscript refers to the fact that the portfolio distribution depends on the
actual portfolio weights.

Financial risk managers often report the riskiness of the portfolio using the concept
of Value-at-Risk (VaR) which is simply the quantile of the conditional portfolio distrib-
ution. If we model the portfolio returns directly as a univariate process,

(2.10)rw,t+1 = µw,t+1|t + σw,t+1|t zw,t+1, zw,t+1 ∼ i.i.d. Fw,

then the VaR is simply

(2.11)VaRp

t+1|t = µw,t+1|t + σw,t+1|tF−1
w (p).

This, of course, corresponds directly to the lower part of the interval forecast previously
defined in Equation (2.4).

Figure 3 shows a typical simulated daily portfolio return time series with dynamic
volatility (solid line). The short-dashed line, which tracks the lower range of the return,
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Figure 3. Simulated portfolio returns with dynamic volatility and historical simulation VaRs. The solid
line shows a time series of typical simulated daily portfolio returns. The short-dashed line depicts the true
one-day-ahead, 1% VaR. The long-dashed line gives the 1% VaR based on the so-called Historical Simulation

(HS) technique and a 500-day moving window.

depicts the true 1-day, 1% VaR corresponding to the simulated portfolio return. No-
tice that the true VaR varies considerably over time and increases in magnitude during
bursts in the portfolio volatility. The relatively sluggish long-dashed line calculates the
VaR using the so-called Historical Simulation (HS) technique. This is a very popular
approach in practice. Rather than explicitly modeling the volatility dynamics, the HS
technique calculates the VaR as an empirical quantile based on a moving window of
the most recent 250 or 500 days. The HS VaR in Figure 3 is calculated using a 500-day
window. Notice how this HS VaR reacts very sluggishly to changes in the volatility,
and generally is too large (in absolute value) when the volatility is low, and more im-
portantly too small (in absolute value) when the volatility is high. Historical simulation
thus underestimates the risk when the risk is high. This is clearly not a prudent risk
management practice. As such, these systematic errors in the HS VaR clearly highlight
the value of explicitly modeling volatility dynamics in financial risk management.

The VaR depicted in Figure 3 is a very popular risk-reporting measure in practice,
but it obviously only depicts a very specific aspect of the risk; that is with probability p

the loss will be at least the VaR. Unfortunately, the VaR measure says nothing about the
expected magnitude of the loss on the days the VaR is breached.

Alternatively, the Expected Shortfall (ES) risk measure was designed to provide ad-
ditional information about the tail of the distribution. It is defined as the expected loss
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on the days when losses are larger than the VaR. Specifically,

(2.12)ESp

t+1|t ≡ E
[
rw,t+1

∣∣ rw,t+1 < VaRp

t+1|t
] = µw,t+1|t + σw,t+1|tEFp

w.

Again, it is possible to show that if zw,t is i.i.d., the multiplicative factor, EFp
w, is

constant and depends only on the shape of the distribution, Fw. Thus, the volatility
dynamics plays a similar role in the ES risk measure as in the VaR in Equation (2.11).

The analysis above assumed a univariate portfolio return process specified as a func-
tion of the portfolio weights at any given time. Such an approach is useful for risk
measurement but is not helpful, for example, for calculating optimal portfolio weights.
If active risk management is warranted, say maximizing expected returns subject to a
VaR constraint, then a multivariate model is needed. If we assume that each return is
modeled separately then the vector of returns can be written as

(2.13)Rt+1 = Mt+1|t + Ω
1/2
t+1|tZt+1, Zt+1 ∼ i.i.d. F,

where Mt+1|t and Ωt+1|t denote the vector of conditional mean returns and the covari-
ance matrix for the returns, respectively, and all of the elements in the vector random
process, Zt , are independent with mean zero and variance one. Consequently, the mean
and the variance of the portfolio returns, W ′

t Rt+1, may be expressed as

(2.14)µw,t+1|t = W ′
t Mt+1|t , σ 2

w,t+1|t = W ′
t Ωt+1|tWt .

In the case of the normal distribution, Zt+1 ∼ N(0, I ), linear combinations of multivari-
ate normal variables are themselves normally distributed, so that rw,t+1 ≡ W ′

t Rt+1 ∼
N(µw,t+1|t , σ 2

w,t+1|t ), but this aggregation property does not hold in general for other
multivariate distributions. Hence, except in special cases, such as the multivariate nor-
mal, the VaR and ES measures are not known in closed form, and will have to be
calculated using Monte Carlo simulation.

2.2.2. Covariance risk: Time-varying betas and conditional Sharpe ratios

The above discussion has focused on measuring the risk of a portfolio from purely sta-
tistical considerations. We now turn to a discussion of the more fundamental economic
issue of the expected return on an asset given its risk profile. Assuming the absence of
arbitrage opportunities a fundamental theorem in finance then proves the existence of a
stochastic discount factor, say SDFt+1, which can be used to price any asset, say I , via
the conditional expectation

(2.15)E
[
SDFt+1(1 + ri,t+1)

∣∣ Ft

] = 1.

In particular, the return on the risk free asset, which pays one dollar for sure the next
period, must satisfy 1 + rf,t = E[SDFt+1 | Ft ]−1. It follows also directly from (2.15)
that the expected excess return on any risky asset must be proportional to its covariance
with the stochastic discount factor,

(2.16)E[ri,t+1 − rf,t | Ft ] = −(1 + rf,t ) Cov(SDFt+1, ri,t+1 | Ft ).
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Now, assuming that the stochastic discount factor is linearly related to the market return,

(2.17)SDFt+1 = at − bt (1 + rM,t+1),

it follows from E[SDFt+1(1+ rM,t+1) | Ft ] = 1 and 1+ rf,t = E[SDFt+1 | Ft ]−1 that

(2.18)
at = (1 + rf,t )

−1 + btµM,t+1|t ,

bt = (1 + rf,t )
−1(µM,t+1|t − rf,t )/σ

2
M,t+1|t ,

where µM,t+1|t ≡ E[1 + rM,t+1 | Ft ] and σ 2
M,t+1|t ≡ Var[rM,t+1 | Ft ]. Notice that the

dynamics in the moments of the market return (along with any dynamics in the risk-free
rate) render the coefficients in the SDF time varying. Also, in parallel to the classic one-
period CAPM model of Markowitz (1952) and Sharpe (1964), the conditional expected
excess returns must satisfy the relation,

(2.19)E[ri,t+1 − rf,t | Ft ] = βi,t (µM,t+1|t − rf,t ),

where the conditional “beta” is defined by βi,t ≡ Cov(rM,t+1, ri,t+1 | Ft )/σ
2
M,t+1|t .

Moreover, the expected risk adjusted return, also know as the conditional Sharpe ratio,
equals

SRt ≡ E[ri,t+1 − rf,t | Ft ]/ Var(ri,t+1 | Ft )
1/2

(2.20)= Corr(rM,t+1, ri,t+1 | Ft )/σM,t+1|t .

The simple asset pricing framework above illustrates how the expected return (raw and
risk adjusted) on various assets will be driven by the mean and volatility dynamics of the
overall market return as well as the dynamics of the covariance between the market and
the individual assets. Covariance forecasting is thus at least as important as volatility
forecasting in the context of financial asset pricing, and we discuss each in subsequent
sections.

2.2.3. Asset allocation with time-varying covariances

The above CAPM model imposes a very restrictive structure on the covariance matrix
of asset returns. In this section we instead assume a generic dynamic covariance matrix
and study the optimization problem of an investor who constructs a portfolio of N risky
assets by minimizing the portfolio variance subject to achieving a certain target portfolio
return, µp.

Formally, the investor chooses a vector of portfolio weights, Wt , by solving the
quadratic programming problem

(2.21)min W ′
t Ωt+1|tWt s.t. W ′

t Mt+1|t = µp.
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From the corresponding first order conditions, the resulting portfolio weights for the
risky assets satisfy

(2.22)W ∗
t = Ω−1

t+1|tMt+1|t
M ′

t+1|tΩ
−1
t+1|tMt+1|t

µp,

with the optimal portfolio weight for the risk-free asset given by

(2.23)w∗
f,t = 1 −

N∑
i=1

w∗
i,t .

Moreover, from (2.21) the portfolio Sharpe ratio equals

(2.24)SRt = µp

/√
W ∗ ′

t Ωt+1|tW ∗
t .

Just as in the CAPM pricing model discussed above, both volatility and covariance
dynamics are clearly important for asset allocation. Notice also that even if we rule
out exploitable conditional mean dynamics, the optimal portfolio weights would still be
time-varying from the second moment dynamics alone.

2.2.4. Option valuation with dynamic volatility

The above tools are useful for the analysis of primitive securities with linear payoffs
such as stocks, bonds, foreign exchange and futures contracts. Consider now instead a
European call option which gives the owner the right but not the obligation to buy the
underlying asset (say a stock or currency) on a future date, T , at a strike price, K . The
option to exercise creates a nonlinear payoff which in turn requires a special set of tools
for pricing and risk management.

In the Black–Scholes–Merton (BSM) option pricing model the returns are assumed
to be normally distributed with constant volatility, σ , along with the possibility of (cost-
less) continuous trading and a constant risk free rate, rf . In this situation, the call price
of an option equals

(2.25)ct = BSM
(
st , σ

2,K, rf , T
) = stΦ(d) − K exp(−rf T )Φ

(
d − σ

√
T

)
,

where st denotes the current price of the asset, d = (ln(st /K)+T (rf +σ 2/2))/(σ
√

T ),
and Φ(·) refers to the cumulative normal distribution function.

Meanwhile, the constant volatility assumption in BSM causes systematic pricing er-
rors when comparing the theoretical prices with actual market prices. One manifestation
of this is the famous volatility-smiles which indicate systematic underpricing by the
BSM model for in- or out-of-the-money options. The direction of these deviations,
however, are readily explained by the presence of stochastic volatility, which creates
fatter tails than the normal distribution, in turn increasing the value of in- and out-of-
the-money options relative to the constant-volatility BSM model.
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In response to this, Hull and White (1987) explicitly allow for an independent sto-
chastic volatility factor in the process for the underlying asset return. Assuming that this
additional volatility risk factor is not priced in equilibrium, the Hull–White call option
price simply equals the expected BSM price, where the expectation is taken over the
future integrated volatility. More specifically, defining the integrated volatility as the
integral of the spot volatility during the remaining life of the option,

IV(T , t) =
∫ T

t

σ 2(u) du,

where IV(T , t) = IV(T )+IV(T −1)+· · ·+IV(t+1) generalizes the integrated variance
concept from Equation (1.11) to a multi-period horizon in straightforward fashion. The
Hull–White option valuation formula may then be succinctly written as

(2.26)Ct = E
[
BSM

(
IV(T , t)

) ∣∣ Ft

]
.

In discrete time, the integrated volatility may be approximated by the sum of the corre-
sponding one-period conditional variances,

IV(T , t) ≈
T −1∑
τ=t

σ 2
τ+1|τ .

Several so-called realized volatility measures have also recently been proposed in the
literature for (ex-post) approximating the integrated volatility. We will return to a much
more detailed discussion of these measures in Sections 4 and 5 below.

Another related complication that arises in the pricing of equity options, in particular,
stems from the apparent negative correlation between the returns and the volatility. This
so-called leverage effect, as discussed further below, induces negative skewness in the
return distribution and causes systematic asymmetric pricing errors in the BSM model.

Assuming a mean-reverting stochastic volatility process, Heston (1993) first devel-
oped an option pricing formula where the innovations to the returns and the volatility
are correlated, and where the volatility risk is priced by the market. In contrast to the
BSM setting, where an option can be hedged using a dynamically rebalanced stock
and bond portfolio alone, in the Heston model an additional position must be taken in
another option in order to hedge the volatility risk.

Relying on Heston’s formulation, Fouque, Papanicolaou and Sircar (2000) show that
the price may conveniently be expressed as

(2.27)Ct = E
[
BSM

(
ξt,T st ,

(
1 − ρ2) IV(T , t)

) ∣∣ Ft

]
,

where ρ refers to the (instantaneous) correlation between the returns and the volatility,
and ξt,T denotes a stochastic scaling factor determined by the volatility risk premium,
with the property that E[ξt,T | Ft ] = 1. Importantly, however, the integrated volatility
remains the leading term as in the Hull–White valuation formula.
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2.3. Volatility forecasting in fields outside finance

Although volatility modeling and forecasting has proved to be extremely useful in fi-
nance, the motivation behind Engle’s (1982) original ARCH model was to provide a
tool for measuring the dynamics of inflation uncertainty. Tools for modeling volatility
dynamics have been applied in many other areas of economics and indeed in other areas
of the social sciences, the natural sciences and even medicine. In the following we list
a few recent papers in various fields showcasing the breath of current applications of
volatility modeling and forecasting. It is by no means an exhaustive list but these papers
can be consulted for further references.

Related to Engle’s original work, the modeling of inflation uncertainty and its rela-
tionship with labor market variables has recently been studied by Rich and Tracy (2004).
They corroborate earlier findings of an inverse relationship between desired labor con-
tract durations and the level of inflation uncertainty. Analyzing the inflation and output
forecasts from the Survey of Professional Forecasters, Giordani and Soderlind (2003)
find that while each forecaster on average tends to underestimate uncertainty, the dis-
agreement between forecasters provides a reasonable proxy for inflation and output
uncertainty. The measurement of uncertainty also plays a crucial role in many micro-
economic models. Meghir and Pistaferri (2004), for instance, estimate the conditional
variance of income shocks at the microlevel and find strong evidence of temporal vari-
ance dynamics.

Lastrapes (1989) first analyzed the relationship between exchange rate volatility and
U.S. monetary policy. In a more recent study, Ruge-Murcia (2004) developed a model of
a central bank with asymmetric preferences for unemployment above versus below the
natural rate. The model implies an inflation bias proportional to the conditional variance
of unemployment. Empirically, the conditional variance of unemployment is found to
be positively related to the rate of inflation. In another central banking application, Tse
and Yip (2003) use volatility models to study the effect on changes in the Hong Kong
currency board on interbank market rates.

Volatility modeling and forecasting methods have also found several interesting uses
in agricultural economics. Ramirez and Fadiga (2003), for instance, find evidence of
asymmetric volatility patterns in U.S. soybean, sorghum and wheat prices. Building on
the earlier volatility spill-over models used in analyzing international financial market
linkages in the papers by Engle, Ito and Lin (1990) and King, Sentana and Wadhwani
(1994), Buguk, Hudson and Hanson (2003) have recently used similar methods in doc-
umenting strong price volatility spillovers in the supply-chain of fish production. The
volatility in feeding material prices (e.g., soybeans) affects the volatility of fish feed
prices which in turn affect fish farm price volatility and finally wholesale price volatil-
ity. Also, Barrett (1999) uses a GARCH model to study the effect of real exchange rate
depreciations on stochastic producer prices in low-income agriculture.

The recent deregulation in the utilities sector has also prompted many new appli-
cations of volatility modeling of gas and power prices. Shawky, Marathe and Barrett
(2003) use dynamic volatility models to determine the minimum variance hedge ratios
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for electricity futures. Linn and Zhu (2004) study the effect of natural gas storage report
announcements on intraday volatility patterns in gas prices. They also find evidence of
strong intraday patterns in natural gas price volatility. Battle and Barquin (2004) use a
multivariate GARCH model to simulate gas and oil price paths, which in turn are shown
to be useful for risk management in the wholesale electricity market.

In a related context, Taylor and Buizza (2003) use weather forecast uncertainty to
model electricity demand uncertainty. The variability of wind measurements is found
to be forecastable using GARCH models in Dripps and Dunsmuir (?), while tempera-
ture forecasting with seasonal volatility dynamics is explored in Campbell and Diebold
(2005). Marinova and McAleer (2003) model volatility dynamics in ecological patents.

In political science, Maestas and Preuhs (2000) suggest modeling political volatility
broadly defined as periods of rapid and extreme change in political processes, while
Gronke and Brehm (2002) use ARCH models to assess the dynamics of volatility in
presidential approval ratings.

Volatility forecasting has recently found applications even in medicine. Ewing, Piette
and Payne (2003) forecast time varying volatility in medical net discount rates which
are in turn used to determine the present value of future medical costs. Also, Johnson,
Elashoff and Harkema (2003) use a heteroskedastic time series process to model neuro-
muscular activation patterns in patients with spinal cord injuries, while Martin-Guerrero
et al. (2003) use a dynamic volatility model to help determine the optimal EPO dosage
for patients with secondary anemia.

2.4. Further reading

Point forecasting under general loss functions when allowing for dynamic volatility
has been analyzed by Christoffersen and Diebold (1996, 1997). Patton and Timmer-
mann (2004) have recently shown that under general specifications of the loss function,
the optimal forecast error will have a conditional expected value that is a function of
the conditional variance of the underlying process. Methods for incorporating time-
varying volatility into interval forecasts are suggested in Granger, White and Kamstra
(1989). Financial applications of probability forecasting techniques are considered in
Christoffersen and Diebold (2003).

Financial risk management using dynamic volatility models is surveyed in Christof-
fersen (2003) and Jorion (2000). Berkowitz and O’Brien (2002), Pritsker (2001), and
Barone-Adesi, Giannopoulos and Vosper (1999) explicitly document the value added
from incorporating volatility dynamics into daily financial risk management systems.

Volatility forecasting at horizons beyond a few weeks is found to be difficult by West
and Cho (1995) and Christoffersen and Diebold (2000). However, Brandt and Jones
(2002) show that using intraday information improves the longer horizon forecasts con-
siderably. Guidolin and Timmermann (2005a) uncover VaR dynamics at horizons of up
to two years. Campbell (1987, 2003), Shanken (1990), Aït-Sahalia and Brandt (2001),
Harvey (2001), Lettau and Ludvigsson (2003) and Marquering and Verbeek (2004) find
that interest rate spreads and financial ratios help predict volatility at longer horizons.
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A general framework for conditional asset pricing allowing for time-varying betas
is laid out in Cochrane (2001). Market timing arising from time-varying Sharpe ratios
is analyzed in Whitelaw (1997), while volatility timing has been explicitly explored
by Johannes, Polson and Stroud (2004). The relationship between time-varying volatil-
ity and return has been studied in Engle, Lilien and Robbins (1987), French, Schwert
and Stambaugh (1987), Bollerslev, Engle and Wooldridge (1988), Bollerslev, Chou and
Kroner (1992), Glosten, Jagannathan and Runkle (1993), among many others.

The value of modeling volatility dynamics for asset allocation in a single-period set-
ting have been highlighted in the series of papers by Fleming, Kirby and Oestdiek (2001,
2003), with multi-period extensions considered by Wang (2004). The general topic of
asset allocation under predictable returns is surveyed in Brandt (2004). Brandt (1999)
and Aït-Sahalia and Brandt (2001) suggest portfolio allocation methods which do not
require the specification of conditional moment dynamics.

The literature on option valuation allowing for volatility dynamics is very large and
active. In addition to some of the key theoretical contributions mentioned above, note-
worthy empirical studies based on continuous-time methods include Bakshi, Cao and
Chen (1997), Bates (1996), Chernov and Ghysels (2000), Eraker (2004), Melino and
Turnbull (1990), and Pan (2002). Recent discrete-time applications, building on the the-
oretical work of Duan (1995) and Heston (1993), can be found in Christoffersen and
Jacobs (2004a, 2004b) and Heston and Nandi (2000).

3. GARCH volatility

The current interest in volatility modeling and forecasting was spurred by Engle’s
(1982) path breaking ARCH paper, which set out the basic idea of modeling and fore-
casting volatility as a time-varying function of current information. The GARCH class
of models, of which the GARCH(1, 1) remains the workhorse, were subsequently intro-
duced by Bollerslev (1986), and also discussed independently by Taylor (1986). These
models, including their use in volatility forecasting, have been extensively surveyed
elsewhere and we will not attempt yet another exhaustive survey here. Instead we will
try to highlight some of the key features of the models which help explain their dominant
role in practical empirical applications. We will concentrate on univariate formulations
in this section, with the extension to multivariate GARCH-based covariance and corre-
lation forecasting discussed in Section 6.

3.1. Rolling regressions and RiskMetrics

Rolling sample windows arguably provides the simplest way of incorporating actual
data into the estimation of time-varying volatilities, or variances. In particular, consider
the rolling sample variance based on the p most recent observations as of time t ,

(3.1)σ̂ 2
t = p−1

p−1∑
i=0

(yt−i − µ̂)2 ≡ p−1
p−1∑
i=0

ε̂2
t−i .
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Interpreting σ̂ 2
t as an estimate of the current variance of yt , the value of p directly

determines the variance-bias tradeoff of the estimator, with larger values of p reducing
the variance but increasing the bias. For instance, in the empirical finance literature, it is
quite common to rely on rolling samples of five-years of monthly data, corresponding
to a value of p = 60, in estimating time varying-variances, covariances, and CAPM
betas.

Instead of weighting each of the most recent p observations the same, the bias of the
estimator may be reduced by assigning more weights to the most recent observations.
An exponentially weighted moving average filter is commonly applied in doing so,

(3.2)σ̂ 2
t = γ (yt − µ̂)2 + (1 − γ )σ̂ 2

t−1 ≡ γ

∞∑
i=1

(1 − γ )i−1ε̂2
t−i .

In practice, the sum will, of course, have to be truncated at I = t − 1. This is typically
done by equating the pre-sample values to zero, and adjusting the finite sum by the
corresponding multiplication factor 1/[1 − (1 − γ )t ]. Of course, for large values of
t and (1 − γ ) < 1, the effect of this truncation is inconsequential. This approach is
exemplified by RiskMetrics [J.P. Morgan (1996)], which rely on a value of γ = 0.06
and µ ≡ 0 in their construction of daily (monthly) volatility measures for wide range
of different financial rates of returns.

Although it is possible to write down explicit models for yt which would justify the
rolling window approach and the exponential weighted moving average as the optimal
estimators for the time-varying variances in the models, the expressions in (3.1) and
(3.2) are more appropriately interpreted as data-driven filters. In this regard, the the-
oretical properties of both filters as methods for extracting consistent estimates of the
current volatility as the sampling frequencies of the underlying observations increases
over fixed-length time intervals – or what is commonly referred to as continuous record,
or fill-in, asymptotics – has been extensively studied in a series of influential papers
by Dan Nelson [these papers are collected in the edited volume of readings by Rossi
(1996)].

It is difficult to contemplate optimal volatility forecasting without the notion of a
model, or data generating process. Of course, density or VaR forecasting, as discussed
in Section 2, is even more problematic. Nonetheless, the filters described above are
often used in place of more formal model building procedures in the construction of
h-period-ahead volatility forecasts by simply equating the future volatility of interest
with the current filtered estimate,

(3.3)Var(yt+h | Ft ) ≡ σ 2
t+h|t ≈ σ̂ 2

t .

In the context of forecasting the variance of multi-period returns, assuming that the
corresponding one-period returns are serially uncorrelated so that the forecast equals
the sum of the successive one-period variance forecasts, it follows then directly that

(3.4)Var(yt+k + yt+k−1 + · · · + yt+1 | Ft ) ≡ σ 2
t :t+k|t ≈ kσ̂ 2

t .
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Hence, the multi-period return volatility scales with the forecast horizon, k. Although
this approach is used quite frequently by finance practitioners it has, as discussed further
below, a number of counterfactual implications. In contrast, the GARCH(1, 1) model,
to which we now turn, provides empirically realistic mean-reverting volatility forecasts
within a coherent and internally consistent, yet simple, modeling framework.

3.2. GARCH(1, 1)

In order to define the GARCH class of models, consider the decomposition of yt into
the one-step-ahead conditional mean, µt |t−1 ≡ E(yt | Ft−1), and variance, σ 2

t |t−1 ≡
Var(yt | Ft−1), in parallel to the expression in Equation (1.7) above,

(3.5)yt = µt |t−1 + σt |t−1zt , zt ∼ i.i.d., E(zt ) = 0, Var(zt ) = 1.

The GARCH(1, 1) model for the conditional variance is then defined by the recursive
relationship,

(3.6)σ 2
t |t−1 = ω + αε2

t−1 + βσ 2
t−1|t−2,

where εt ≡ σt |t−1zt , and the parameters are restricted to be nonnegative, ω > 0, α � 0,
β � 0, in order to ensure that the conditional variance remains positive for all real-
izations of the zt process. The model is readily extended to higher order GARCH(p, q)

models by including additional lagged squared innovations and/or conditional variances
on the right-hand side of the equation.

By recursive substitution, the GARCH(1, 1) model may alternatively be expressed as
an ARCH(∞) model,

(3.7)σ 2
t |t−1 = ω(1 − β)−1 + α

∞∑
i=1

βi−1ε2
t−i .

This obviously reduces to the exponentially weighted moving average filter in (3.2)
for ω = 0, α = γ , and β = 1 − γ . The corresponding GARCH model in which
α + β = 1 is also sometimes referred to as an Integrated GARCH, or IGARCH(1, 1)

model. Importantly, however, what sets the GARCH(1, 1) model, and more generally
the ARCH class of models, apart from the filters discussed above is the notion of a
data generating process embedded in the distributional assumptions for zt . This means
that the construction of optimal variance forecasts is a well-posed question within the
context of the model.

In particular, it follows directly from the formulation of the model that the optimal, in
a mean-square error sense, one-step ahead variance forecasts equals σ 2

t+1|t . Correspond-

ing expressions for the longer run forecasts, σ 2
t+h|t for h > 1, are also easily constructed

by recursive procedures. To facilitate the presentation, assume that the conditional mean
is constant and equal to zero, or µt |t−1 = 0, and that α+β < 1 so that the unconditional
variance of the process exists,

(3.8)σ 2 = ω(1 − α − β)−1.



hesfor v.2006/01/10 Prn:18/01/2006; 16:35 F:hesfor1015.tex; VTEX/Judita p. 25
aid: 1015 pii: S1574-0706(05)01015-3 docsubty: REV

Ch. 15: Volatility and Correlation Forecasting 801

1 1

2 2

3 3

4 4

5 5

6 6

7 7

8 8

9 9

10 10

11 11

12 12

13 13

14 14

15 15

16 16

17 17

18 18

19 19

20 20

21 21

22 22

23 23

24 24

25 25

26 26

27 27

28 28

29 29

30 30

31 31

32 32

33 33

34 34

35 35

36 36

37 37

38 38

39 39

40 40

41 41

42 42

43 43

0.0

0.5

1.0

1.5

2.0

2.5

3.0

0.0 0.4 0.8 1.2 1.6 2.0
0.2

0.4

0.6

0.8

1.0

1.2

50 100 150 200 250

Mean 95% 5%

Figure 4. GARCH volatility term structure. The first panel shows the unconditional distribution of σ 2
t+1|t .

The second panel shows the term-structure-of-variance, k−1σ 2
t :t+k|t , for σ 2

t+1|t equal to the mean, together
with the fifth and the ninety-fifth percentiles in the unconditional distribution.

The h-step ahead forecast is then readily expressed as

(3.9)σ 2
t+h|t = σ 2 + (α + β)h−1(σ 2

t+1|t − σ 2),
showing that the forecasts revert to the long-run unconditional variance at an exponen-
tial rate dictated by the value of α + β.

Moreover, with serially uncorrelated returns, so that the conditional variance of the
sum is equal to the sum of the conditional variances, the optimal forecast for the variance
of the k-period return may be expressed as

(3.10)σ 2
t :t+k|t = kσ 2 + (

σ 2
t+1|t − σ 2)(1 − (α + β)k

)
(1 − α − β)−1.

Thus, the longer the forecast horizon (the higher the value of k), the less variable will be
the forecast per unit time-interval. That is, the term-structure-of-variance, or k−1σ 2

t :t+k|t ,
flattens with k.

To illustrate, consider Figure 4. The left-hand panel plots the unconditional distribu-
tion of σ 2

t+1|t for the same GARCH(1, 1) model depicted in Figure 1. The mean of the

distribution equals σ 2 = 0.020(1 − 0.085 − 0.881)−1 ≈ 0.588, but there is obviously
considerable variation around that value, with a much longer tail to the right. The panel
on the right gives the corresponding term-structure for k = 1, 2, . . . , 250, and σ 2

t+1|t
equal to the mean, five, and ninety-five percentiles in the unconditional distribution.
The slope of the volatility-term-structure clearly flattens with the horizon. The figure
also illustrates that the convergence to the long-run unconditional variance occurs much
slower for a given percentage deviation of σ 2

t+1|t above the median than for the same
percentage deviation below the median.

To further illustrate the dynamics of the volatility-term structure, Figure 5 graphs
k−1σ 2

t :t+k|t for k = 1, 5, 22 and 66, corresponding to daily, weekly, monthly and
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Figure 5. GARCH volatility forecasts and horizons. The four panels show the standardized “daily”
GARCH(1, 1) volatility forecasts, k−1σ 2

t :t+k|t , for horizons k = 1, 5, 22, 66.

quarterly forecast horizons, for the same t = 1, 2, . . . , 2500 GARCH(1, 1) simula-
tion sample depicted in Figure 1. Comparing the four different panels, the volatility-of
the-volatility clearly diminishes with the forecast horizon.

It is also informative to compare and contrast the optimal GARCH(1, 1) volatility
forecasts to the common empirical practice of horizon volatility scaling by k. In this
regard, it follows directly from the expressions in (3.9) and (3.10) that

E
(
kσ 2

t+1|t
) = kσ 2 = E

(
σ 2

t :t+k|t
)
,

so that the level of the scaled volatility forecasts will be right on average. However,
comparing the variance of the scaled k-period forecasts to the variance of the optimal
forecast,

Var
(
kσ 2

t+1|t
) = k2 Var

(
σ 2

t+1|t
)

>
(
1 − (α + β)k

)2
(1 − α − β)−2 Var

(
σ 2

t+1|t
)

= Var
(
σ 2

t :t+k|t
)
,
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it is obvious that by not accounting for the mean-reversion in the volatility, the scaled
forecasts exaggerate the volatility-of-the-volatility relative to the true predictable varia-
tion. On tranquil days the scaled forecasts underestimate the true risk, while the risk is
inflated on volatile days. Obviously not a very prudent risk management procedure.

This tendency for the horizon scaled forecasts to exhibit excessive variability is also
directly evident from the term structure plots in Figure 5. Consider the optimal k-period
ahead variance forecasts defined by k times the k−1σ 2

t :t+k|t series depicted in the last
three panels. Contrasting these correct multi-step forecasts with their scaled counter-
parts defined by k times the σ 2

t+1|t series in the first panel, it is obvious, that although

both forecasts will be centered around the right unconditional value of kσ 2, the horizon
scaled forecasts will result in too large “day-to-day” fluctuations. This is especially true
for the longer run “monthly” (k = 22) and “quarterly” (k = 66) forecasts in the last two
panels.

3.3. Asymmetries and “leverage” effects

The basic GARCH model discussed in the previous section assumes that positive and
negative shocks of the same absolute magnitude will have the identical influence on the
future conditional variances. In contrast, the volatility of aggregate equity index return,
in particular, has been shown to respond asymmetrically to past negative and positive
return shocks, with negative returns resulting in larger future volatilities. This asym-
metry is generally referred to as a “leverage” effect, although it is now widely agreed
that financial leverage alone cannot explain the magnitude of the effect, let alone the
less pronounced asymmetry observed for individual equity returns. Alternatively, the
asymmetry has also been attributed to a “volatility feedback” effect, whereby height-
ened volatility requires an increase in the future expected returns to compensate for
the increased risk, in turn necessitating a drop in the current price to go along with
the initial increase in the volatility. Regardless of the underlying economic explanation
for the phenomenon, the three most commonly used GARCH formulations for describ-
ing this type of asymmetry are the GJR or Threshold GARCH (TGARCH) models of
Glosten, Jagannathan and Runkle (1993) and Zakoïan (1994), the Asymmetric GARCH
(AGARCH) model of Engle and Ng (1993), and the Exponential GARCH (EGARCH)
model of Nelson (1991).

The conditional variance in the GJR(1, 1), or TGARCH(1, 1), model simply aug-
ments the standard GARCH(1, 1) formulation with an additional ARCH term condi-
tional on the sign of the past innovation,

(3.11)σ 2
t |t−1 = ω + αε2

t−1 + γ ε2
t−1I (εt−1 < 0) + βσ 2

t−1|t−2,

where I (·) denotes the indicator function. It is immediately obvious that for γ > 0, past
negative return shocks will have a larger impact on the future conditional variances.
Mechanically, the calculation of multi-period variance forecast works exactly as for the
standard symmetric GARCH model. In particular, assuming that

P
(
zt ≡ σ−1

t |t−1εt < 0
) = 0.5,
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it follows readily that

(3.12)σ 2
t+h|t = σ 2 + (α + 0.5γ + β)h−1(σ 2

t+1|t − σ 2),
where the long-run, or unconditional variance, now equals

(3.13)σ 2 = ω(1 − α − 0.5γ − β)−1.

Although the forecasting formula looks almost identical to the one for the GARCH(1, 1)

model in Equation (3.9), the inclusion of the asymmetric term may materially affect the
forecasts by importantly altering the value of the current conditional variance, σ 2

t+1|t .
The news impact curve, defined by the functional relationship between σ 2

t |t−1 and
εt−1 holding all other variables constant, provides a simple way of characterizing the
influence of the most recent shock on next periods conditional variance. In the standard
GARCH model this curve is obviously quadratic around εt−1 = 0, while the GJR model
with γ > 0 has steeper slopes for negative values of εt−1. In contrast, the Asymmetric
GARCH, or AGARCH(1, 1), model,

(3.14)σ 2
t |t−1 = ω + α(εt−1 − γ )2 + βσ 2

t−1|t−2,

shifts the center of the news impact curve from zero to γ , affording an alternative way
of capturing asymmetric effects. The GJR and AGARCH model may also be combined
to achieve even more flexible parametric formulations.

Instead of directly parameterizing the conditional variance, the EGARCH model
is formulated in terms of the logarithm of the conditional variance, as in the
EGARCH(1, 1) model,

(3.15)log
(
σ 2

t |t−1

) = ω + α
(|zt−1| − E

(|zt−1|
)) + γ zt−1 + β log

(
σ 2

t−1|t−2

)
,

where as previously defined, zt ≡ σ−1
t |t−1εt . As for the GARCH model, the EGARCH

model is readily extended to higher order models by including additional lags on the
right-hand side. The parameterization in terms of logarithms has the obvious advan-
tage of avoiding nonnegativity constraints on the parameters, as the variance implied
by the exponentiated logarithmic variance from the model is guaranteed to be posi-
tive. As in the GJR and AGARCH models above, values of γ > 0 in the EGARCH
model directly captures the asymmetric response, or “leverage” effect. Meanwhile, be-
cause of the nondifferentiability with respect to zt−1 at zero, the EGARCH model is
often somewhat more difficult to estimate and analyze numerically. From a forecast-
ing perspective, the recursions defined by the EGARCH equation (3.15) readily deliver
the optimal – in a mean-square error sense – forecast for the future logarithmic condi-
tional variances, E(log(σ 2

t+h) | Ft ). However, in most applications the interest centers
on point forecasts for σ 2

t+h, as opposed to log(σ 2
t+h). Unfortunately, the transforma-

tion of the E(log(σ 2
t+h) | Ft ) forecasts to E(σ 2

t+h | Ft ) generally depends on the
entire h-step ahead forecast distribution, f (yt+h | Ft ). As discussed further in Sec-
tion 3.6 below, this distribution is generally not available in closed-form, but it may
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be approximated by Monte Carlo simulations from the convolution of the correspond-
ing h one-step-ahead predictive distributions implied by the zt innovation process using
numerical techniques. In contrast, the expression for σ 2

t+h|t in Equation (3.12) for the
GJR or TGARCH model is straightforward to implement, and only depends upon the
assumption that P(zt < 0) = 0.5.

3.4. Long memory and component structures

The GARCH, TGARCH, AGARCH, and EGARCH models discussed in the previous
sections all imply that shocks to the volatility decay at an exponential rate. To illustrate,
consider the GARCH(1, 1) model. It follows readily from Equation (3.9) that the im-
pulse effect of a time-t shock on the forecast of the variance h period into the future is
given by ∂σ 2

t+h|t /∂ε2
t = α(α + β)h−1, or more generally

(3.16)∂σ 2
t+h|t /∂ε2

t = κδh,

where 0 < δ < 1. This exponential decay typically works well when forecasting over
short horizons. However, numerous studies, including Ding, Granger and Engle (1993)
and Andersen and Bollerslev (1997), have argued that the autocorrelations of squared
and absolute returns decay at a much slower hyperbolic rate over longer lags. In the
context of volatility forecasting using GARCH models parameterized in terms of ε2

t , this
suggests that better long term forecasts may be obtained by formulating the conditional
variance in such a way that the impulse effect behaves as

(3.17)∂σ 2
t+h|t /∂ε2

t ≈ κhδ,

for large values of h, where again 0 < δ < 1. Several competing long-memory, or
fractionally integrated, GARCH type models have been suggested in the literature to
achieve this goal.

In the Fractionally Integrated FIGARCH(1, d, 1) model proposed by Baillie, Boller-
slev and Mikkelsen (1996) the conditional variance is defined by

(3.18)σ 2
t |t−1 = ω + βσ 2

t−1|t−2 + [
1 − βL − (1 − αL − βL)(1 − L)d

]
ε2
t .

For d = 0 the model reduces to the standard GARCH(1, 1) model, but for values of
0 < d < 1 shocks to the point volatility forecasts from the model will decay at a slow
hyperbolic rate. The actual forecasts are most easily constructed by recursive substitu-
tion in

(3.19)σ 2
t+h|t+h−1 = ω(1 − β)−1 + λ(L)σ 2

t+h−1|t+h−2,

with σ 2
t+h|t+h−1 ≡ ε2

t for h < 0, and the coefficients in λ(L) ≡ 1 − (1 − βL)−1(1 −
αL − βL)(1 − L)d calculated from the recursions,

λ1 = α + d,

λj = βλj−1 + [
(j − 1 − d)j−1 − (α + β)

]
δj−1, j = 2, 3, . . . ,
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where δj ≡ δj−1(j − 1 −d)j−1 refer to the coefficients in the MacLaurin series expan-
sion of the fractional differencing operator, (1 − L)d . Higher order FIGARCH models,
or volatility forecast filters, may be defined in an analogous fashion. Asymmetries are
also easily introduced into the recursions by allowing for separate influences of past
positive and negative innovations as in the GJR or TGARCH model. Fractional Inte-
grated EGARCH, or FIEGARCH, models may be similarly defined by parameterizing
the logarithmic conditional variance as a fractionally integrated distributed lag of past
values.

An alternative, and often simpler, approach for capturing longer-run dependencies
involves the use of component type structures. Granger (1980) first showed that the
superposition of an infinite number of stationary AR(1) processes may result in a true
long-memory process. In fact, there is a long history in statistics and time series econo-
metrics for approximating long memory by the sum of a few individually short-memory
components. This same idea has successfully been used in the context of volatility mod-
eling by Engle and Lee (1999) among others.

In order to motivate the Component GARCH model of Engle and Lee (1999), rewrite
the standard GARCH(1, 1) model in (3.6) as

(3.20)
(
σ 2

t |t−1 − σ 2) = α
(
ε2
t−1 − σ 2) + β

(
σ 2

t−1|t−2 − σ 2),
where it is assumed that α + β < 1, so that the model is covariance stationary and the
long term forecasts converge to the long-run, or unconditional, variance σ 2 = ω(1 −
α − β)−1. The component model then extends the basic GARCH model by explicitly
allowing the long-term level to be time-varying,

(3.21)
(
σ 2

t |t−1 − ζ 2
t

) = α
(
ε2
t−1 − ζ 2

t

) + β
(
σ 2

t−1|t−2 − ζ 2
t

)
,

with ζ 2
t parameterized by the separate equation,

(3.22)ζ 2
t = ω + ρζ 2

t−1 + ϕ
(
ε2
t−1 − σ 2

t−1|t−2

)
.

Hence, the transitory dynamics is governed by α + β, while the long-run dependencies
are described by ρ > 0. It is possible to show that for the model to be covariance
stationary, and the unconditional variance to exist, the parameters must satisfy (α +
β)(1 − ρ) + ρ < 1. Also, substituting the latter equation into the first, the model may
be expressed as the restricted GARCH(2, 2) model,

σ 2
t |t−1 = ω(1 − α − β) + (α + ϕ)ε2

t−1 − (
ϕ(α + β) + ρα

)
ε2
t−2

+ (ρ + β + ϕ)σ 2
t−1|t−2 + (

ϕ(α + β) − ρβ
)
σ 2

t−2|t−3.

As for the GARCH(1, 1) model, volatility shocks therefore eventually dissipate at the
exponential rate in Equation (3.15). However, for intermediate forecast horizons and
values of ρ close to unity, the volatility forecasts from the component GARCH model
will display approximate long memory.

To illustrate, consider Figure 6 which graphs the volatility impulse response func-
tion, ∂σ 2

t+h|t /∂ε2
t , h = 1, 2, . . . , 250, for the RiskMetrics forecasts, the standard
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Figure 6. Volatility impulse response coefficients. The left panel graphs the volatility impulse response func-
tion, ∂σ 2

t+h|t /∂ε2
t , h = 1, 2, . . . , 250, for the RiskMetrics forecasts, the standard GARCH(1, 1) model

in (3.6), the FIGARCH(1, d, 1) model in (3.18), and the component GARCH model in (3.21) and (3.22).
The right panel plots the corresponding logarithmic values.

GARCH(1, 1) model in (3.6), the FIGARCH(1, d, 1) model in (3.18), and the com-
ponent GARCH model defined by (3.21) and (3.22). The parameters for the different
GARCH models are calibrated to match the volatilities depicted in Figure 1. To facil-
itate comparisons and exaggerate the differences across models, the right-hand panel
depicts the logarithm of the same impulse response coefficients. The RiskMetrics fore-
casts, corresponding to an IGARCH(1, 1) model with α = 0.06, β = 1 − α = 0.94
and ω = 0, obviously results in infinitely persistent volatility shocks. In contrast, the
impulse response coefficients associated with the GARCH(1, 1) forecasts die out at the
exponential rate (0.085+0.881)h, as manifest by the log-linear relationship in the right-
hand panel. Although the component GARCH model also implies an exponential decay
and therefore a log-linear relationship, it fairly closely matches the hyperbolic decay
rate for the long-memory FIGARCH model for the first 125 steps. However, the two
models clearly behave differently for forecasts further into the future. Whether these
differences and potential gains in forecast accuracy over longer horizons are worth the
extra complications associated with the implementation of a fractional integrated model
obviously depends on the specific uses of the forecasts.

3.5. Parameter estimation

The values of the parameters in the GARCH models are, of course, not known in prac-
tice and will have to be estimated. By far the most commonly employed approach for
doing so is Maximum Likelihood Estimation (MLE) under the additional assumption
that the standardized innovations in Equation (3.5), zt ≡ σ−1

t |t−1(yt − µt |t−1), are i.i.d.
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normally distributed, or equivalently that the conditional density for yt takes the form,

(3.23)f (yt | Ft−1) = (2π)−1/2σ−1
t |t−1 exp

(−1/2σ−2
t |t−1(yt − µt |t−1)

2).
In particular, let θ denote the vector of unknown parameters entering the conditional
mean and variance functions to be estimated. By standard recursive conditioning argu-
ments, the log-likelihood function for the yT , yT −1, . . . , y1 sample is then simply given
by the sum of the corresponding T logarithmic conditional densities,

log L(θ; yT , . . . , y1)

(3.24)= −T

2
log(2π) − 1

2

T∑
t=1

[
log σ 2

t |t−1(θ) − σ−2
t |t−1(θ)

(
yt − µt |t−1(θ)

)2]
.

The likelihood function obviously depends upon the parameters in a highly nonlinear
fashion, and numerical optimization techniques are required in order to find the value of
θ which maximizes the function, say θ̂T . Also, to start up the recursions for calculating
σ 2

t |t−1(θ), pre-sample values of the conditional variances and squared innovations are
also generally required. If the model is stationary, these initial values may be fixed at
their unconditional sample counterparts, without affecting the asymptotic distribution
of the resulting estimates. Fortunately, there now exist numerous software packages for
estimating all of the different GARCH formulations discussed above based upon this
likelihood approach.

Importantly, provided that the model is correctly specified and satisfies a necessary
set of technical regularity conditions, the estimates obtained by maximizing the func-
tion in (3.24) inherit the usual optimality properties associated with MLE, allowing for
standard parameter inference based on an estimate of the corresponding information
matrix. This same asymptotic distribution may also be used in incorporating the para-
meter estimation error uncertainty in the distribution of the volatility forecasts from the
underlying model. However, this effect is typically ignored in practice, instead relying
on a simple plugin approach using θ̂T in place of the true unknown parameters in the
forecasting formulas. Of course, in many financial applications the size of the sample
used in the parameter estimation phase is often very large compared to the horizon of the
forecasts, so that the additional influence of the parameter estimation error is likely to be
relatively minor compared to the inherent uncertainty in the forecasts from the model.
Bayesian inference procedures can, of course, also be used in directly incorporating the
parameter estimation error uncertainty in the model forecasts.

More importantly from a practical perspective, the log-likelihood function in Equa-
tion (3.24) employed in almost all software packages is based on the assumption that
zt is i.i.d. normally distributed. Although this assumption coupled with time-varying
volatility implies that the unconditional distribution of yt has fatter tails than the normal,
this is typically not sufficient to account for all of the mass in the tails in the distributions
of daily or weekly returns. Hence, the likelihood function is formally misspecified.

However, if the conditional mean and variance are correctly specified, the corre-
sponding Quasi-Maximum Likelihood Estimates (QMLE) obtained under this auxiliary
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assumption of conditional normality will generally be consistent for the true value of θ .
Moreover, asymptotically valid robust standard errors may be calculated from the so-
called “sandwich-form” of the covariance matrix estimator, defined by the outer product
of the gradients post- and pre-multiplied by the inverse of the usual information matrix
estimator. Since the expressions for the future conditional variances for most of the
GARCH models discussed above do not depend upon the actual distribution of zt , as
long as E(zt | Ft−1) = 0 and E(z2

t | Ft−1) = 1, this means that asymptotically valid
point volatility forecasts may be constructed from the conditionally normal QMLE for
θ without fully specifying the distribution of zt .

Still, the efficiency of the parameter estimates, and therefore the accuracy of the
resulting point volatility forecasts obtained by simply substituting θ̂T in place of the
unknown parameters in the forecasting formulas, may be improved by employing the
correct conditional distribution of zt . A standardized Student t distribution with degrees
of freedom ν > 2 often provides a good approximation to this distribution. Specifically,

f (yt | Ft−1) = Γ

(
ν + 1

2

)
Γ

(
ν

2

)−1(
(ν − 2)σ 2

t |t−1

)−1/2

(3.25)× (
1 + (ν − 2)−1σ−2

t |t−1(yt − µt |t−1)
2)−(ν+1)/2

with the log-likelihood function given by the sum of the corresponding T logarithmic
densities, and the degrees of freedom parameter ν estimated jointly with the other pa-
rameters of the model entering the conditional mean and variance functions. Note, that
for ν → ∞ the distribution converges to the conditional normal density in (3.23). Of
course, more flexible distributions allowing for both fat tails and asymmetries could
be, and have been, employed as well. Additionally, semi-nonparametric procedures in
which the parameters in µt |t−1(θ) and σ 2

t |t−1(θ) are estimated sequentially on the basis
of nonparametric kernel type estimates for the distribution of ẑt have also been devel-
oped to enhance the efficiency of the parameter estimates relative to the conditionally
normal QMLEs. From a forecasting perspective, however, the main advantage of these
more complicated conditionally nonnormal estimation procedures lies not so much in
the enhanced efficiency of the plugin point volatility forecasts, σ 2

T +h|T (θ̂T ), but rather in
their ability to better approximate the tails in the corresponding predictive distributions,
f (yT +h | FT ; θ̂T ). We next turn to a discussion of this type of density forecasting.

3.6. Fat tails and multi-period forecast distributions

The ARCH class of models directly specifies the one-step-ahead conditional mean and
variance, µt |t−1 and σ 2

t |t−1, as functions of the time t−1 information set, Ft−1. As such,
the one-period-ahead predictive density for yt is directly determined by the distribution
of zt . In particular, assuming that zt is i.i.d. standard normal,

fz(zt ) = (2π)−1/2 exp(−1/2zt ),
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the conditional density of yt is then given by the expression in Equation (3.23) above,
where the σ−1

t |t−1 term is associated with the Jacobian of the transformation from zt

to yt . Thus, in this situation, the one-period-ahead VaR at level p is readily calculated
by VaRp

t+1|t = µt+1|t + σt+1|tF−1
z (p), where F−1

z (p) equals the pth quantile in the
standard normal distribution.

Meanwhile, as noted above the distributions of the standardized GARCH innovations
often have fatter tails than the normal distribution. To accommodate this feature alterna-
tive conditional error distributions, such as the Student t distribution in Equation (3.25)
discussed above, may be used in place of the normal density in Equation (3.23) in the
construction of empirically more realistic predictive densities. In the context of quantile
predictions, or VARs, this translates into multiplication factors, F−1

z (p), in excess of
those for the normal distribution for small values of p. Of course, the exact value of
F−1

z (p) will depend upon the specific parametric estimates for the distribution of zt .
Alternatively, the standardized in-sample residuals based on the simpler-to-implement
QMLE for the parameters, say ẑt ≡ σ̂−1

t |t−1(yt − µ̂t |t−1), may be used in nonparametri-

cally estimating the distribution of zt , and in turn the quantiles, F̂−1
z (p).

The procedures discussed above generally work well in approximating VARs within
the main range of support of the distribution, say 0.01 < p < 0.99. However, for
quantiles in the very far left or right tail, it is not possible to meaningfully estimate
F−1

z (p) without imposing some additional structure on the problem. Extreme Value
Theory (EVT) provides a framework for doing so. In particular, it follows from EVT
that under general conditions the tails of any admissible distribution must behave like
those of the Generalized Pareto class of distributions. Hence, provided that zt is i.i.d., the
extreme quantiles in f (yt+1 | Ft ) may be inferred exactly as above, using only the [rT ]
smallest (largest) values of ẑt in actually estimating the parameters of the corresponding
extreme value distribution used in calculating F̂−1

z (p). The fraction r of the full sample
T used in this estimation dictates where the tails, and consequently the extreme value
distribution, begin. In addition to standard MLE techniques, a number of simplified
procedures, including the popular Hill estimator, are also available for estimating the
required tail parameters.

The calculation of multi-period forecast distributions is more complicated. To facili-
tate the presentation, suppose that the information set defining the conditional one-step-
ahead distribution, f (yt+1 | Ft ), and consequently the conditional mean and variance,
µt+1|t and σ 2

t+1|t , respectively, is restricted to current and past values of yt . The multi-
period-ahead predictive distribution is then formally defined by the convolution of the
corresponding h one-step-ahead distributions,

f (yt+h | Ft ) =
∫∫

. . .

∫
f (yt+h | Ft+h−1)f (yt+h−1 | Ft+h−2)

(3.26). . . f (yt+1 | Ft ) dyt+h−1 dyt+h−2 . . . dyt+1.

This multi-period mixture distribution generally has fatter tails than the underlying one-
step-ahead distributions. In particular, assuming that the one-step-ahead distributions
are conditionally normal as in (3.23) then, if the limiting value exists, the unconditional
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distribution, f (yt ) = limh→∞ f (yt | Ft−h), will be leptokurtic relative to the nor-
mal. This is, of course, entirely consistent with the unconditional distribution of most
speculative returns having fatter tails than the normal. It is also worth noting that even
though the conditional one-step-ahead predictive distributions, f (yt+1 | Ft ), may be
symmetric, if the conditional variance depends on the past values of yt in an asym-
metric fashion, as in the GJR, AGARCH or EGARCH models, the multi-step-ahead
distribution, f (yt+h | Ft ), h > 1, will generally be asymmetric. Again, this is directly
in line with the negative skewness observed in the unconditional distribution of most
equity index return series.

Despite these general results, analytical expressions for the multi-period predictive
density in (3.26) are not available in closed-form. However, numerical techniques may
be used in recursively building up an estimate for the predictive distribution, by re-
peatedly drawing future values for yt+j = µt+j |t+j−1 + σt+j |t+j−1zt+j based on the
assumed parametric distribution fz(zt ), or by bootstrapping zt+j from the in-sample
distribution of the standardized residuals.

Alternatively, f (yt+h | Ft ) may be approximated by a time-invariant paramet-
ric or nonparametrically estimated distribution with conditional mean and variance,
µt+h|t ≡ E(yt+j | Ft ) and σ 2

t+h|t ≡ Var(yt+j | Ft ), respectively. The multi-step
conditional variance is readily calculated along the lines of the recursive prediction for-
mulas discussed in the preceding sections. This approach obviously neglects any higher
order dependencies implied by the convolution in (3.26). However, in contrast to the
common approach of scaling which, as illustrated in Figure 5, may greatly exaggerate
the volatility-of-the-volatility, the use of the correct multi-period conditional variance
means that this relatively simple-to-implement approach for calculating multi-period
predictive distributions usually works very well in practice.

The preceding discussion has focused on one or multi-period forecast distributions
spanning the identical unit time interval as in the underlying GARCH model. However,
as previously noted, in financial applications the forecast distribution of interest often
involves the sum of yt+j over multiple periods corresponding to the distribution of con-
tinuously compounded multi-period returns, say yt :t+h ≡ yt+h + yt+h−1 + · · · + yt+1.
The same numerical techniques used in approximating f (yt+h | Ft ) by Monte Carlo
simulations discussed above may, of course, be used in approximating the correspond-
ing distribution of the sum, f (yt :t+h | Ft ).

Alternatively, assuming that the yt+j ’s are serially uncorrelated, as would be approx-
imately true for most speculative returns over daily or weekly horizons, the conditional
variance of yt :t+h is simply equal to the sum of the corresponding h variance forecasts,

(3.27)Var(yt :t+h | Ft ) ≡ σ 2
t :t+h|t = σ 2

t+h|t + σ 2
t+h−1|t + · · · + σ 2

t+1|t .
Thus, in this situation the conditional distribution of yt :t+h may be estimated on the
basis of the corresponding in-sample standardized residuals, ẑt :t+h ≡ σ̂−1

t :t+h|t (yt :t+h −
µ̂t :t+h|t ). Now, if the underlying GARCH process for yt is covariance stationary, we
have limh→∞ h−1µt :t+h = E(yt ) and limh→∞ h−1σ 2

t :t+h = Var(yt ). Moreover, as
shown by Diebold (1988), it follows from a version of the standard Central Limit
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Theorem that zt :t+h ⇒ N(0, 1). Thus, volatility clustering disappears under tempo-
ral aggregation, and the unconditional return distributions will be increasingly better
approximated by a normal distribution the longer the return horizons. This suggests that
for longer-run forecasts, or moderately large values of h, the distribution of zt :t+h will be
approximately normal. Consequently, the calculation of longer-run multi-period VARs
may reasonably rely on the conventional quantiles from a standard normal probability
table in place of F−1

z (p) in the formula VaRp
t :t+h|t = µt :t+h|t + σt :t+h|tF−1

z (p).

3.7. Further reading

The ARCH and GARCH class of models have been extensively surveyed elsewhere;
see, e.g., review articles by Andersen and Bollerslev (1998b), Bollerslev, Chou and Kro-
ner (1992), Bollerslev, Engle and Nelson (1994), Diebold (2004), Diebold and Lopez
(1995), Engle (2001, 2004), Engle and Patton (2001), Pagan (1996), Palm (1996), and
Shephard (1996). The models have now also become part of the standard toolbox dis-
cussed in econometrics and empirical oriented finance textbooks; see, e.g., Hamilton
(1994), Mills (1993), Franses and van Dijk (2000), Gouriéroux and Jasiak (2001),
Alexander (2001), Brooks (2002), Chan (2002), Tsay (2002), Christoffersen (2003),
Enders (2004), and Taylor (2004). A series of the most influential early ARCH papers
have been collected in Engle (1995). A fairly comprehensive list as well as forecast
comparison of the most important parametric formulations are also provided in Hansen
and Lunde (2005).

Several different econometric and statistical software packages are available for es-
timating all of the most standard univariate GARCH models, including EViews, PC-
GIVE, Limdep, Microfit, RATS, S+, SAS, SHAZAM, and TSP. The open-ended ma-
trix programming environments GAUSS, Matlab, and Ox also offer easy add-ons for
GARCH estimation, while the NAG library and the UCSD Department of Economics
website provide various Fortran based procedures and programs. Partial surveys and
comparisons of some of these estimation packages and procedures are given in Brooks
(1997), Brooks, Burke and Persand (2001), and McCullough and Renfro (1998).

The asymmetry, or “leverage” effect, directly motivating a number of the alternative
GARCH formulations were first documented empirically by Black (1976) and Christie
(1982). In addition to the papers by Nelson (1991), Engle and Ng (1993), Glosten,
Jagannathan and Runkle (1993), and Zakoïan (1994) discussed in Section 3.3, other im-
portant studies on modeling and understanding the volatility asymmetry in the GARCH
context include Campbell and Hentschel (1992), Hentschel (1995), and Bekaert and Wu
(2000), while Engle (2001) provides an illustration of the importance of incorporating
asymmetry in GARCH-based VaR calculations.

The long-memory FIGARCH model of Baillie, Bollerslev and Mikkelsen (1996) in
Section 3.4 may be seen as a special case of the ARCH(∞) model in Robinson (1991).
The FIGARCH model also encompasses the IGARCH model of Engle and Bollerslev
(1986) for d = 1. However, even though the approach discussed here affords a conve-
nient framework for generating point forecasts with long-memory dependencies, when
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viewed as a model the unconditional variance does not exist, and the FIGARCH class
of models has been criticized accordingly by Giraitis, Kokoszka and Leipus (2000),
among others. An alternative formulation which breaks the link between the condi-
tions for second-order stationarity and long-memory dependencies have been proposed
by Davidson (2004). Alternative long-memory GARCH formulations include the FIE-
GARCH model of Bollerslev and Mikkelsen (1996), and the model in Ding and Granger
(1996) based on the superposition of an infinite number of ARCH models. In contrast,
the component GARCH model in Engle and Lee (1999) and the related developments
in Gallant, Hsu and Tauchen (1999) and Müller et al. (1997), is based on the mixture of
only a few components; see also the earlier related results on modeling and forecasting
long-run dynamic dependencies in the mean by O’Connell (1971) and Tiao and Tsay
(1994). Meanwhile, Bollerslev and Mikkelsen (1999) have argued that when pricing
very long-lived financial contracts, the fractionally integrated volatility approach can
result in materially different prices from the ones implied by the more standard GARCH
models with exponential decay. The multifractal models recently advocated by Calvet
and Fisher (2002, 2004) afford another approach for incorporating long memory into
volatility forecasting.

Long memory also has potential links to regimes and structural break in volatility.
Diebold and Inoue (2001) argue that the apparent finding of long memory could be due
to the existence of regime switching. Mikosch and Starica (2004) explicitly uses non-
stationarity as a source of long memory in volatility. Structural breaks in volatility is
considered by Andreou and Ghysels (2002), Lamoureux and Lastrapes (1990), Pastor
and Stambaugh (2001), and Schwert (1989). Hamilton and Lin (1996) and Perez-Quiros
and Timmermann (2000) study volatility across business cycle regimes. The connec-
tions between long memory and structural breaks are reviewed in Banerjee and Urga
(2005); see also Chapter 12 by Clements and Hendry in this Handbook.

Early contributions concerning the probabilistic and statistical properties of GARCH
models, as well as the MLE and QMLE techniques discussed in Section 3.5, include
Bollerslev and Wooldridge (1992), Lee and Hansen (1994), Lumsdaine (1996), Nelson
(1990), and Weiss (1986); for a survey of this literature see also Li, Ling and McAleer
(2002). Bollerslev (1986) discusses conditions for existence of the second moment in
the specific context of the GARCH model. Loretan and Phillips (1994) contains a more
general discussion on the issue of covariance stationarity. Bayesian methods for esti-
mating ARCH models were first implemented by Geweke (1989a) and they have since
be developed further in Bauwens and Lubrano (1998, 1999). The GARCH-t model dis-
cussed in Section 3.5 was first introduced by Bollerslev (1987), while Nelson (1991)
suggested the so-called Generalized Error Distribution (GED) for better approximat-
ing the distribution of the standardized innovations. Engle and Gonzalez-Rivera (1991)
first proposed the use of kernel-based methods for nonparametrically estimating the
conditional distribution, whereas McNeil and Frey (2000) relied on Extreme Value The-
ory (EVT) for estimating the uppermost tails in the conditional distribution; see also
Embrechts, Klüppelberg and Mikosch (1997) for a general discussion of extreme value
theory.

http://dx.doi.org/10.1016/S1574-0706(05)01012-8
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As discussed in Section 3.6, even if the one-step-ahead conditional distribution is
known (by assumption), the corresponding multi-period distributions are not avail-
able in closed-form and are generally unknown. Some of the complications that arise
in this situation have been discussed in Baillie and Bollerslev (1992), who also con-
sider the use of a Cornish–Fisher expansion for approximating specific quantiles in the
multi-step-ahead predictive distributions. Numerical techniques for calculating the pre-
dictive distributions based on importance sampling schemes were first implemented by
Geweke (1989b). Other important results related to the distribution of temporally ag-
gregated GARCH models include Drost and Nijman (1993), Drost and Werker (1996),
and Meddahi and Renault (2004).

4. Stochastic volatility

This section introduces the general class of models labeled Stochastic Volatility (SV).
In the widest sense of the term, SV models simply allow for a stochastic element in
the time series evolution of the conditional variance process. For example, GARCH
models are SV models. The more meaningful categorization, which we adopt here, is
to contrast ARCH type models with genuine SV models. The latter explicitly includes
an unobserved (nonmeasurable) shock to the return variance into the characterization of
the volatility dynamics. In this scenario, the variance process becomes inherently latent
so that – even conditional on all past information and perfect knowledge about the data
generating process – we cannot recover the exact value of the current volatility state.
The technical implication is that the volatility process is not measurable with respect
to observable (past) information. Hence, the assessment of the volatility state at day t

changes as contemporaneous or future information from days t + j , j � 0, is incorpo-
rated into the analysis. This perspective renders estimation of latent variables from past
data alone (filtering) as well as from all available, including future, data (smoothing)
useful. In contrast, GARCH models treat the conditional variance as observable given
past information and, as discussed above, typically applies (quasi-) maximum likelihood
techniques for inference, so smoothing has no role in that setting.

Despite these differences, the two model classes are closely related, and we consider
them to be complementary rather than competitors. In fact, from a practical forecasting
perspective it is hard to distinguish the performance of standard ARCH and SV mod-
els. Hence, even if one were to think that the SV framework is appealing, the fact that
ARCH models typically are easier to estimate explains practitioners reliance on ARCH
as the volatility forecasting tool of choice. Nonetheless, the development of power-
ful method of simulated moments, Markov Chain Monte Carlo (MCMC) and other
simulation based procedures for estimation and forecasting of SV models may render
them competitive with ARCH over time. Moreover, the development of the concept of
realized volatility and the associated use of intraday data for volatility measurement,
discussed in the next section, is naturally linked to the continuous-time SV framework
of financial economics.
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The literature on SV models is vast and rapidly growing, and excellent surveys are
already available on the subject, e.g., Ghysels, Harvey and Renault (1996) and Shephard
(1996, 2004). Consequently, we focus on providing an overview of the main approaches
with particular emphasis on the generation of volatility forecasts within each type of
model specification and inferential technique.

4.1. Model specification

Roughly speaking, there are two main perspectives behind the SV paradigm when used
in the context of modeling financial rate of returns. Although both may be adapted to
either setting, there are precedents for one type of reasoning to be implemented in dis-
crete time and the other to be cast in continuous time. The first centers on the Mixture of
Distributions Hypothesis (MDH), where returns are governed by an event time process
that represents a transformation of the time clock in accordance with the intensity of
price relevant news, dating back to Clark (1973). The second approach stems from fi-
nancial economics where the price and volatility processes often are modeled separately
via continuous sample path diffusions governed by stochastic differential equations. We
briefly introduce these model classes and point out some of the similarities to ARCH
models in terms of forecasting procedures. However, the presence of a latent volatility
factor renders both the estimation and forecasting problem more complex for the SV
models. We detail these issues in the following subsections.

4.1.1. The mixture-of-distributions hypothesis

Adopting the rational perspective that asset prices reflect the discounted value of future
expected cash flows, such prices should react almost continuously to the myriad of
news that arrive on a given trading day. Assuming that the number of news arrival is
large, one may expect a central limit theory to apply and financial returns should be
well approximated by a conditional normal distribution with the conditioning variable
corresponding to the number of relevant news events. More generally, a number of other
variables associated with the overall activity of the financial market such as the daily
number of trades, the daily cumulative trading volume or the number of quotes may
well be similarly related to the information flow in the market. These considerations
inspire the following type of representation,

(4.1)yt = µyst + σys
1/2
t zt ,

where yt is the market “activity” variable under consideration, st is the strictly posi-
tive process reflecting the intensity of relevant news arrivals, µy represents the mean
response of the variable per news event, σy is a scale parameter, and zt is i.i.d. N(0, 1).
Equivalently, this relationship may be written as

(4.2)yt |st ∼ N
(
µyst , σ

2
y st

)
.
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This formulation constitutes a normal mixture model. If the st process is time-varying
it induces a fat-tailed unconditional distribution, consistent with stylized facts for most
return and trading volume series. Intuitively, days with high information flow display
more price fluctuations and activity than days with fewer news releases. Moreover, if
the st process is positively correlated, then shocks to the conditional mean and variance
process for yt will be persistent. This is consistent with the observed activity clustering
in financial markets, where return volatility, trading volume, the number of transactions
and quotes, the number of limit orders submitted to the market, etc., all display pro-
nounced serial dependence.

The specification in (4.1) is analogous to the one-step-ahead decomposition given
in Equation (3.5). The critical difference is that the formulation is endowed with a
structural interpretation, implying that the mean and variance components cannot be
observed prior to the trading day as the number of news arrivals is inherently random.
In fact, it is usually assumed that the st process is unobserved by the econometrician,
even during period t , so that the true mean and variance series are both latent. From a
technical perspective this implies that we must distinguish between the full information
set (st ∈ Ft ) and observable information (st /∈ �t ). The latter property is a defining fea-
ture of the genuine volatility class. The inability to observe this important component of
the MDH model complicates inference and forecasting procedures as discussed below.

In the case of short horizon return series, µy is close to negligible and can reasonably
be ignored or simply fixed at a small constant value. Furthermore, if the mixing variable
st is latent then the scaling parameter, σy , is not separately identified and may be fixed
at unity. This produces the following return (innovation) model,

(4.3)rt = s
1/2
t zt ,

implying a simple normal-mixture representation,

(4.4)rt |st ∼ N(0, st ).

Both univariate models for returns of the form (4.4) or multivariate systems includ-
ing a return variable along with other related market activity variables, such as trading
volume or the number of transactions, are referred to as derived from the Mixture-of-
Distributions Hypothesis (MDH).

The representation in (4.3) is of course directly comparable to that for the return
innovation in Equation (3.5). It follows immediately that volatility forecasting is related
to forecasts of the latent volatility factor given the observed information,

(4.5)Var(rt+h | �t ) = E(st+h | �t ).

If some relevant information is not observed and thus not included in �t , then the ex-
pression in (4.5) will generally not represent the actual conditional return variance,
E(st+h | Ft ). This point is readily seen through a specific example.

In particular, Taylor (1986) first introduced the log-SV model by adopting an autore-
gressive parameterization of the latent log-volatility (or information flow) variable,

(4.6)log st+1 = η0 + η1 log st + ut , ut ∼ i.i.d.
(
0, σ 2

u

)
,
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where the disturbance term may be correlated with the innovation in the return equation,
that is, ρ = corr(ut , zt ) �= 0. This particular representation, along with a Gaussian
assumption on ut , has been so widely adopted that it has come to be known as the
stochastic volatility model. Note that, if ρ is negative, there is an asymmetric return-
volatility relationship present in the model, akin to the “leverage effect” in the GJR and
EGARCH models discussed in Section 3.3, so that negative return shocks induce higher
future volatility than similar positive shocks. In fact, it is readily seen that the log-SV
formulation in (4.6) generalizes the EGARCH(1, 1) model by considering the case,

(4.7)ut = α
(|zt | − E|zt |

) + γ zt ,

where the parameters η0 and η1 correspond to ω and β in Equation (3.15), respectively.
Under the null hypothesis of EGARCH(1, 1), the information set, �t , includes past
asset returns, and the idiosyncratic return innovation series, zt , is effectively observable
so likelihood based analysis is straightforward. However, if ut is not (only) a function
of zt , i.e., Equation (4.7) no longer holds, then there are two sources of error in the
system. In this more general case it is no longer possible to separately identify the
underlying innovations to the return and volatility processes, nor the true underlying
volatility state.

This above example illustrates both how any ARCH model may be seen as a spe-
cial case of a corresponding SV model and how the defining feature of the genuine SV
model may complicate forecasting, as the volatility state is unobserved. Obviously, in
representations like (4.6), the current state of volatility is a critical ingredient for fore-
casts of future volatility. We expand on the tasks confronting estimation and volatility
forecasting in this setting in Section 4.1.3.

There are, of course, an unlimited number of alternative specifications that may be
entertained for the latent volatility process. However, Stochastic Autoregressive Volatil-
ity (SARV) of Andersen (1994) has proven particular convenient. The representation is
again autoregressive,

(4.8)vt = ω + βvt−1 + [γ + αvt−1]ut ,

where ut denotes an i.i.d. sequence, and st = g(vt ) links the dynamic evolution of the
state variable to the stochastic variance factor in Equation (4.3). For example, for the
log-SV model, g(vt ) = exp(vt ). Likewise, SV generalizations of the GARCH(1, 1)

may be obtained via g(vt ) = vt and an SV extension of a GARCH model for the
conditional standard deviation is produced by letting g(vt ) = v

1/2
t . Depending upon

the specific transformation g(·) it may be necessary to impose additional (positivity)
constraints on the innovation sequence ut , or the parameters in (4.8). Even if inference
on parameters can be done, moment based procedures do not produce estimates of the
latent volatility process, so from a forecasting perspective the analysis must necessarily
be supplemented with some method of approximating the sample path realization of the
underlying state variables.
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4.1.2. Continuous-time stochastic volatility models

The modeling of asset returns in continuous time stems from the financial economics
literature where early contributions to portfolio selection by Merton (1969) and option
pricing by Black and Scholes (1973) demonstrated the analytical power of the diffu-
sion framework in handling dynamic asset allocation and pricing problems. The idea
of casting these problems in a continuous-time diffusion context also has a remarkable
precedent in Bachelier (1900).

Under weak regularity conditions, the general representation of an arbitrage-free asset
price process is

(4.9)dp(t) = µ(t) dt + σ(t) dW(t) + j (t) dq(t), t ∈ [0, T ],
where µ(t) is a continuous, locally bounded variation process, the volatility process
σ(t) is strictly positive, W(t) denotes a standard Brownian motion, q(t) is a jump indi-
cator taking the values zero (no jump) or unity (jump) and, finally, the j (t) represents
the size of the jump if one occurs at time t . [See, e.g., Andersen, Bollerslev and Diebold
(2003a) for further discussion.] The associated one-period return is

r(t) = p(t) − p(t − 1)

(4.10)=
∫ t

t−1
µ(τ) dτ +

∫ t

t−1
σ(τ) dW(τ) +

∑
t−1�τ<t

κ(τ ),

where the last sum simply cumulates the impact of the jumps occurring over the period,
as we define κ(t) = j (t) · I(q(t) = 1), so that κ(t) is zero everywhere except when a
discrete jump occurs.

In this setting a formal ex-post measure of the return variability, derived from the
theory of quadratic variation for semi-martingales, may be defined as

(4.11)QV(t) ≡
∫ t

t−1
σ 2(s) ds +

∑
t−1<s�t

κ2(s).

In the special case of a pure SV diffusion, the corresponding quantity reduces to the
integrated variance, as already defined in Equation (1.11) in Section 1,

(4.12)IV(t) ≡
∫ t

t−1
σ 2(s) ds.

These return variability measures are naturally related to the return variance. In fact, for
a pure SV diffusion (without jumps) where the volatility process, σ(τ), is independent
of the Wiener process, W(τ), we have

(4.13)r(t)
∣∣{µ(τ), σ (τ ); t − 1 � τ � t

} ∼ N

(∫ t

t−1
µ(τ) dτ,

∫ t

t−1
σ 2(τ ) dτ

)
,
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so the integrated variance is the true measure of the actual (ex-post) return variance
in this context. Of course, if the conditional variance and mean processes evolve sto-
chastically we cannot perfectly predict the future volatility, and we must instead form
expectations based on the current information. For short horizons, the conditional mean
variation is negligible and we may focus on the following type of forecasts, for a positive
integer h,

(4.14)Var
(
r(t + h)

∣∣ �t

) ≈ E

[∫ t+h

t+h−1
σ 2(τ ) dτ

∣∣∣ �t

]
≡ E

[
IV(t + h)

∣∣ �t

]
.

The expressions in (4.13) and (4.14) generalize the corresponding equations for
discrete-time SV models in (4.4) and (4.5), respectively. Of course, the return varia-
tion arising from the conditional mean process may need to be accommodated as well
over longer horizons. Nonetheless, the dominant term in the return variance forecast
will invariably be associated with the expected integrated variance or, more generally,
the expected quadratic variation. In simple continuous-time models, we may be able to
derive closed-form expressions for these quantities, but in empirically realistic settings
they are typically not available in analytic form and alternative procedures must be used.
We discuss these issues in more detail below.

The initial diffusion models explored in the literature were not genuine SV diffusions
but rather, with a view toward tractability, cast as special cases of the constant elasticity
of variance (CEV) class of models,

(4.15)dp(t) = (
µ − φ

[
p(t) − µ

])
dt + σp(t)γ dW(t), t ∈ [0, T ],

where φ � 0 determines the strength of mean reversion toward the unconditional mean
µ in the log-price process, while γ � 0 allows for conditional heteroskedasticity in
the return process. Popular representations are obtained by specific parameter restric-
tions, e.g., the Geometric Brownian motion for φ = 0 and γ = 0, the Vasicek model
for γ = 0, and the Cox-Ingersoll and Ross (CIR) or square-root model for γ = 1

2 .
These three special cases allow for a closed-form characterization of the likelihood,
so the analysis is straightforward. Unfortunately, they are also typically inadequate in
terms of capturing the volatility dynamics of asset returns. A useful class of extensions
have been developed from the CIR model. In this model the instantaneous mean and
variance processes are both affine functions of the log price. The affine model class ex-
tends the above representation with γ = 1

2 to a multivariate setting with general affine
conditional mean and variance specifications. The advantage is that a great deal of an-
alytic tractability is retained while allowing for more general and empirically realistic
dynamic features.

Many genuine SV representations of empirical interest fall outside of the affine class,
however. For example, Hull and White (1987) develop a theory for option pricing under
stochastic volatility using a model much in the spirit of Taylor’s discrete-time log SV in
Equation (4.6). With only a minor deviation from their representation, we may write it,
for t ∈ [0, T ],
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(4.16)
dp(t) = µ(t) dt + σ(t) dW(t),

d log σ 2(t) = β
(
α − log σ 2(t)

)
dt + v dWσ (t).

The strength of the mean reversion in (log) volatility is given by β and the volatility is
governed by v. Positive but low values of β induces a pronounced volatility persistence,
while large values of v increase the idiosyncratic variation in the volatility series. Fur-
thermore, the log transform implies that the volatility of volatility rises with the level of
volatility, even if v is time invariant. Finally, a negative correlation, ρ < 0, between the
Wiener processes W(t) and Wσ (t) will induce an asymmetric return-volatility relation-
ship in line with the leverage effect discussed earlier. As such, these features allow the
representation in (4.16) to capture a number of stylized facts about asset return series
quite parsimoniously.

Another popular nonaffine specification is the GARCH diffusion analyzed by Drost
and Werker (1996). This representation can formally be shown to induce a GARCH type
behavior for any discretely sampled price series and it is therefore a nice framework for
eliciting and assessing information about the volatility process through data gathered
at different sampling frequencies. This is also the process used in the construction of
Figure 1. It takes the form

(4.17)
dp(t) = µ dt + σ(t) dW(t),

dσ 2(t) = β
(
α − σ 2(t)

)
dt + vσ 2(t) dWσ (t),

where the two Wiener processes are now independent.
The SV diffusions in (4.16) and (4.17) are but simple examples of the increasingly

complex multi-factor (affine as well as nonaffine) jump-diffusions considered in the
literature. Such models are hard to estimate by standard likelihood or method of mo-
ments techniques. This renders their use in forecasting particularly precarious. There is
a need for both reliable parameter estimates and reliable extraction of the values for the
underlying state variables. In particular, the current value of the state vector (and thus
volatility) constitutes critical conditioning information for volatility prediction. The use-
fulness of such specifications for volatility forecasting is therefore directly linked to the
availability of efficient inference methods for these models.

4.1.3. Estimation and forecasting issues in SV models

The incorporation of a latent volatility process in SV models has two main conse-
quences. First, estimation cannot be performed through a direct application of maximum
likelihood principles. Many alternative procedures will involve an efficiency loss rel-
ative to this benchmark so model parameter uncertainty may then be larger. Since
forecasting is usually made conditional on point estimates for the parameters, this will
tend to worsen the predictive ability of model based forecasts. Second, since the current
state for volatility is not observed, there is an additional layer of uncertainty surrounding
forecasts made conditional on the estimated state of volatility. We discuss these issues
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below and the following sections then review two alternative estimation and forecasting
procedures developed, in part, to cope with these challenges.

Formally, the SV likelihood function is given as follows. Let the vector of re-
turn (innovations) and volatilities over [0, T ] be denoted by r = (r1, . . . , rT ) and
s = (s1, . . . , sT ), respectively. Collecting the parameters in the vector θ , the proba-
bility density for the data given θ may then be written as

f (r; θ) =
∫

f (r, s; θ) ds =
T∏

t=1

f (rt | �t−1; θ)

(4.18)=
T∏

t=1

∫
f (rt | st ; θ)f (st | �t−1; θ) dst .

For parametric discrete-time SV models, the conditional density f (rt | st , θ) is typically
known in closed form, but f (st | �t−1; θ) is not available. Without being able to utilize
this decomposition, we face an integration over the full unobserved volatility vector
which is a T -dimensional object and generally not practical to compute given the serial
dependence in the latent volatility process.

The initial response to these problems was to apply alternative estimation procedures.
In his original treatment Taylor (1986) uses moment matching. Later, Andersen (1994)
shows that it is feasible to estimate a broad class of discrete-time SV models through
standard GMM procedures. However, this is not particularly efficient as the uncon-
ditional moments that may be expressed in closed form are quite different from the
(efficient) score moments associated with the (infeasible) likelihood function. Another
issue with GMM estimates is the need to extract estimates of the state variables if it is to
serve as a basis for volatility forecasting. GMM does not provide any direct identifica-
tion of the state variables, so this must be addressed in a second step. In that regard, the
Kalman filter was often used. This technique allows for sequential estimation of para-
meters and latent state variables. As such, it provides a conceptual basis for the analysis,
even if the basic Kalman filter is inadequate for general nonlinear and non-Gaussian SV
models.

Nelson (1988) first suggested casting the SV estimation problem in a state space
setting. We illustrate the approach for the simplest version of the log-SV model without
a leverage effect, that is, ρ = 0 in (4.4) and (4.6). Now, squaring the expression in (4.3),
takings logs and assuming Gaussian errors in the transition equation for the volatility
state in Equation (4.6), it follows that

log r2
t = log st + log z2

t , zt ∼ i.i.d. N(0, 1),

log st+1 = η0 + η1 log st + ut , ut ∼ i.i.d. N
(
0, σ 2

u

)
.

To conform with standard notation, it is useful to consolidate the constant from the
transition equation into the measurement equation for the log-squared return residual.
Defining ht ≡ log st , we have
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(4.19)
log r2

t = ω + ht + ξt , ξt ∼ i.i.d. (0, 4.93),

ht+1 = ηht + ut , ut ∼ i.i.d. N
(
0, σ 2

u

)
,

where ω = η0 +E(log z2
t ) = η0 −1.27, η = η1, and ξt is a demeaned log χ2 distributed

error term. The system in (4.19) is given in the standard linear state space format. The
top equation provides the measurement equation where the squared return is linearly
related to the latent underlying volatility state and an i.i.d. skewed and heavy tailed
error term. The bottom equation provides the transition equation for the model and is
given as a first-order Gaussian autoregression.

The Kalman filter applies directly to (4.19) by assuming Gaussian errors; see, e.g.,
Harvey (1989, 2006). However, the resultant estimators of the state variables and the
future observations are only minimum mean-squared error for estimators that are lin-
ear combinations of past log r2

t . Moreover, the non-Gaussian errors in the measurement
equation implies that the exact likelihood cannot be obtained from the associated predic-
tion errors. Nonetheless, the Kalman filter may be used in the construction of QMLEs of
the model parameters for which asymptotically valid inference is available, even if these
estimates generally are fairly inefficient. Arguably, the most important insight from the
state space representation is instead the inspiration it has provided for the development
of more efficient estimation and forecasting procedures through nonlinear filtering tech-
niques.

The state space representation directly focuses attention on the task of making in-
ference regarding the latent state vector, i.e., for SV models the question of what we
can learn about the current state of volatility. A comprehensive answer is provided by
the solution to the filtering problem, i.e., the distribution of the state vector given the
current information set, f (st | �t ; θ). Typically, this distribution is critical in obtaining
the one-step-ahead volatility forecast,

(4.20)f (st | �t−1; θ) =
∫

f (st | st−1; θ)f (st−1 | �t−1; θ) dst−1,

where the first term in the integral is obtained directly from the transition equation in the
state space representation. Once the one-step-ahead distribution has been determined,
the task of constructing multiple-step-ahead forecasts is analogous to the corresponding
problem under ARCH models where multi-period forecasts also generally depend upon
the full distributional characterization of the model. A unique feature of the SV model
is instead the smoothing problem, related to ex-post inference regarding the in-sample
volatility given the set of observed returns over the full sample, f (st | �T ; θ), where
t � T . At the end of the sample, either the filtering or smoothing solution can serve as
the basis for out-of-sample volatility forecasts (for h a positive integer),

(4.21)f (sT +h | �T ; θ) =
∫

f (sT +h | sT ; θ)f (sT | �T ; θ) dsT ,

where, again, given the solution for h = 1, the problem of determining the multi-period
forecasts is analogous to the situation with multi-period ARCH-based forecasts dis-
cussed in Section 3.6.
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As noted, all of these conditional volatility distributions may in theory be derived in
closed form under the linear Gaussian state space representation via the Kalman filter.
Unfortunately, even the simplest SV model contains some non-Gaussian and/or nonlin-
ear elements. Hence, standard filtering methods provide, at best, approximate solutions
and they have generally been found to perform poorly in this setting, in turn necessi-
tating alternative more specialized filtering and smoothing techniques. Moreover, we
have deliberately focused on the discrete-time case above. For the continuous-time SV
models, the complications are more profound as even the discrete one-period return
distribution conditional on the initial volatility state typically is not known in closed
form. Hence, not only is the last term on the extreme right of Equation (4.18) unknown,
but the first term is also intractable, further complicating likelihood-based analysis. We
next review two recent approaches that promise efficient inference more generally and
also provide ways of extracting reliable estimates of the latent volatility state needed for
forecasting purposes.

4.2. Efficient method of simulated moments procedures for inference and forecasting

The Efficient Method of Moments (EMM) procedure is the prime example of a Method
of Simulated Moments (MSM) approach that has the potential to deliver efficient infer-
ence and produce credible volatility forecasting for general SV models. The intuition
behind EMM is that, by traditional likelihood theory, the scores (the derivative of the log
likelihood with respect to the parameter vector) provide efficient estimating moments. In
fact, maximum likelihood is simply a just-identified GMM estimator based on the score
(moment) vector. Hence, intuitively, from an efficiency point of view, one would like to
approximate the score vector when choosing the GMM moments. Since the likelihood
of SV models is intractable, the approach is to utilize a semi-nonparametric approx-
imation to the log likelihood estimated in a first step to produce the moments. Next,
one seeks to match the approximating score moments with the corresponding moments
from a long simulation of the SV model. Thus, the main requirement for applicability
of EMM is that the model can be simulated effectively and the system is stationary so
that the requisite moments can be computed by simple averaging from a simulation of
the system. Again, this idea, like the MCMC approach discussed in the next section, is,
of course, applicable more generally, but for concreteness we will focus on estimation
and forecasting with SV models for financial rate of returns.

More formally, let the sample of discretely observed returns be given by r =
(r1, r2, . . . , rT ). Moreover, let xt−1 denote the vector of relevant conditioning vari-
ables for the log-likelihood function at time t , and let x = (x0, x1, . . . , xT −1). For
simplicity, we assume a long string of prior return observations are the only compo-
nents of x, but other predetermined variables from an extended dynamic representation
of the system may be incorporated as well. In the terminology of Equation (4.18), the
complication is that the likelihood contribution from the t th return is not available, that
is, f (rt | �t−1; θ) ≡ f (rt | xt−1; θ) is unknown. The proposal is to instead approx-
imate this density by a flexible semi-nonparametric (SNP) estimate using the full data
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sample. Without going into specifics, an appropriate procedure may be developed to
obtain a close approximation to this conditional density within a class of SNP densi-
ties which are analytically tractable and allow for explicit computation of the associated
score vector. The leading term will typically consist of a GARCH type model. Essen-
tially, the information regarding the probabilistic structure available from the data is
being encoded into an empirically tractable SNP representation, so that, for a large
enough sample, we have

(4.22)g(rt | xt−1; η̂T ) ≈ f (rt | �t−1; θ0),

where g(rt | xt−1; η̂T ) denotes the fitted SNP density evaluated at the (pseudo) max-
imum likelihood estimate η̂T , and θ0 denotes the true (unknown) parameter vector of
the model generating the data under the null hypothesis. In general, the functional form
of g is entirely different from the unknown f , and hence there is no direct compatibility
between the two parameter vectors η and θ , although we require that the dimension of η

is at least as large as that of θ . Notice how this SNP representation sidesteps the lack
of a tractable expression for the likelihood contribution as given by the middle term in
the likelihood expression in (4.18). Although the SNP density is not used for formal
likelihood estimation, it is used to approximate the “efficient” score moments.

By construction, η̂T satisfies a set of first order conditions for the pseudo log-
likelihood function under the empirical measure induced by the data, that is, letting
r t = (rt , xt−1), it holds that

(4.23)
1

T

T∑
t=1

∂

∂η
log g(rt | xt−1; η̂T ) ≡ 1

T

T∑
t=1

ψT ( r t ) = 0.

It is clear that (4.23) takes the form of (pseudo) score moments. This representa-
tion of the data through a set of (efficient) moment conditions is the key part of the
“projection step” of EMM. The data structure has effectively been projected onto an
analytically tractable class of SNP densities augmented, as appropriate, by a leading
dynamic (GARCH) term.

Since we are working under the assumption that we have a good approximation to
the underlying true conditional density, we would intuitively expect that, for T large,

(4.24)Eθ0

[
ψT (r̃)

] ≈ 1

M

M∑
i=1

ψT ( r̃ i) ≈ 1

T

T∑
t=1

ψT ( r t ) = 0,

and any large artificial sample, r̃ = (r̃1, r̃2, . . . , r̃N , x̃0, x̃1, . . . , x̃M−1), generated by
the same assumed (true) data generating process, f (rt | �t−1; θ0), that is behind the ob-
served return data, r . These conjectures are formalized by Gallant and Tauchen (1996),
who show how the pseudo score moments obtained in (4.23) by fixing η̂T can serve as
valid (and efficient) moment conditions for estimating the parameter of interest, θ . Since
no analytic expression for the expectation on the extreme left in (4.24) is available, they
propose a simulation estimator where the expectation is approximated arbitrarily well
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by a very large simulated sample moment (M � T ) from the true underlying model.
The ability to practically eliminate the simulation error renders the EMM estimator (in
theory) independent of simulation size, M , but the uncertainty associated with the pro-
jection step, for which the sample size is constrained by the actual data, remains and the
estimator, θ̂T , is asymptotically normal with standard errors that reflects the estimation
uncertainty in (4.23).

An obvious attraction of the EMM technique, beyond the potential for efficient infer-
ence, is that there are almost no restrictions on the underlying parametric model apart
from stationarity and the ability to be able to simulate effectively from the model. This
implies that the procedure can be used for continuous-time processes, even if we only
observe a set of discretely sampled data. A seemingly important drawback, however, is
the lack of any implied estimates of the underlying latent state variables which are crit-
ical for successful forecasting. Gallant and Tauchen (1998) provides a solution within
the EMM setting through the so-called reprojection technique, but the procedure can
be used more widely in parametric dynamic latent variable model estimated by other
means as well.

Reprojection takes the parameter estimate of the system as given, i.e., the EMM
estimator for θ in the current context. It is then feasible to generate arbitrarily long sim-
ulated series of observable and latent variables. These simulated series can be used for
estimation of the conditional density via a SNP density function approximation as under
the projection step described above. In other words, the identical procedure is exploited
but now for a long simulated series from the null model rather than for the observed
data sample. For illustration, let r̃ = (r̃1, r̃2, . . . , r̃N , x̃0, x̃1, . . . , x̃M−1) be a long sim-
ulated series from the null model, f (ri | Fi−1; θ̂T ), where we condition on the EMM
estimate. We may then utilize the SNP density estimate based on the simulated sample,
g(r̃t | x̃t−1; η̃), in lieu of the unknown density for practical calculations, where the point
estimate, η̃, is treated as independent of the sample size M since the estimation error is
negligible for a sufficiently large simulated sample. In effect, the simulations integrate
out the latent variables in the representation (4.5). Given the tractability of the SNP den-
sities, we can now evaluate the one-step-ahead conditional mean and variance (or any
other moments of interest) directly as a function of any observed history xt−1 by simply
plugging into the SNP density estimate and perform the integration analytically – this is
the reprojection step of recombining the SNP density with the actual data. Clearly, the
corresponding multi-step ahead conditional density estimates can be constructed in an
analogous fashion. Moreover, since the simulations also generate contemporaneous val-
ues for the latent state vectors we may similarly represent the conditional distributions
of future latent state variables given the current and past observable variables through
the SNP density approximation strategy,

(4.25)f
(
s̃t+j

∣∣ x̃t ; θ̂T

) ≈ g(s̃t+j | x̃t ; η̃), j � 0.

This allows for direct forecasts of conditional volatility and associated quantities in a
genuine SV setting. As such, reprojection may be interpreted as a numerically intensive,
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simulation-based, nonlinear Kalman filtering technique, providing a practical solution
to the filtering and forecasting problems in Equations (4.20) and (4.21).

4.3. Markov Chain Monte Carlo (MCMC) procedures for inference and forecasting

The MCMC method represents a Bayesian approach to the high-dimensional inference
problem implicit in the expression for the likelihood given in Equation (4.18). The ap-
proach was advocated as particularly well suited for analysis of the discrete SV model
by Jacquier, Polson and Rossi (1994). Beyond the standard Bayesian perspective of
treating the model parameters as random variables rather than fixed coefficients, the
main conceptual shift is that the entire latent state vector is treated as additional parame-
ters. Hence, the main focus is on the joint distribution of the parameters and the vector
of state variables, ψ = (θ, s ), conditional on the data, f (ψ | r ), termed the posterior
distribution. This density is extremely high dimensional and analytically intractable.
The MCMC approach instead exploits that the joint distribution can be characterized
fully through a set of associated conditional distributions where the density for a group
of parameters, or even a single parameter, is expressed conditional on the remaining
parameters. Concretely, let ψi denote the ith group of coefficients in ψ , and ψ−I be
the vector obtained from ψ by excluding the ith group of coefficients. The so-called
Clifford–Hammersley theorem then implies that the following set of conditional distri-
butions determines f (ψ | r ):

(4.26)f (ψ1 | ψ−1, r ), f (ψ2 | ψ−2, r ), . . . , f (ψk | ψ−k, r ),

where, as described above, ψ = (ψ1, ψ2, . . . , ψk) is treated as k exclusive subsets of
parameters.

The MCMC procedure starts by initializing ψ = (θ, s ) through conditioning on the
observed data, r , and drawing ψ from the assumed prior distribution. Next, by combin-
ing the current draw for the parameter vector with the specified SV model dynamics and
the observed returns, it is often feasible to draw the (group of) parameters sequentially
conditional on the remainder of the system and cycle through the conditional densities
in (4.26). A full run through the parameter vector is termed a sweep of the MCMC sam-
pler. Some of these distributions may not be given in closed form and the draws may
need to be extended through an accept–reject procedure termed a Metropolis–Hastings
algorithm to ensure that the resulting Markov chain produces draws from the invari-
ant joint posterior target distribution. If all the conditional distributions can be sampled
directly we have a Gibbs sampler, but SV models often call for the two techniques to
be used at different stages of the sweep, resulting in a hybrid MCMC algorithm. Typi-
cally, a large number of sweeps is necessary to overcome the serial dependence inherent
in draws of any parameter from subsequent sweeps of the sampler. Once a long sample
from the joint posterior distribution has been generated, inference on individual parame-
ters and latent state variables can be done via the mode, mean and standard deviation of
the posterior distribution, for example. Likewise, we can analyze properties of functions
of the state variables directly using the posterior distribution.
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A key advantage of the MCMC procedure is that the distribution of the latent state
vector is obtained as an inherent part of the estimation. Moreover, the inference au-
tomatically accounts for the uncertainty regarding model parameters, θ . The resulting
chain produces an elegant solution to the smoothing problem of determining f (s | r).
Of course, from a forecasting perspective, the interest is in determining f (st+j | x t ),
where the integer j � 0 and x t = (r1, r2, . . . , rt ), rather than f (st+j | x T ) which
is generated by the MCMC procedure. Unfortunately, the filter related distribution,
f (st+1 | x t ), corresponds to the intractable term in Equation (4.18) that renders the
likelihood estimation impractical for genuine SV models. The MCMC inference pro-
cedure succeeds by sidestepping the need to compute this quantity. However, given the
economic import of the issue, recent research is actively seeking new effective ways for
better handling the filtering problem within the MCMC framework.

For a discrete-time SV model, the possibility of filtering as well as sequential one-
step-ahead volatility forecasting is linked to the feasibility of providing an effective
scheme to generate a random sample from f (st+1 | x t , θ) given an existing set of
draws (or particles), s1

t , s2
t , . . . , sN

t , from the preceding distribution f (st | x t−1, θ).
Such an algorithm is termed a particle filter. In order to recognize the significance of
the particle filter, note that by Bayes’ law,

(4.27)f (st+1 | x t+1, θ) ∝ f (rt+1 | st+1, θ)f (st+1 | x t , θ).

The first distribution on the right-hand side is typically specified directly by the SV
model, so the issue of determining the filtering distribution on the left-hand side is
essentially equivalent to the task of obtaining the predictive distribution of the state
variable on the extreme right. But given a large set of particles we can approximate the
latter term in straightforward fashion,

f (st+1 | x t , θ) =
∫

f (st+1 | st , θ)f (st | x t , θ) dst

(4.28)≈ 1

M

M∑
j=1

f
(
st+1

∣∣ s
j
t , θ

)
.

This provides a direct solution to the latent state vector forecasting problem, that in turn
can be plugged into (4.27) to provide a sequential update to the particle filter. This in
essence is the MCMC answer to the filtering and out-of-sample forecasting problems
in Equations (4.20) and (4.21). The main substantive problem is how to best sample
from the last distribution in (4.28), as schemes which may appear natural can be very
inefficient; see, e.g., the discussion and suggestions in Kim, Shephard and Chib (1998).

In summary, the MCMC approach works well for many problems of significant in-
terest, but there are serious issues under scrutiny concerning the use of the technique
for more complex settings. When applicable, it has some unique advantages such as
providing a complete solution to the smoothing problem and accounting for inherent
parameter estimation uncertainty. On the other hand, there are systems that are more
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amenable to analysis under EMM and the associated diagnostic tools and general repro-
jection procedures under EMM render it a formidable contender. It is remarkable that
the issues of efficient forecasting and filtering within genuine SV models now has two
attractive, albeit computationally intensive, solutions whereas just a few years ago no
serious approach to the problem existed.

4.4. Further reading

The formal distinction between genuine stochastic volatility and ARCH models is de-
veloped in Andersen (1992); see also Fleming and Kirby (2003). An early advocate for
the Mixture-of-Distributions-Hypothesis (MDH), beyond Clark (1973), is Praetz (1972)
who shows that an i.i.d. mixture of a Gaussian term and an inverted Gamma distribu-
tion for the variance will produce Student t distributed returns. However, if the variance
mixture is not linked to observed variables, the i.i.d. mixture is indistinguishable from
a standard fat-tailed error distribution and the associated volatility process is not part of
the genuinely stochastic volatility class.

Many alternative representations of the driving process st have been proposed. Clark
(1973) observes that trading volume is highly correlated with return volatility and sug-
gest that volume may serve as a good proxy for the “activity variable”, st . Moreover, he
finds volume to be approximately lognormal (unconditionally), suggesting a lognormal–
normal mixture for the return distribution. One drawback of this formulation is that daily
trading volume is assumed i.i.d. Not only is this counterfactual for trading volume, but
it also implies that the return process is i.i.d. This is at odds with the strong empirical
evidence of pronounced temporal dependence in return volatility. A number of nat-
ural extensions arise from the simple MDH. Tauchen and Pitts (1983) provide a more
structural interpretation, as they develop a characterization of the joint distribution of
the daily return and volume relationship governed by the underlying latent information
flow st . However, partially for tractability, they retain the temporal independence of the
information flow series. For early tests of the MDH model using high-frequency data
[see, e.g., Harris (1986, 1987)], while the early return-volume literature is surveyed by
Karpoff (1987). Gallant, Rossi and Tauchen (1992) provides an extensive study of the
joint conditional distribution without imposing any MDH restrictions. Direct studies of
the MDH include Lamoureux and Lastrapes (1994) and Richardson and Smith (1994).
While the latter strongly rejects the standard MDH formulation, Andersen (1996) devel-
ops an alternative structurally based version of the hypothesis and finds the “modified”
MDH to perform much better. Further refinements in the specification have been pur-
sued by, e.g., Liesenfeld (1998, 2001) and Bollerslev and Jubinsky (1999). In principle,
the use of additional nonreturn variables along with return data should enhance estima-
tion efficiency and allow for a better assessment of current market conditions. On the
other hand, it is far from obvious that structural modeling of complicated multivariate
models will prove useful in a prediction context as even minor misspecification of the
additional series in the system may impede forecast performance. In fact, there is no
credible evidence yet that these models help improve volatility forecast performance,
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even if they have importantly enhanced our understanding of the qualitative functioning
of financial markets.

SV diffusion models of the form analyzed by Hull and White (1987) were also pro-
posed concurrently by Johnson and Shanno (1987), Scott (1987), and Wiggins (1987).
An early specification and exploration of a pure jump continuous-time model is Merton
(1976). Melino and Turnbull (1990) were among the first to estimate SV models via
GMM. The log-SV model from (4.2)–(4.3) has emerged as a virtual testing ground for
alternative inference procedures in this context. Andersen and Sørensen (1996) provide
a systematic study of the choice of moments and weighting matrix for this particu-
lar model. The lack of efficiency is highlighted in Andersen, Chung and Sørensen (?)
where the identical model is estimated through the scores of an auxiliary model devel-
oped in accordance with the efficient method of moments (EMM) procedure. Another
useful approach is to apply GMM to moment conditions in the spectral domain; see,
e.g., Singleton (2001), Jiang and Knight (2002), and Chacko and Viceira (2003). Within
the QMLE Kalman filter based approach, a leverage effect may be incorporated and al-
lowance for the idiosyncratic return error to be conditionally Student t distributed can be
made, as demonstrated by Harvey, Ruiz and Shephard (1994) and Harvey and Shephard
(1996). Andersen and Sørensen (1997) provides an extensive discussion of the relative
efficiency of QMLE and GMM for estimation of the discrete-time log-SV model. The
issue of asymptotically optimal moment selection for GMM estimation from among
absolute or log squared returns in the log-SV model has received a near definitive treat-
ment in Dhaene and Vergote (2004). The standard log-SV model has also been estimated
through a number of other techniques by among others Danielsson and Richard (1993),
Danielsson (1994), Fridman and Harris (1998), Monfardini (1998), and Sandmann and
Koopman (1998). Long memory in volatility as discussed in Section 3.4 can be simi-
larly accommodated within an SV setting; see, e.g., Breidt, Crato and de Lima (1998),
Harvey (1998), Comte and Renault (1998), and Deo and Hurvich (2001). Duffie, Pan
and Singleton (2000) is a good reference for a general treatment of modeling with the
so-called affine class of models, while Piazzesi (2003) provides a recent survey of these
models with a view toward term structure applications.

EMM may be seen as a refinement of the Method of Simulated Moments (MSM)
of Duffie and Singleton (1993), representing a particular choice of indirect inference
criterion, or binding function, in the terminology of Gouriéroux, Monfort and Renault
(1993). The approach also has precedents in Smith (1990, 1993). An early application of
EMM techniques to the discrete-time SV model is Gallant, Hsieh and Tauchen (1997).
Among the earliest papers using EMM for stochastic volatility models are Andersen and
Lund (1997) and Gallant and Tauchen (1997). Extensions of the EMM approach to SV
jump-diffusions are found in Andersen, Benzoni and Lund (2002) and Chernov et al.
(2003). As a starting point for implementations of the EMM procedure, one may access
general purpose EMM and SNP code from a web site maintained by A. Ronald Gallant
and George E. Tauchen at Duke University at the link ftp.econ.duke.edu in the direc-
tories /pub/get/emm and /pub/arg/snp, respectively. In practical applications, it is of-
ten advantageous to further refine the SNP density approximations through specifically

http://ftp.econ.duke.edu/
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designed leading GARCH terms which parsimoneously capture the dependency struc-
ture in the specific data under investigation. The benefits of doing so is further discussed
in Andersen and Lund (1997) and Andersen, Benzoni and Lund (2002).

The particle filter discussed above for the generation of filter estimates for the latent
variables of interest within the standard SV model arguably provides a more versa-
tile approach than the alternative importance sampling methods described by, e.g.,
Danielsson (1994) and Sandmann and Koopman (1998). The extension of the MCMC
inference technique to a continuous-time setting is discussed in Elerian, Chib and Shep-
hard (2001) and Eraker (2001). The latter also provides one of the first examples of
MCMC estimation of an SV diffusion model, while Eraker, Johannes and Polson (2003)
further introduces jumps in both prices and volatility. Johannes and Polson (2003) offer
a recent comprehensive survey of the still ongoing research on the use of the MCMC
approach in the general nonlinear jump-diffusion SV setting.

5. Realized volatility

The notion of realized volatility has at least two key distinct implications for practical
volatility estimation and forecasting. The first relates to the measurement of realizations
of the latent volatility process without the need to rely on an explicit model. As such, the
realized volatility provides the natural benchmark for forecast evaluation purposes. The
second relates to the possibility of modeling volatility directly through standard time se-
ries techniques with discretely sampled daily observations, while effectively exploiting
the information in intraday high-frequency data.

5.1. The notion of realized volatility

The most fundamental feature of realized volatility is that it provides a consistent non-
parametric estimate of the price variability that has transpired over a given discrete
interval. Any log-price process subject to a no-arbitrage condition and weak auxiliary
assumptions will constitute a semi-martingale that may be decomposed into a locally
predictable mean component and a martingale with finite second moments. Within
this class, there is a unique measure for the realized sample-path variation termed the
quadratic variation. By construction the quadratic variation cumulates the intensity of
the unexpected price changes over the specific horizon and it is thus a prime candidate
for a formal volatility measure.

The intuition behind the use of realized volatility as a return variation measure is most
readily conveyed within the popular continuous-time diffusion setting (4.9) obtained
by ruling out jumps and thus reducing to the representation (1.7), reproduced here for
convenience,

(5.1)dp(t) = µ(t) dt + σ(t) dW(t), t ∈ [0, T ].



hesfor v.2006/01/10 Prn:18/01/2006; 16:35 F:hesfor1015.tex; VTEX/Judita p. 55
aid: 1015 pii: S1574-0706(05)01015-3 docsubty: REV

Ch. 15: Volatility and Correlation Forecasting 831

1 1

2 2

3 3

4 4

5 5

6 6

7 7

8 8

9 9

10 10

11 11

12 12

13 13

14 14

15 15

16 16

17 17

18 18

19 19

20 20

21 21

22 22

23 23

24 24

25 25

26 26

27 27

28 28

29 29

30 30

31 31

32 32

33 33

34 34

35 35

36 36

37 37

38 38

39 39

40 40

41 41

42 42

43 43

Applying a discretization of the process as in Section 1, we have for small � > 0, that

(5.2)r(t,�) ≡ p(t) − p(t − �) � µ(t − �)� + σ(t − �)�W(t),

where �W(t) ≡ W(t) − W(t − �) ∼ N(0,�).
Over short intervals the squared return and the squared return innovation are closely

related as both are largely determined by the idiosyncratic return component,

r2(t,�) � µ2(t − �)�2 + 2�µ(t − �)σ(t − �)�W(t)

(5.3)+ σ 2(t − �)
(
�W(t)

)2
.

In particular, the return variance is (approximately) equal to the expected squared return
innovation,

(5.4)Var
[
r(t,�)

∣∣ Ft−�

] � E
[
r2(t,�)

∣∣ Ft−�

] � σ 2(t − �)�.

This suggests that we may be able to measure the return volatility directly from the
squared return observations. However, this feature is not of much direct use as the
high-frequency returns have a large idiosyncratic component that induces a sizeable
measurement error into the actual squared return relative to the underlying variance. Up
to the dominant order in �,

(5.5)Var
[
r2(t,�)

∣∣ Ft−�

] � 2σ 4(t − �)�2,

where terms involving higher powers of � are ignored as they become negligible for
small values of �. Thus, it follows that the “noise-to-signal” ratio in squared returns
relative to the underlying volatility is of the same order as volatility itself,

(5.6)
Var[r2(t,�) | Ft−�]
E[r2(t,�) | Ft−�] � 2E

[
r2(t,�)

∣∣ Ft−�

]
.

This relationship cannot be circumvented when only one (squared) return observation
is used as a volatility proxy. Instead, by exploiting the fact that return innovations, un-
der a no-arbitrage (semi-martingale) assumption, are serially uncorrelated to construct
volatility measures for lower frequency returns we find, to dominant order in �,

1/�∑
j=1

E
[
r2(t − 1 + j · �,�)

∣∣ Ft−1+j ·�
] �

1/�∑
j=1

σ 2(t − 1 + j · �) · �

(5.7)�
∫ t

t−1
σ 2(s) ds,

where the last approximation stems from the sum converging to the corresponding
integral as the size of � shrinks toward zero. Equation (5.7) generalizes (5.4) to the
multi-period setting with the second approximation in (5.7) only being meaningful for
� small.

The advantage of (5.7) is that the uncorrelated “measurement errors” have been ef-
fectively smoothed away to generate a much better noise-to-signal ratio. The expression
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in (5.5) may be extended in a similar manner to yield

1/�∑
j=1

Var
[
r2(t − 1 + j · �,�)

∣∣ Ft−1+j ·�
] � 2

1/�∑
j=1

σ 4(t − 1 + j · �) · �2

(5.8)� 2�

∫ t

t−1
σ 4(s) ds.

Consequently,∑1/�

j=1 Var[r2(t − 1 + j · �,�) | Ft−1+j ·�]∑1/�

j=1 E[r2(t − 1 + j · �,�) | Ft−1+j ·�]
� 2�

∫ t

t−1 σ 4(s) ds∫ t

t−1 σ 2(s) ds

(5.9)≡ 2�
IQ(t)

IV(t)
,

where the integrated quarticity is defined through the identity on the right-hand side
of (5.9), with the integrated variance, IV(t), having previously been defined in (4.12).

The fact that the “noise-to-signal” ratio in (5.9) shrinks to zero with � suggests that
high-frequency returns may be very useful for estimation of the underlying (integrated)
volatility process. The notion of realized volatility is designed to take advantage of these
features. Formally, realized volatility is defined as

(5.10)RV(t,�) =
1/�∑
j=1

r2(t − 1 + j · �,�).

Equation (5.8) suggests that realized volatility is consistent for the integrated volatility
in the sense that finer and finer sampling of the intraday returns, � → 0, ultimately will
annihilate the measurement error and, in the limit, realized volatility measures the latent
integrated volatility perfectly, that is,

(5.11)RV(t,�) → IV(t),

as � → 0. These arguments may indeed by formalized; see, e.g., the extended discus-
sion in Andersen, Bollerslev and Diebold (2003a). In reality, there is a definite lower
bound on the return horizon that can be used productively for computation of the re-
alized volatility, both because we only observe discretely sampled returns and, more
important, market microstructure features such as discreteness of the price grid and bid–
ask spreads induce gross violations of the semi-martingale property at the very highest
return frequencies. This implies that we typically will be sampling returns at an intraday
frequency that leaves a nonnegligible error term in the estimate of integrated volatility.
It is natural to conjecture from (5.9) that asymptotically, as � → 0,

(5.12)
√

1/�
[
RV(t,�) − IV(t)

] ∼ N
(
0, 2 · IQ(t)

)
,

which turns out to be true under quite general assumptions. Of course, the IQ(t) measure
must be estimated as well for the above result to provide a practical tool for inference.
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The distributional result in (5.12) and a feasible consistent estimator for IQ(t) based
purely on intraday data have been provided by Barndorff-Nielsen and Shephard (2002,
2004b). It may further be shown that these measurement errors are approximately un-
correlated across consecutive periods which has important simplifying implications for
time series modeling.

The consistency result in (5.11) extends to the general semi-martingale setting where
the price path may display discontinuities due to jumps, as specified in Equation (4.9).
The realized volatility will still converge in the continuous-record limit (� → 0) to
the period-by-period quadratic variation of the semi-martingale. However, the quadratic
variation is no longer identical to the integrated volatility but will also include the cu-
mulative squared jumps,

(5.13)RV(t,�) → QV(t) =
∫ t

t−1
σ 2(s) ds +

∑
t−1<s�t

κ2(s).

A few comments are in order. First, QV(t) is best interpreted as the actual return vari-
ation that transpired over the period, and as such it is the natural target for realized
volatility measurement. Second, QV(t) is the realization of a random variable which
generally cannot be forecasted with certainty at time t − 1. But it does represent the fu-
ture realization that volatility forecasts for time t should be compared against. In other
words, the quadratic variation constitutes the quantity of interest in volatility measure-
ment and forecasting. Since the realizations of QV(t) are latent, it is natural to use the
observed RV(t,�) as a feasible proxy. Third, financial decision making is concerned
with forecasts of volatility (or quadratic variation) rather than the QV(t) directly. Fourth,
the identification of forecasts of return volatility with forecasts of quadratic variation
is only approximate as it ignores variation in the process induced by innovations in
the conditional mean process. Over short horizons the distinction is negligible, but for
longer run volatility prediction (quarterly or annual) one may need to pay some atten-
tion to the discrepancy between the two quantities, as discussed at length in Andersen,
Bollerslev and Diebold (2003a).

The distribution theory for quadratic variation under the continuous sample path as-
sumption has also been extended to cover cumulative absolute returns raised to an arbi-
trary power. The leading case involves cumulating the high-frequency absolute returns.
These quantities display improved robustness properties relative to realized volatility as
the impact of outliers are mitigated. Although the limiting quantity – the power vari-
ation – is not directly linked to the usual volatility measure of interest in finance, this
concept has inspired further theoretical developments that has led to intriguing new non-
parametric tests for the presence of jumps and the identification of the associated jump
sizes; see, e.g., Barndorff-Nielsen and Shephard (2004a). Since the jumps may have
very different intertemporal persistence characteristics than the diffusion volatility, ex-
plicit disentangling of the components of quadratic variation corresponding to jumps
versus diffusion volatility can have important implications for volatility forecasting.

In summary, the notion of realized volatility represents a model-free approach to
(continuous-record) consistent estimation of the quadratic return variation under general
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assumptions based primarily upon arbitrage-free financial markets. As such it allows us
to harness the information inherent in high-frequency returns for assessment of lower
frequency return volatility. It is thus the natural approach to measuring actual (ex-
post) realized return variation over a given horizon. This perspective has now gained
widespread acceptance in the literature, where alternative volatility forecast models are
routinely assessed in terms of their ability to explain the distribution of subsequent re-
alized volatility, as defined above.

5.2. Realized volatility modeling

The realized volatility is by construction an observed proxy for the underlying quadratic
variation and the associated (measurement) errors are uncorrelated. This suggests a
straightforward approach where the temporal features of the series are modeled through
standard time series techniques, letting the data guide the choice of the appropriate
distributional assumptions and the dynamic representation. This is akin to the stan-
dard procedure for modeling macroeconomic data where the underlying quantities are
measured (most likely with a substantial degree of error) and then treated as directly
observed variables.

The strategy of estimating time series models directly for realized volatility is ad-
vocated in a sequence of papers by Andersen et al. (2001a, 2001b, 2003). A strik-
ing finding is that the realized volatility series share fundamental statistical proper-
ties across different asset classes, time periods, and countries. The evidence points
strongly toward a long-memory type of dependency in volatility. Moreover, the loga-
rithmic realized volatility series is typically much closer to being homoskedastic and
approximately unconditionally Gaussian. These features are readily captured through
an ARFIMA(p, d, 0) representation of the logarithmic realized volatility,

(5.14)Φ(L)(1 − L)d
(
log RV(t,�) − µ0

) = ut , t = 1, 2, . . . , T ,

where (1 − L)d denotes the fractional differencing operator, Φ(L) is a polynomial lag
operator accounting for standard autoregressive structure, µ0 represents the uncondi-
tional mean of the logarithmic realized volatility, and ut is a white noise error term that
is (approximately) Gaussian. The coefficient d usually takes a value around 0.40, con-
sistent with a stationary but highly persistent volatility process for which shocks only
decay at a slow hyperbolic rate rather than the geometric rate associated with standard
ARMA models or GARCH models for the conditional variance. Finally, the volatility
of volatility is strongly increasing in the level of volatility as log-realized volatility is
approximately homoskedastic. This is, of course, reminiscent of the log-SV and the
EGARCH models.

A number of practical modeling issues have been sidestepped above. One is the
choice of the sampling frequency at which the realized volatility measures are con-
structed. The early literature focused primarily on determining the highest intraday
frequency at which the underlying returns satisfy the maintained semi-martingale as-
sumption of being approximately uncorrelated. An early diagnostic along these lines
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termed the “volatility signature plot” was developed by Andersen et al. (1999, 2000), as
discussed further in Section 7 below. A simple alternative is to apply standard ARMA
filtering to the high-frequency returns in order to strip them of any “artificial” serial cor-
relation induced by the market microstructure noise, and then proceed with the filtered
uncorrelated returns in lieu of the raw high-frequency returns. While none of these pro-
cedures are optimal in a formal statistical sense, they both appear to work reasonable
well in many practical situations. Meanwhile, a number of alternative more efficient
sampling schemes under various assumptions about the market microstructure compli-
cations have recently been proposed in a series of interesting papers, and this is still
very much ongoing research.

A second issue concerns the potential separation of jumps and diffusive volatility
components in the realized volatility process. The theoretical basis for these proce-
dures and some initial empirical work is presented in Barndorff-Nielsen and Shephard
(2004a). The issue has been pursued empirically by Andersen, Bollerslev and Diebold
(2003b), who find compelling evidence that the diffusive volatility is much more per-
sistent than the jump component. In fact, the jumps appear close to i.i.d., although the
jumps in equity indices display some clustering, especially in the size of the jumps. This
points to potentially important improvements in modeling and forecasting from this type
of separation of the realized volatility into sudden discrete shifts in prices versus more
permanent fluctuations in the intensity of the regular price movements. Empirically,
this is in line with the evidence favoring non-Gaussian fat-tailed return innovations in
ARCH models.

A third issue is the approach used to best accommodate the indications of “long
memory”. An alternative to fractional integration is to introduce several autoregressive
volatility components into the model. As discussed in the context of the GARCH class
of models in Section 3.4, if the different components display strong, but varying, degrees
of persistence they may combine to produce a volatility dependency structure that is
indistinguishable from long memory over even relatively long horizons.

5.3. Realized volatility forecasting

Forecasting is straightforward once the realized volatility has been cast within the tra-
ditional time series framework and the model parameters have been estimated. Since
the driving variable is the realized volatility we no longer face a latent variable issue.
This implies that standard methods for forecasting a time series within the ARFIMA
framework is available; see, e.g., Beran (1994) for an introduction to models incorporat-
ing long-memory features. One-step-ahead minimum mean-squared error forecasts are
readily produced, and within the linear Gaussian setting it is then legitimate to further
condition on the forecast in order to iterate forward and produce multiple-step-ahead
forecasts. There are a couple of caveats, however. First, as with most other volatility
forecasting procedures, the forecasts are, of course, conditional on the point estimate
for the model parameters. Second, if the model is formulated in terms of the logarithmic
volatility then it is also log volatility that is being predicted through the usual forecast
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procedures. There is a practical problem of converting the forecast for log volatility into
a “pure” volatility forecast as the expected value of the transformed variable depends
not only on the expected log volatility, but on the entire multiple-step-ahead conditional
distribution of log volatility. For short horizons this is not an issue as the requisite cor-
rection term usually is negligible, but for longer horizons adjustments may be necessary.
This is similar to the issue that arise in the construction of forecast form the EGARCH
model. As discussed in Section 3.6, the required correction term may be constructed by
simulation based methods, but the preferred approach will depend on the application at
hand and the distributional characteristics of the model. For additional inspiration on
how to address such issues consult, e.g., Chapter 6 on ARMA forecasting methods by
Lütkepohl (2006) in this handbook.

A few additional comments are in order. First, the evidence in Andersen, Bollerslev
and Diebold (2003a) indicates that the above approach has very good potential. The as-
sociated forecasts for foreign exchange rate volatility outperform a string of alternative
candidate models from the literature. This is not a tautology as it should be preferable
to generate the forecasts from the true underlying model rather than an ad hoc time se-
ries model estimated from period-by-period observations of realized volatility. In other
words, if a GARCH diffusion is the true model then optimal forecasts would incorporate
the restrictions implied by this model. However, the high-frequency volatility process is
truly complex, possessing several periodic components, erratic short run dynamics and
longer run persistence features that combined appear beyond reach of simple parametric
models. The empirical evidence suggests that daily realized volatility serves as a simple,
yet effective, aggregator of the volatility information inherent in the intraday data.

Second, there is an issue of how to compute realized volatility for a calendar period
when the trading day is limited by an official closing. This problem is minor for the
over-the-counter foreign exchange market where 24-hour trading is observed, but this
is often not the case for equity or bond markets. For example, for a one-month-ahead
equity volatility forecast there may only be twenty-two trading days with about six-and-
a-half hours of trading per day. But the underlying price process is not stalled while the
markets are closed. Oftentimes there will be substantial changes in prices between one
market close and the subsequent opening, reflecting return volatility overnight and over
the weekend. One solution is to simply rely on the intraday returns for a realized volatil-
ity measure over the trading day and then scale this quantity up by a factor that reflects
the average ratio of volatility over the calendar day versus the trading day. This may
work quite satisfactorily in practice, but it obviously ignores the close-to-open return
for a given day entirely in constructing the realized volatility for that calendar day. Al-
ternatively, the volatility of the close-to-open return may be modeled by a conventional
GARCH type model.

Third, we have not discussed the preferred sampling frequency of intraday returns in
situations where the underlying asset is relatively illiquid. If updated price observations
are only available intermittently throughout the trading day, many high-frequency re-
turns may have to be computed from prices or quotes earlier in the day. This brings up a
couple of issues. One, the effective sampling frequency is lower than the one that we are

http://dx.doi.org/10.1016/S1574-0706(05)01006-2
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trying to use for the realized volatility computation. Two, illiquid price series also tend
to have larger bid–ask spreads and be more sensitive to random fluctuations in order
flow, implying that the associated return series will contain a relatively large amount of
noise. A simple response that will help alleviate both issues is to lower the sampling
frequency. However, with the use of less intraday returns comes a larger measurement
error in realized volatility, as evidenced by Equation (5.12). Nonetheless, for an illiquid
asset it may only be possible to construct meaningful weekly rather than daily realized
volatility measures from say half-hourly or hourly return observations rather than five-
minute returns. Consequently, the intertemporal fluctuations are smoothed out so that
the observed measure carries less information about the true state of the volatility at the
end of the period. This, of course, can be critically important for accurate forecasting.

In sum, the use of the realized volatility measures for forecasting is still in its infancy
and many issues must be explored in future work. However, it is clear that the use of
intraday information has large potential to improve upon the performance of standard
volatility forecast procedures based only on daily or lower frequency data. The real-
ized volatility approach circumvents the need to model the intraday data directly and
thus provides a great deal of simplification. Importantly, it seems to achieve this ob-
jective without sacrificing a lot of efficiency. For example, Andersen, Bollerslev and
Meddahi (2004) find the time series approach built directly from the realized volatil-
ity measures to be very good approximations to the theoretically optimal procedures in
a broad class of SV diffusion models that can be analyzed analytically through newly
developed tools associated with the so-called Eigenfunction SV models of Meddahi
(2001). Nonetheless, if the objective exclusively is volatility forecasting, some very re-
cent work suggests that alternative intraday measures may carry even more empirically
relevant information regarding future volatility, including the power variation measures
constructed from cumulative absolute returns; see, e.g., Ghysels, Santa-Clara and Valka-
nov (2004). This likely reflects superior robustness features of absolute versus squared
intraday returns, but verification of such conjectures awaits future research. The conflu-
ence of compelling empirical performance, novel econometric theory, the availability of
ever more high-frequency data and computational power, and the importance of forecast
performance for decision making render this approach fertile ground for new research.

5.4. Further reading

The realized volatility approach has a precedent in the use of cumulative daily squared
returns as monthly volatility measures; see, e.g., French, Schwert and Stambaugh (1987)
and Schwert (1989). Hsieh (1989) was among the first to informally apply this same
procedure with high-frequency intraday returns, while Zhou (1996) provides one of the
earliest formal assessments of the relationship between cumulative squared intraday
returns and the underlying return variance, albeit in a highly stylized setting. The pio-
neering work by Olsen & Associates on the use of high-frequency data, as summarized
in Dacorogna et al. (2001), also importantly paved the way for many of the more recent
empirical developments in the realized volatility area.
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The use of component structures and related autoregressive specifications for ap-
proximating long-memory dependencies within the realized volatility setting has been
explored by Andersen, Bollerslev and Diebold (2003b), Barndorff-Nielsen and Shep-
hard (2001), Bollerslev and Wright (2001), and Corsi (2003), among others. The finite
sample performance of alternative nonparametric tests for jumps based on the bipower
variation measure introduced by Barndorff-Nielsen and Shephard (2004a) have been
extensively analyzed by Huang and Tauchen (2004). Andersen, Bollerslev and Diebold
(2003b) demonstrate the importance of disentangling the components of quadratic
variation corresponding to jumps versus diffusion volatility for volatility forecasting.
The complexities involved in a direct high-frequency characterization of the volatility
process is also illustrated by Andersen and Bollerslev (1998c).

Ways of incorporating noisy overnight returns into the daily realized volatility mea-
sure are discussed in Fleming, Kirby and Ostdiek (2003) and Hansen and Lunde
(2004a). The related issue of measuring the integrated variance in the presence of mar-
ket microstructure noise and how to best use all of the available high frequency data
has been addressed in a rapidly growing recent literature. Corsi et al. (2001) argue for
the use of exponential moving average filtering, similar to a standard MA(1) filter for
the high-frequency returns, while other more recent procedures, including sub-sampling
and ways of choosing the “optimal” sampling frequency, have been suggested and ana-
lyzed empirically by, e.g., Aït-Sahalia, Mykland and Zhang (2005), Bandi and Russell
(2004), Barucci and Reno (2002), Bollen and Inder (2002), Curci and Corsi (2004), and
Hansen and Lunde (2004b), among others. Some of these issues are discussed further
in Section 7 below, where we also consider the robust alternative range based volatil-
ity estimator recently explored by Alizadeh, Brandt and Diebold (2002) for dynamic
volatility modeling and forecasting.

Implied volatility provides yet another forward looking volatility measure. Implied
volatilities are based on the market’s forecasts of future volatilities extracted from the
prices of options written on the asset of interest. As discussed in Section 2.2.4 above,
using a specific option pricing formula, one may infer the expected integrated volatil-
ity of the underlying asset over the remaining time-to-maturity of the option. The main
complication associated with the use of these procedures lies in the fact that the op-
tion prices also generally reflect a volatility risk premium in the realistic scenario where
the volatility risk cannot be perfectly hedged; see, e.g., the discussion in Bollerslev and
Zhou (2005). Nonetheless, many studies find options implied volatilities to provide use-
ful information regarding the future volatility of the underlying asset. At the same time,
the results pertaining to the forecast performance of implied volatilities are somewhat
mixed, and there is still only limited evidence regarding the relative predictive power of
implied volatilities versus the realized volatility procedures discussed above. Another
issue is that many assets of interest do not have sufficiently active options markets that
reliable implied volatilities can be computed on, say, a daily basis.
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6. Multivariate volatility

The discussion in the preceding three sections has been focused almost exclusively on
univariate forecasts. Yet, as discussed in Section 2, in many practical situations covari-
ance and/or correlation forecasting plays an equal, if not even more important, role
in the uses of volatility forecasts. Fortunately, many of the same ideas and procedures
discussed in the context of univariate forecasts are easily adapted to the multivariate set-
ting. However, two important complications arise in this setting, namely the imposition
of sufficient conditions to ensure that the forecasts for the covariance matrix remain
positive definite for all forecasting horizons, and, second, maintaining an empirically
realistic yet parsimoniously parameterized model. We will organize our discussion of
the various multivariate approaches with these key concerns in mind.

Before turning to this discussion, it is worth noting that in many situations, multivari-
ate volatility modeling and forecasting may be conveniently sidestepped through the
use of much-simpler-to-implement univariate procedures for appropriately transformed
series. In particular, in the context of financial market volatility forecasting, consider
the leading case involving the variance of a portfolio made up of N individual assets. In
the notation of Section 2.2.1 above,

(6.1)rw,t+1 =
N∑

i=1

wi,t ri,t+1 ≡ w′
tRt+1.

The conditional one-step-ahead variance of the portfolio equals

(6.2)σ 2
w,t+1|t =

N∑
i=1

N∑
j=1

wi,twj,t {Ωt+1|t }i,j = w′
tΩt+1|twt ,

where Ωt+1|t denotes the N × N covariance matrix for the returns. A forecast for the
portfolio return variance based upon this representation therefore requires the construc-
tion of multivariate forecasts for the 1

2N(N + 1) unique elements in the covariance
matrix for the assets in the portfolio. Alternatively, define the univariate time series
of artificial historical portfolio returns constructed on the basis of the weights for the
current portfolio in place,

(6.3)rt
w,τ ≡ w′

tRτ , τ = 1, 2, . . . , t.

A univariate forecast for the variance of the returns on this artificially constructed
portfolio indirectly ensures that the covariances among the individual assets receive
exactly the same weight as in Equation (6.2). Note, that unless the portfolio weights
for the actual portfolio in place are constantly rebalanced, the returns on this artifi-
cially constructed portfolio will generally differ from the actual portfolio returns, that
is rt

w,τ ≡ w′
tRτ �≡ w′

τRτ ≡ rw,τ for τ �= t . As such, the construction of the vari-
ance forecasts for rt

w,τ requires the estimation of a new (univariate) model each period
to properly reflect the relevant portfolio composition in place at time t . Nonetheless,
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univariate volatility models are generally much easier to implement than their multi-
variate counterparts, so that this approach will typically be much less computationally
demanding than the formulation of a satisfactory full scale multivariate volatility model
for Ωt+1|t , especially for large values of N . Moreover, since the relative changes in
the actual portfolio weights from one period to the next are likely to be small, good
starting values for the parameters in the period-by-period univariate models are readily
available from the estimates obtained in the previous period. Of course, this simplified
approach also requires that historical returns for the different assets in the portfolio are
actually available. If that is not the case, artificial historical prices could be constructed
from a pricing model, or by matching the returns to those of other assets with similar
characteristics; see, e.g., Andersen et al. (2005) for further discussion along these lines.

Meanwhile, as discussed in Sections 2.2.2 and 2.2.3, there are, of course, many sit-
uations in which forecasts for the covariances and/or correlations play a direct and
important role in properly assessing and comparing the risks of different decisions or in-
vestment opportunities. We next turn to a discussion of some of the multivariate models
and forecasting procedures available for doing so.

6.1. Exponential smoothing and RiskMetrics

The exponentially weighted moving average filter, championed by RiskMetrics, is ar-
guable the most commonly applied approach among finance practitioners for estimating
time-varying covariance matrices. Specifically, let Yt ≡ Rt denote the N × 1 vector of
asset returns. The estimate for the current covariance matrix is then defined by

(6.4)Ω̂t = γ YtY
′
t + (1 − γ )Ω̂t−1 ≡ γ

∞∑
i=1

(1 − γ )i−1YtY
′
t .

This directly parallels the earlier univariate definition in Equation (3.2), with the ad-
ditional assumption that the mean of all the elements in Yt is equal to zero. As in the
univariate case, practical implementation is typically done by truncating the sum at
I = t − 1, scaling the finite sum by 1/[1 − (1 − γ )t ]. This approach is obviously very
simple to implement in any dimension N , involving only a single tuning parameter, γ ,
or by appealing to the values advocated by RiskMetrics (0.06 and 0.04 in the case of
daily and monthly returns, respectively) no unknown parameters whatsoever. Moreover,
the resulting covariance matrix estimates are guaranteed to be positive definite.

The simple one-parameter filter in (6.4) may, of course, be further refined by allowing
for different decay rates for the different elements in Ω̂t . Specifically, by using a smaller
value of γ for the off-diagonal, or covariance, terms in Ω̂t , the corresponding time-
varying correlations,

(6.5)ρ̂ij,t ≡ {Ω̂t }ij
{Ω̂t }1/2

ii {Ω̂t }1/2
jj

,
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will exhibit more persistent dynamic dependencies. This slower rate of decay for the
correlations often provide a better characterization of the dependencies across assets.

Meanwhile, the h-period-ahead forecasts obtained by simply equating the future con-
ditional covariance matrix with the current filtered estimate,

(6.6)Var(Yt+h | Ft ) ≡ Ωt+h|t ≈ Ω̂t ,

are plagued by the same counterfactual implications highlighted in the context of the
corresponding univariate filter in Sections 3.1 and 3.2. In particular, assuming that the
one-period returns are serially uncorrelated so that the forecast for the covariance ma-
trix of the multi-period returns equals the sum of the successive one-period covariance
forecasts,

(6.7)Var(Yt+k + Yt+k−1 + · · · + Yt+1 | Ft ) ≡ Ωt :t+k|t ≈ kΩ̂t ,

the multi-period covariance matrix scales with the forecast horizon, k, rather than incor-
porating empirically more realistic mean-reversion. Moreover, it is difficult to contem-
plate the choice of the tuning parameter(s), γ , for the various elements in Ω̂t without
a formal model. The multivariate GARCH class of models provides an answer to these
problems by formally characterizing the temporal dependencies in the forecasts for the
individual variances and covariances within a coherent statistical framework.

6.2. Multivariate GARCH models

The multivariate GARCH class of models was first introduced and estimated empiri-
cally by Bollerslev, Engle and Wooldridge (1988). Denoting the one-step-ahead con-
ditional mean vector and covariance matrix for Yt by Mt |t−1 ≡ E(Yt | Ft−1) and
Ωt |t−1 ≡ Var(Yt | Ft−1), respectively, the multivariate version of the decomposition
in (3.5) may be expressed as

(6.8)Yt = Mt |t−1 + Ω
1/2
t |t−1Zt , Zt ∼ i.i.d., E(Zt ) = 0, Var(Zt ) = I,

where Zt now denotes a vector white noise process with unit variances. The square
root of the Ωt |t−1 matrix is not unique, but any operator satisfying the condition that

Ω
1/2
t |t−1 · Ω

1/2
t |t−1 ≡ Ωt |t−1 will give rise to the same conditional covariance matrix.

The multivariate counterpart to the successful univariate GARCH(1, 1) model in (3.6)
is now naturally defined by

(6.9)vech(Ωt |t−1) = C + A vech
(
et−1e

′
t−1

) + B vech(Ωt−1|t−2),

where et ≡ Ω
1/2
t |t−1Zt , vech(·) denotes the operator that stacks the 1

2N(N + 1) unique

elements in the lower triangular part of a symmetric matrix into a 1
2N(N + 1) × 1

vector, and the parameter matrices C, A, and B, are of dimensions 1
2N(N + 1) × 1,

1
2N(N + 1) × 1

2N(N + 1), and 1
2N(N + 1) × 1

2N(N + 1), respectively. As in the
univariate case, the GARCH(1, 1) model in (6.9) is readily extended to higher order
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models by including additional lagged terms on the right-hand side of the equation.
Note, that for N = 1 the model in (6.9) is identical to formulation in (3.6), but for
N > 1 each of the elements in the covariance matrix is allowed to depend (linearly) on
all of the other lagged elements in the conditional covariance matrix as well as the cross
products of all the lagged innovations.

The formulation in (6.9) could also easily be extended to allow for asymmet-
ric influences of past negative and positive innovations, as in the GJR or TGARCH
model in (3.11), by including the signed cross-products of the residuals on the
right-hand side. The most straightforward generalized would be to simply include
vech(min{et−1, 0} min{et−1, 0}′), but other matrices involving the cross-products of
max{et−1, 0} and/or min{et−1, 0} have proven important in some empirical applications.
Of course, other exogenous explanatory variables could be included in a similar fashion.

Meanwhile, multi-step-ahead forecasts for the conditional variances and covariances
from the linear model in (6.9) are readily generated by recursive substitution in the
equation,

vech(Ωt+h|t+h−1) = C + A vech(Ft+h−1|t+h−2)

(6.10)+ B vech(Ωt+h−1|t+h−2),

where by definition,

Ft+h|t+h−1 ≡ et+he
′
t+h, h � 0,

and

Ft+h|t+h−1 ≡ Ωt+h|t+h−1, h � 1.

These recursions, and their extensions to higher order models, are, of course, easy to
implement on a computer. Also, provided that the norm of all the eigenvalues of A + B

are less than unity, the long-run forecasts for Ωt+h|t will converge to the “unconditional
covariance matrix” implied by the model, (I −A−B)−1C, at the exponential rate of de-
cay dictated by (A+B)h. Again, these results directly mirror the univariate expressions
in Equations (3.8) and (3.9).

Still, nothing guarantees that the “unconditional covariance matrix” implied by (6.9),
(I − A − B)−1C, is actually positive definite, nor that the recursion in (6.10) results
in positive definite h-step ahead forecasts for the future covariance matrices. In fact,
without imposing any additional restrictions on the C, A, and B parameter matrices, the
forecasts for the covariance matrices will most likely not be positive definite. Also, the
unrestricted GARCH(1, 1) formulation in (6.9) involves a total of 1

2N4 + N3 + N2 +
1
2N unique parameters. Thus, for N = 5 the model has 465 parameters, whereas for
N = 100 there is a total of 51,010,050 parameters! Needless to say, estimation of this
many free parameters isn’t practically feasible. Thus, various simplifications designed
to ensure positive definiteness and a more manageable number of parameters have been
developed in the literature.
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In the diagonal vech model the A and B matrices are both assumed to be diagonal,
so that a particular element in the conditional covariance matrix only depends on its
own lagged value and the corresponding cross product of the innovations. This model
may alternatively be written in terms of Hadamard products, or element-by-element
multiplication, as

(6.11)Ωt |t−1 = C + A ◦ (
et−1e

′
t−1

) + B ◦ Ωt−1|t−2,

where C, A, and B now denote symmetric positive definite matrices of dimension
N × N . This model greatly reduces the number of free parameters to 3(N2+N)/2, and,
importantly, covariance matrix forecasts generated from this model according to the re-
cursions in (6.10) are guaranteed to be positive definite. However, the model remains
prohibitively “expensive” in terms of parameters in large dimensions. For instance, for
N = 100 there are still 15,150 free parameters in the unrestricted diagonal vech model.

A further dramatic simplification is obtained by restricting all of the elements in the
A and B matrices in (6.11) to be the same,

(6.12)Ωt |t−1 = C + α
(
et−1e

′
t−1

) + βΩt−1|t−2.

This scalar diagonal multivariate GARCH representation mimics the RiskMetrics ex-
ponential smoother in Equation (6.4), except for the positive definite C matrix inter-
cept, and the one additional smoothing parameter. Importantly however, provided that
α + β < 1, the unconditional covariance matrix implied by the model in (6.12) equals
Ω = (1 −α −β)−1C, and in parallel to the expression for the univariate GARCH(1, 1)

model in Equation (3.9), the h-period forecasts mean reverts to Ω according to the for-
mula,

Ωt+h|t = Ω + (α + β)h−1(Ωt+1|t − Ω).

This contrasts sharply with the RiskMetrics forecasts, which as previously noted show
no mean reversion, with the counterfactual implication that the multi-period covariance
forecasts for (approximately) serially uncorrelated returns scale with the forecast hori-
zon. Of course, the scalar model in (6.12) could easily be refined to allow for different
(slower) decay rates for the covariances by adding just one or two additional parameters
to describe the off-diagonal elements. Still, the model is arguably too simplistic from an
empirical perspective, and we will discuss other practically feasible multivariate mod-
els and forecasting procedures in the subsequent sections. Before doing so, however,
we briefly discuss some of the basic principles and ideas involved in the estimation of
multivariate GARCH models.

6.3. Multivariate GARCH estimation

Estimation and inference for multivariate GARCH models may formally proceed along
the same lines as for the univariate models discussed in Section 3.5. In particular, as-
sume that the conditional distribution of Yt is multivariate normal with mean, Mt |t−1,
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and covariance matrix, Ωt |t−1. The log-likelihood function is given by the sum of the
corresponding T logarithmic conditional normal densities,

log L(θ; YT , . . . , Y1)

= −T N

2
log(2π)

(6.13)

− 1

2

T∑
t=1

[
log Ωt |t−1(θ) − (

Yt − Mt |t−1(θ)
)′
Ωt |t−1(θ)−1(Yt − Mt |t−1(θ)

)]
,

where we have highlighted the explicit dependence on the parameter vector, θ . Provided
that the assumption of conditional normality is true and the parametric models for the
mean and covariance matrices are correctly specified, the resulting estimates, say θ̂T ,
will satisfy the usual optimality conditions associated with maximum likelihood. More-
over, even if the conditional normality assumption is violated, the resulting estimates
may still be given a QMLE interpretation, with robust parameter inference based on the
“sandwich-form” of the covariance matrix estimator, as discussed in Section 3.5.

Meanwhile, as discussed in Section 2, when constructing interval or VaR type fore-
casts, the whole conditional distribution becomes important. Thus, in parallel to the
discussion in Sections 3.5 and 3.6, other multivariate conditional distributions may be
used in place of the multivariate normal distributions underlying the likelihood function
in (6.13). Different multivariate generalizations of the univariate fat-tailed Student t dis-
tribution in (3.24) have proved quite successful for many daily and weekly financial rate
of returns.

The likelihood function in (6.13), or generalizations allowing for conditionally non-
normal innovations, may in principle be maximized by any of a number of different nu-
merical optimization techniques. However, even for moderate values of N , say N � 5,
the dimensionality of the problem for the general model in (6.9) or the diagonal vech
model in (6.11) renders the computations hopelessly demanding from a practical per-
spective. As previously noted, this lack of tractability motivates the more parsimonious
parametric specifications discussed below.

An alternative approach for circumventing the curse-of-dimensionality within the
context of the diagonal vech model has recently been advocated by Ledoit, Santa-Clara
and Wolf (2003). Instead of estimating all of the elements in the C, A and B matrices
jointly, inference in their Flex GARCH approach proceed by estimating separate bivari-
ate models for all of the possible pairwise combinations of the N elements in Yt . These
individual matrix estimates are then “pasted” together to a full-dimensional model in
such a way that the resulting N × N matrices in (6.11) are ensured to be positive defi-
nite.

Another practical approach for achieving more parsimonious and empirically mean-
ingful multivariate GARCH forecasting models rely on so-called variance targeting
techniques. Specifically, consider the general multivariate formulation in (6.9) obtained



hesfor v.2006/01/10 Prn:18/01/2006; 16:35 F:hesfor1015.tex; VTEX/Judita p. 69
aid: 1015 pii: S1574-0706(05)01015-3 docsubty: REV

Ch. 15: Volatility and Correlation Forecasting 845

1 1

2 2

3 3

4 4

5 5

6 6

7 7

8 8

9 9

10 10

11 11

12 12

13 13

14 14

15 15

16 16

17 17

18 18

19 19

20 20

21 21

22 22

23 23

24 24

25 25

26 26

27 27

28 28

29 29

30 30

31 31

32 32

33 33

34 34

35 35

36 36

37 37

38 38

39 39

40 40

41 41

42 42

43 43

by replacing C with

(6.14)C = (I − A − B) vech(V ),

where V denotes a positive definite matrix. Provided that the norm of all the eigen-
values for A + B are less than unity, so that the inverse of (I − A − B) exists, this
reparameterization implies that the long-run forecasts for Ωt+h|t will converge to V for
h → ∞. As such, variance targeting can help ensure that the long-run forecasts are
well behaved. Of course, this doesn’t reduce the number of unknown parameters in the
model per se, as the long-run covariance matrix, V , must now be determined. However,
an often employed approach is to fix V at the unconditional sample covariance matrix,

V̂ = 1

T

T∑
t=1

(
Yt − M̂t |t−1

)(
Yt − M̂t |t−1

)′
,

where M̂t |t−1 denotes some first-stage estimate for the conditional mean. This esti-
mation of V obviously introduces an additional source of parameter estimation error
uncertainty, although the impact of this is typically ignored in practice when conducting
inference about the other parameters entering the equation for the conditional covari-
ance matrix.

6.4. Dynamic conditional correlations

One commonly applied approach for large scale dynamic covariance matrix model-
ing and forecasting is the Constant Conditional Correlation (CCC) model of Bollerslev
(1990). Specifically, let Dt |t−1 denote the N × N diagonal matrix with the conditional
standard deviations, or the square root of the diagonal elements in Ωt |t−1 ≡ Var(Yt |
Ft−1), along the diagonal. The conditional covariance matrix may then be uniquely
expressed in terms of the decomposition,

(6.15)Ωt |t−1 = Dt |t−1Γt |t−1Dt |t−1,

where Γt |t−1 denote the N × N matrix of conditional correlations. Of course, this de-
composition does not result in any immediate simplifications from a modeling perspec-
tive, as the conditional correlation matrix must now be estimated. However, following
Bollerslev (1990) and assuming that the temporal variation in the covariances are driven
solely by the temporal variation in the corresponding conditional standard deviations,
so that the conditional correlations are constant,

(6.16)Γt |t−1 ≡ Γ,

dramatically reduces the number of parameters in the model relative to the linear vech
specifications discussed above. Moreover, this assumption also greatly simplifies the
multivariate estimation problem, which may now proceed in two steps. In the first step
N individual univariate GARCH models are estimated for each of the series in Yt , re-
sulting in an estimate for the diagonal matrix, D̂t |t−1. Then defining the N × 1 vector
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of standardized residuals for each of the univariate series,

(6.17)ε̂t ≡ D̂−1
t |t−1

(
Yt − M̂t |t−1

)
,

the elements in Γ may simply be estimated by the corresponding sample analogue,

(6.18)Γ̂ = 1

T

T∑
t=1

ε̂t ε̂
′
t .

Importantly, this estimate for Γ is guaranteed to be positive definite with ones along the
diagonal and all of the other elements between minus one and one. In addition to being
simple to implement, this approach therefore has the desirable feature that as long as
the individual variances in D̂t |t−1 are positive, the resulting covariance matrices defined
by (6.15) are guaranteed to be positive definite.

While the assumption of constant conditional correlations may often be a reasonable
simplification over shorter time periods, it is arguable too simplistic in many situations
of practical interest. To circumvent this, while retaining the key features of the decom-
position in (6.15), Engle (2002) and Tse and Tsui (2002) have recently proposed a
convenient framework for directly modeling any temporal dependencies in the condi-
tional correlations. In the most basic version of the Dynamic Conditional Correlation
(DCC) model of Engle (2002), the temporal variation in the conditional correlation
is characterized by a simple scalar GARCH(1, 1) model, along the lines of (6.12), with
the covariance matrix for the standardized residuals targeted at their unconditional value
in (6.18). That is,

(6.19)Qt |t−1 = (1 − α − β)Γ̂ + α
(
ε̂t−1ε̂

′
t−1

) + βQt−1|t−2.

Although this recursion guarantees that the Qt |t−1 matrices are positive definite, the
individual elements are not necessarily between minus one and one. Thus, in order to
arrive at an estimate for the conditional correlation matrix, the elements in Qt |t−1 must
be standardized, resulting in the following estimate for the ij th correlation:

(6.20)ρ̂ij,t ≡ {
Γ̂t |t−1

}
ij

= {Qt }ij
{Qt }1/2

ii {Qt }1/2
jj

.

Like the CCC model, the DCC model is also relatively simple to implement in large
dimensions, requiring only the estimation of N univariate models along with a choice
of the two exponential smoothing parameters in (6.19).

Richer dynamic dependencies in the correlations could be incorporated in a similar
manner, although this immediately raises some of the same complications involved in
directly parameterizing Ωt |t−1. However, as formally shown in Engle and Sheppard
(2001), the parameters in (6.19) characterizing the dynamic dependencies in Qt |t−1,
and in turn Γt |t−1, may be consistently estimated in a second step by maximizing the
partial log-likelihood function,

log L(θ; YT , . . . , Y1)
∗ = −1

2

T∑
t=1

[
log

∣∣Γt |t−1(θ)
∣∣ − ε̂′

tΓt |t−1(θ)−1ε̂t

]
,
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where ε̂t refers to the first step estimates defined in (6.17). Of course, the standard
errors for the resulting correlation parameter estimates must be adjusted to take account
of the first stage estimation errors in D̂t |t−1. Extensions of the basic DCC structure in
(6.19) and (6.20) along these lines allowing for greater flexibility in the dependencies
in the correlations across different types of assets, asymmetries in the way in which the
correlations respond to past negative and positive return innovations, regime switches
in the correlations, to name but a few, are currently being actively explored by a number
of researchers.

6.5. Multivariate stochastic volatility and factor models

An alternative approach for achieving a more manageable and parsimonious multivari-
ate volatility forecasting model entails the use of factor structures. Factor structures are,
of course, central to the field of finance, and the Arbitrage Pricing Theory (APT) in par-
ticular. Multivariate factor GARCH and stochastic volatility models were first analyzed
by Diebold and Nerlove (1989) and Engle, Ng and Rothschild (1990). To illustrate, con-
sider a simple one-factor model in which the commonality in the volatilities across the
N × 1 Rt vector of asset returns is driven by a single scalar factor, ft ,

(6.21)Rt = a + bft + et ,

where a and b denote N × 1 parameter vectors, and et is assumed to be i.i.d. through
time with covariance matrix Λ. This directly captures the idea that variances (and co-
variances) generally move together across assets. Now, assuming that the factor is condi-
tionally heteroskedastic, with conditional variance denoted by σ 2

t |t−1 ≡ Var(ft | Ft−1),
the conditional covariance matrix for Rt takes the form

(6.22)Ωt |t−1 ≡ Var(Rt | Ft−1) = bb′σ 2
t |t−1 + Λ.

Compared to the unrestricted GARCH models discussed in Section 6.2, the factor
GARCH representation greatly reduces the number of free parameters. Moreover, the
conditional covariance matrix in (6.22) is guaranteed to be positive definite.

To further appreciate the implications of the factor representation, let bi and λij de-
note the ith and ij th element in b and Λ, respectively. It follows then directly from
the expression in (6.22) that the conditional correlation between the ith and the j th
observation is given by

(6.23)ρij,t ≡ bibjσ
2
t |t−1 + λij

(b2
i σ

2
t |t−1 + λii)1/2(b2

j σ
2
t |t−1 + λjj )1/2

.

Thus, provided that the corresponding factor loadings are of the same sign, or bibj > 0,
the conditional correlation implied by the model will increase toward unity as the
volatility of the factor increases. That is, there is an empirically realistic built-in
volatility-in-correlation effect.

Importantly, multivariate conditional covariance matrix forecasts are also readily con-
structed from forecasts for the univariate factor variance. In particular, assuming that
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the vector of returns is serially uncorrelated, the conditional covariance matrix for the
k-period continuously compounded returns is simply given by

(6.24)Ωt :t+k|t ≡ Var(Rt+k + · · · + Rt+1 | Ft ) = bb′σ 2
t :t+k|t + kΛ,

where σ 2
t :t+k|t ≡ Var(ft+k + · · · + ft+1 | Ft ). Further assuming that the factor is

directly observable and that the conditional variance for ft is specified in terms of the
observable information set, Ft−1, the forecasts for σ 2

t :t+k|t may be constructed along the
lines of the univariate GARCH class of models discussed in Section 3. If, on the other
hand, the factor is latent or if the conditional variance for ft is formulated in terms of
unobservable information, �t−1, one of the more intensive numerical procedures for the
univariate stochastic volatility class of models discussed in Section 4 must be applied in
calculating σ 2

t :t+k|t . Of course, the one-factor model in (6.21) could easily be extended
to allow for multiple factors, resulting in obvious generalizations of the expressions in
(6.22) and (6.24). As long as the number of factors remain small, the same appealing
simplifications hold true.

Meanwhile, an obvious drawback from an empirical perspective to the simple factor
model in (6.21) with homoskedastic innovations concerns the lack of heteroskedasticity
in certain portfolios. Specifically, let Ψ = {ψ | ψ ′b = 0, ψ �= 0} denote the set of
N × 1 vectors orthogonal to the vector of factor loadings, b. Any portfolio constructed
from the N original assets with portfolio weights, w = ψ/(ψ1 + · · · + ψN) where
ψ ∈ Ψ , will then be homoskedastic,

(6.25)Var(rw,t | Ft−1) ≡ Var
(
w′Rt

∣∣ Ft−1
) = w′bb′wσ 2

t |t−1 + w′Λw = w′Λw.

Similarly, the corresponding multi-period forecasts defined in (6.24) will also be time
invariant. Yet, in applications with daily or weekly returns it is almost always impossi-
ble to construct portfolios which are void of volatility clustering effects. The inclusion
of additional factors does not formally solve the problem. As long as the number of fac-
tors is less than N , the corresponding null-set Ψ is not empty. Of course, allowing the
covariance matrix of the idiosyncratic innovations to be heteroskedastic would remedy
this problem, but that then raises the issue of how to model the temporal variation in the
(N × N )-dimensional Λt matrix. One approach would be to include enough factors so
that the Λt matrix may be assumed to be diagonal, only requiring the estimation of N

univariate volatility models for the elements in et .
Whether the rank deficiency in the forecasts of the conditional covariance matrices

from the basic factor structure and the counterfactual implication of no volatility clus-
tering in certain portfolios discussed above should be a cause for concern ultimately
depends upon the uses of the forecasts. However, it is clear that the reduction in the di-
mension of the problem to a few systematic risk factors may afford great computational
simplifications in the context of large scale covariance matrix modeling and forecasting.
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6.6. Realized covariances and correlations

The high-frequency data realized volatility approach for measuring, modeling and fore-
casting univariate volatilities outlined in Section 5 may be similarly adapted to modeling
and forecasting covariances and correlations. To set out the basic idea, let R(t,�) de-
note the N × 1 vector of logarithmic returns over the [t − �, t] time interval,

(6.26)R(t,�) ≡ P(t) − P(t − �).

The N × N realized covariation matrix for the unit time interval, [t − 1, t], is then
formally defined by

(6.27)RCOV(t,�) =
1/�∑
j=1

R(t − 1 + j · �,�)R(t − 1 + j · �,�)′.

This directly parallels the univariate definition in (5.10). Importantly, the realized co-
variation matrix is symmetric by construction, and as long as the returns are linearly
independent and N < 1/�, the matrix is guaranteed to be positive definite.

In order to more formally justify the realized covariation measure, suppose that the
evolution of the N × 1 vector price process may be described by the N -dimensional
continuous-time diffusion,

(6.28)dP(t) = M(t) dt + Σ(t) dW(t), t ∈ [0, T ],
where M(t) denotes the N × 1 instantaneous drifts, Σ(t) refer to the N × N instan-
taneous diffusion matrix, and W(t) now denotes an (N × 1)-dimensional vector of
independent standard Brownian motions. Intuitively, for small values of � > 0,

(6.29)R(t,�) ≡ P(t) − P(t − �) � M(t − �)� + Σ(t − �)�W(t),

where �W(t) ≡ W(t) − W(t − �) ∼ N(0,�IN). Of course, this latter expression
directly mirrors the univariate equation (5.2). Now, using similar arguments to the ones
in Section 5.1, it follows that the multivariate realized covariation in (6.27) will converge
to the corresponding multivariate integrated covariation for finer and finer sampled high-
frequency returns, or � → 0,

(6.30)RCOV(t,�) →
∫ t

t−1
Σ(s)Σ(s)′ ds ≡ ICOV(t).

Again, by similar arguments to the ones in Section 5.1, the multivariate integrated
covariation defined by the right-hand side of Equation (6.30) provides the true mea-
sure for the actual return variation and covariation that transpired over the [t − 1, t]
time interval. Also, extending the univariate results in (5.12), Barndorff-Nielsen and
Shephard (2004b) have recently shown that the multivariate realized volatility errors,√

1/�[RCOV(t,�) − ICOV(t)], are approximately serially uncorrelated and asymp-
totically (for � → 0) distributed as a mixed normal with a random covariance matrix
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that may be estimated. Moreover following (5.13), the consistency of the realized co-
variation measure for the true quadratic covariation caries over to situations in which
the vector price process contains jumps. As such, these theoretical results set the stage
for multivariate volatility modeling and forecasting based on the realized covariation
measures along the same lines as the univariate discussion in Sections 5.2 and 5.3.

In particular, treating the 1
2N(N + 1) × 1 vector, vech[RCOV(t),�)], as a direct

observation (with uncorrelated measurement errors) on the unique elements in the co-
variation matrix of interest, standard multivariate time series techniques may be used in
jointly modeling the variances and the off-diagonal covariance elements. For instance, a
simple VAR(1) forecasting model, analogues to the GARCH(1, 1) model in (6.9), may
be specified as

(6.31)vech
[
RCOV(t,�)

] = C + A vech
[
RCOV(t − 1,�)

] + ut ,

where ut denotes an N ×1 vector white noise process. Of course, higher order dynamic
dependencies could be included in a similar manner. Indeed, the results in Andersen
et al. (2001b, 2003), suggest that for long-run forecasting it may be important to incor-
porate long-memory type dependencies in both variances and covariances. This could
be accomplished through the use of a true multivariate fractional integrated model, or
as previously discussed an approximating component type structure.

Even though RCOV(t,�) is positive definite by construction, nothing guarantees
that the forecasts from an unrestricted multivariate time series model along the lines
of the VAR(1) in (6.31) will result in positive definite covariance matrix forecasts.
Hence, it may be desirable to utilize some of the more restrictive parameterizations
for the multivariate GARCH models discussed in Section 6.2, to ensure positive def-
inite covariance matrix forecasts. Nonetheless, replacing Ωt |t−1 with the directly ob-
servable RCOV(t,�), means that the parameters in the corresponding models may
be estimated in a straightforward fashion using simple least squares, or some other
easy-to-implement estimation method, rather than the much more numerically intensive
multivariate MLE or QMLE estimation schemes.

Alternatively, an unrestricted model for the 1
2N(N + 1) nonzero elements in the

Cholesky decomposition, or lower triangular matrix square-root, of RCOV(t,�), could
also be estimated. Of course, the nonlinear transformation involved in such a decompo-
sition means that the corresponding matrix product of the forecasts from the model will
generally not be unbiased for the elements in the covariation matrix itself. Following
Andersen et al. (2003), sometimes it might also be possible to infer the covariances of
interest from the variances of different cross-rates or portfolios through appropriately
defined arbitrage conditions. In those situations forecasts for the covariances may there-
fore be constructed from a set of forecasting models for the corresponding variances, in
turn avoiding directly modeling any covariances.

The realized covariation matrix in (6.27) may also be used in the construction of re-
alized correlations, as in Andersen et al. (2001a, 2001b). These realized correlations
could be modeled directly using standard time series techniques. However, the corre-
lations are, of course, restricted to lie between minus one and one. Thus, to ensure
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that this constraint is not violated, it might be desirable to use the Fisher transform,
z = 0.5 · log[(1 +ρ)/(1 −ρ)], or some other similar transformation, to convert the sup-
port of the distribution for the correlations from [−1, 1] to the whole real line. This is
akin to the log transformation for the univariate realized volatilities employed in Equa-
tion (5.14). Meanwhile, there is some evidence that the dynamic dependencies in the
correlations between many financial assets and markets are distinctly different from
that of the corresponding variances and covariances, exhibiting occasional “correla-
tion breakdowns”. These types of dependencies may best be characterized by regime
switching type models. Rather than modeling the correlations individually, the realized
correlation matrix could also be used in place of êt ê

′
t in the DCC model in (6.19), or

some generalization of that formulation, in jointly modeling all of the elements in the
conditional correlation matrix.

The realized covariation and correlation measures discussed above are, of course,
subject to the same market microstructure complications that plague the univariate re-
alized volatility measures discussed in Section 5. In fact, some of the problems are
accentuated with the possibility of nonsynchronous observations in two or more mar-
kets. Research on this important issues is still very much ongoing, and it is too early
to draw any firm conclusions about the preferred method or sampling scheme to em-
ploy in the practical implementation of the realized covariation measures. Nonetheless,
it is clear that the realized volatility approach afford a very convenient and powerful ap-
proach for effectively incorporating high-frequency financial data into both univariate
and multivariate volatility modeling and forecasting.

6.7. Further reading

The use of historical pseudo returns as a convenient way of reducing the multivariate
modeling problem to a univariate setting, as outlined in Section 6.1, is discussed at some
length in Andersen et al. (2005). This same study also discusses the use of a smaller set
of liquid base assets along with a factor structure as another computationally conve-
nient way of reducing the dimension of time-varying covariance matrix forecasting for
financial rate of returns.

The RiskMetrics, or exponential smoothing approach, for calculating covariances and
associated Value-at-Risk measures is discussed extensively in Christoffersen (2003),
Jorion (2000), and Zaffaroni (2004) among others. Following earlier work by DeSantis
and Gerard (1997), empirically more realistic slower decay rates for the covariances in
the context of exponential smoothing has been successfully implemented by DeSantis
et al. (2003).

In addition to the many ARCH and GARCH survey papers and book treatments
listed in Section 3, the multivariate GARCH class of models has recently been surveyed
by Bauwens, Laurent and Rombouts (2005). A comparison of some of the available
commercial software packages for the estimation of multivariate GARCH models is
available in Brooks, Burke and Persand (2003). Conditions for the covariance matrix
forecasts for the linear formulations discussed in Section 6.2 to be positive definite was
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first established by Engle and Kroner (1995), who also introduced the so-called BEKK
parameterization. Asymmetries, or leverage effects, within this same class of models
were subsequently studied by Kroner and Ng (1998). The bivariate EGARCH model of
Braun, Nelson and Sunier (1995) and the recent matrix EGARCH model of Kawakatsu
(2005) offer alternative ways of doing so. The multivariate GARCH QMLE procedures
outlined in Section 6.3 were first discussed by Bollerslev and Wooldridge (1992), while
Ling and McAleer (2003) provide a more recent account of some of the subsequent
important theoretical developments. The use of a fat tailed multivariate Student t distri-
bution in the estimation of multivariate GARCH models was first considered by Harvey,
Ruiz and Sentana (1992); see also Bauwens and Laurent (2005) and Fiorentini, Sentana
and Calzolari (2003) for more recent applications of alternative multivariate nonnormal
distributions. Issues related to cross-sectional and temporal aggregation of multivari-
ate GARCH and stochastic volatility models have been studied by Nijman and Sentana
(1996) and Meddahi and Renault (2004).

Several empirical studies have documented important temporal dependencies in asset
return correlations, including early contributions by Erb, Harvey and Viskanta (1994)
and Longin and Solnik (1995) focusing on international equity returns. More recent
work by Ang and Chen (2002) and Cappiello, Engle and Sheppard (2004) have em-
phasized the importance of explicitly incorporating asymmetries in the way in which
the correlations respond to past negative and positive return shocks. Along these lines,
Longin and Solnik (2001) report evidence in support of more pronounced dependen-
cies following large (extreme) negative return innovations. A test for the assumption of
constant conditional correlations underlying the CCC model discussed in Section 6.4
has been derived by Bera and Kim (2002). Recent work on extending the DCC model
to allow for more flexible dynamic dependencies in the correlations, asymmetries in
the responses to past negative and positive returns, as well as switches in the corre-
lations across regimes, include Billio, Caporin and Gobbo (2003), Cappiello, Engle
and Sheppard (2004), Franses and Hafner (2003), and Pelletier (2005). Guidolin and
Timmermann (2005b) find large variations in the correlation between stock and bond
returns across different market regimes defined as crash, slow growth, bull and recov-
ery. Sheppard (2004) similarly finds evidence of business cycle frequency dynamics in
conditional covariances.

The factor ARCH models proposed by Diebold and Nerlove (1989) and Engle,
Ng and Rothschild (1990) have been used by Ng, Engle and Rothschild (1992) and
Bollerslev and Engle (1993), among others, in modeling common persistence in condi-
tional variances and covariances. Harvey, Ruiz and Shephard (1994) and King, Sentana
and Wadhwani (1994) were among the first to estimate multivariate stochastic volatil-
ity models. More recent empirical studies and numerically efficient algorithms for the
estimation of latent multivariate volatility structures include Aguilar and West (2000),
Fiorentini, Sentana and Shephard (2004), and Liesenfeld and Richard (2003). Issues
related to identification within heteroskedastic factor models have been studied by
Sentana and Fiorentini (2001). A recent insightful discussion of the basic features of
multivariate stochastic volatility factor models, along with a discussion of their ori-
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gins, is provided in Shephard (2004). The multivariate Markov-switching multifractal
model of Calvet, Fisher and Thompson (2005) may also be interpreted as a latent factor
stochastic volatility model with a closed form likelihood. Other related relatively easy-
to-implement multivariate approaches include the two-step Orthogonal GARCH model
of Alexander (2001), in which the conditional covariance matrix is determined by uni-
variate models for a (small) set of the largest (unconditional) principal components.

The realized volatility approach discussed in Section 6.6 affords a simple practi-
cally feasible way for covariance and correlation forecasting in situations when high-
frequency data is available. The formal theory underpinning this approach in the multi-
variate setting has been spelled out in Andersen et al. (2003) and Barndorff-Nielsen
and Shephard (2004b). A precursor to some of these results is provided by the al-
ternative double asymptotic rolling regression based framework in Foster and Nelson
(1996). The benefits of the realized volatility approach versus more conventional mul-
tivariate GARCH based forecasts in the context of asset allocation have been forcefully
demonstrated by Fleming, Kirby and Ostdiek (2003). Meanwhile, the best way of actu-
ally implementing the realized covariation measures with high-frequency financial data
subject to market microstructure frictions still remains very much of an open research
question. In a very early paper, Epps (1979) first observed a dramatic drop in high-
frequency based sample correlations among individual stock returns as the length of the
return interval approached zero; see also Lundin, Dacorogna and Müller (1998). In ad-
dition to the many mostly univariate studies noted in Section 4, Martens (2003) provides
a recent assessment and comparison of some of the existing ways for best alleviating
the impact of market microstructure frictions in the multivariate setting, including the
covariance matrix estimator of De Jong and Nijman (1997), the lead-lag adjustment of
Scholes and Williams (1977), and the range-based covariance measure of Brandt and
Diebold (2005).

The multivariate procedures discussed in this section are (obviously) not exhaustive
of the literature. Other recent promising approaches for covariance and correlation fore-
casting include the use of copulas for conveniently linking univariate GARCH [e.g.,
Jondeau and Rockinger (2005) and Patton (2004)] or realized volatility models; the use
of shrinkage to ensure positive definiteness in the estimation and forecasting of very
large-dimensional covariance matrices [e.g., Jagannathan and Ma (2003) and Ledoit
and Wolf (2003)]; and forecast model averaging techniques [e.g., Pesaran and Zaffa-
roni (2004)]. It remains to be seen which of these, if any, will be added to the standard
multivariate volatility forecasting toolbox.

7. Evaluating volatility forecasts

The discussion up until this point has surveyed the most important univariate and mul-
tivariate volatility models and forecasting procedures in current use. This section gives
an overview of some of the most useful methods available for volatility forecast eval-
uation. The methods introduced here can either be used by an external evaluator or by
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the forecaster him/herself as a diagnostic tool on the forecasting model. A more general
discussion and review of the forecast evaluation literature can be found in Diebold and
Lopez (1996) and Chapter 3 by West in this Handbook.

Below, we will first introduce a general loss function framework and then highlight
the particular issues involved when forecasting volatility itself is the direct object of
interest. We then discuss several other important forecasting situations where volatility
dynamics are crucial, including Value-at-Risk, probability, and density forecasting.

7.1. Point forecast evaluation from general loss functions

Consider the general forecast loss function, L(yt+1, ŷt+1|t ), discussed in Section 2, in
which the arguments are the univariate discrete-time real-valued stochastic variable,
yt+1, as well as its forecast, ŷt+1|t . From the optimization problem solved by the optimal
forecast, ŷt+1|t must solve the generic first order condition

(7.1)Et

[
∂L(yt+1, ŷt+1|t )

∂ŷ

]
= 0.

The partial derivative of the loss function – the term inside the conditional expectation
– is sometimes referred to as the generalized forecast error. Realizations of this partial
derivative should fluctuate unpredictably around zero, directly in line with the standard
optimality condition that regular forecasts display uncorrelated prediction errors.

Specifically, consider the situation in which we observe a sequence of out-of-sample
forecasts and subsequent realizations, {yt+1, ŷt+1|t }Tt=1. A natural diagnostic on (7.1) is
then given by the simple regression version of the conditional expectation, that is

(7.2)
∂L(yt+1, ŷt+1|t )

∂ŷ
= a + b′xt + εt+1,

where xt denotes a vector of candidate explanatory variables in the time t information
set observed by the forecaster, Ft , and b is a vector of regression coefficients. An ap-
propriately calibrated forecast should then have a = b = 0, which can be tested using
standard t- and F -tests properly robustified to allow for heteroskedasticity in the re-
gression errors, εt+1. Intuitively, if a significant coefficient is obtained on a forecasting
variable, which the forecaster should reasonably have known at time t , then the fore-
casting model is not optimal, as the variable in question could and should have been
used to make the generalized forecast error variance lower than it actually is.

If the forecasts arise from a known well-specified statistical model with estimated
parameters then the inherent parameter estimation error should ideally be accounted
for. This can be done using the asymptotic results in West and McCracken (1998) or
the finite sample Monte Carlo tests in Dufour (2004). However, external forecast eval-
uators may not have knowledge of the details of the underlying forecasting model (if
one exists) in which case parameter estimation error uncertainty is not easily accounted
for. Furthermore, in most financial applications the estimation sample is typically fairly
large rendering the parameter estimation error relatively small compared with other

http://dx.doi.org/10.1016/S1574-0706(05)01003-7
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potentially more serious model specification errors. In this case standard (heteroskedas-
ticity robust) t-tests and F -tests may work reasonably well. Note also that in the case of,
say, h-day forecasts from a daily model, the horizon overlap implies that the first h − 1
autocorrelations will not be equal to zero, and this must be allowed for in the regression.

As an example of the general framework in (7.2), consider the case of quadratic loss,
L(yt+1, ŷt+1|t ) = (yt+1 − ŷt+1|t )2. In this situation

(7.3)
∂L(yt+1, ŷt+1|t )

∂ŷ
= −2(yt+1 − ŷt+1|t ),

which suggests the forecast evaluation regression

(7.4)(yt+1 − ŷt+1|t ) = a + b′xt + εt+1.

While the choice of information variables to include in xt is somewhat arbitrary, one
obvious candidate does exist, namely the time t forecast itself. Following this idea and
letting xt = ŷt+1|t , results in the so-called Mincer and Zarnowitz (1969) regression,
which can thus be viewed as a test of forecast optimality relative to a limited information
set. We write

(yt+1 − ŷt+1|t ) = a + bŷt+1|t + εt+1,

or equivalently

(7.5)yt+1 = a + (b + 1)ŷt+1|t + εt+1.

Clearly the ex-ante forecast should not be able to explain the ex-post forecast error. For
example, if b is significantly negative, and thus (b + 1) < 1, then the forecast is too
volatile relative to the subsequent realization and the forecast should be scaled down.

It is often of interest to compare forecasts from different models, or forecasters. This
is easily done by letting xt = [ŷt+1|t ŷA,t+1|t ], where ŷA,t+1|t denotes the alternative
forecast. The forecast evaluation regression then takes the form,

(7.6)yt+1 = a + (b + 1)ŷt+1|t + bAŷA,t+1|t + εt+1,

where a failure to reject the hypothesis that bA = 0 implies that the additional infor-
mation provided by the alternative forecast is not significant. Or, in other words, the
benchmark forecast encompasses the alternative forecast.

7.2. Volatility forecast evaluation

The above discussion was cast at a general level. We now turn to the case in which
volatility itself is the forecasting object of interest. Hence, yt+1 ≡ σ 2

t :t+1 now refers
to some form of ex-post volatility measure, while yt+1|t ≡ σ̂ 2

t :t+1|t denotes the corre-
sponding ex-ante volatility forecast.

The regression-based framework from above then suggests the general volatility fore-
cast evaluation regression

(7.7)σ 2
t :t+1 − σ̂ 2

t :t+1|t = a + b′xt + εt+1,
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or as a special case the Mincer–Zarnowitz volatility regression

σ 2
t :t+1 = a + (b + 1)σ̂ 2

t :t+1|t + εt+1,

where an optimal forecast would satisfy a = b = 0. Immediately, however, the question
arises of how to actually measure the ex-post variance? As discussed at some length in
Sections 1 and 5, the “true” variance, or volatility, is inherently unobservable, and we
are faced with the challenge of having to rely on a proxy in order to assess the forecast
quality.

The simplest proxy is the squared observation of the underlying variable, y2
t+1, which,

when the mean is zero, has the property of being (conditionally) unbiasedness, or
Et [y2

t+1] = σ 2
t :t+1. Thus, the accuracy of the volatility forecasts could be assessed by

the following simple regression:

(7.8)y2
t+1 = a + (b + 1)σ̂ 2

t :t+1|t + εt+1.

However, as illustrated by Figure 1, the squared observation typically provides a very
noisy proxy for the true (latent) volatility process of interest. We are essentially esti-
mating the variance each period using just a single observation, and the corresponding
regression fit is inevitably very low, even if the volatility forecast is accurate. For in-
stance, regressions of the form (7.8), using daily or weekly squared returns as the
left-hand side independent variable, typically result in unspectacular R2’s of around
5–10%. We are seemingly stuck with an impossible task, namely to precisely assess the
forecastability of something which is itself not observed.

Fortunately, Figure 1 and the accompanying discussion in Sections 1 and 5 suggest
a workable solution to this conundrum. In financial applications observations are often
available at very high frequencies. For instance, even if the forecaster is only interested
in predicting volatility over daily or longer horizons, observations on the asset prices are
often available at much finer intradaily sampling frequencies, say 1/� � 1 observa-
tions per “day” or unit time interval. Hence, in this situation following the discussion in
Section 5.1, a proxy for the (latent) daily volatility may be calculated from the intradaily
squared return as

RV(t + 1,�) ≡
1/�∑
j=1

[
p(t + j · �) − p

(
t + (j − 1) · �

)]2
.

The resulting forecast evaluation regression thus takes the form,

(7.9)RV(t + 1,�) = a + (b + 1)σ̂ 2
t :t+1|t + εt+1,

which coincides with (7.8) for � = 1. However, in contrast to the low R2’s associated
with (7.8), Andersen and Bollerslev (1998a) find that in liquid markets the R2 of the
regression in (7.9) can be as high as 50% for the very same volatility forecast that pro-
duces an R2 of only 5–10% in the former regression! In other words, even a reasonably
accurate volatility forecasting model will invariably appear to have a low degree of fore-
castability when evaluated on the basis of a noisy volatility proxy. Equally important,
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it will be difficult to detect a poor volatility forecasting model when a noisy volatility
proxy is used.

Reliable high-frequency information is, of course, not available for all financial mar-
kets. Still, intra-day high and low prices, or quotes, are often available over long his-
torical time periods. Under idealized conditions – a Geometric Brownian motion with
a constant diffusive volatility σ – the expected value of the log range (the difference
between the high and the low logarithmic price) over the unit time interval is directly
related to volatility of the process by the equation

E
[(

max
{
p(τ)

∣∣ t � τ < t + 1
} − min

{
p(τ)

∣∣ t � τ < t + 1
})2]

(7.10)= 4 log(2)σ 2.

Hence, a range-based proxy for the per-period volatility is naturally defined by

σ 2
r,t :t+1 = 1

4 log(2)

(7.11)

× (
max

{
p(τ)

∣∣ t � τ < t + 1
} − min

{
p(τ)

∣∣ t � τ < t + 1
})2

.

It is readily seen that, under ideal conditions, this range-based volatility proxy is inferior
to the realized variance measure constructed with a large number of intraday observa-
tions, or � � 1. However, as previously discussed, a host of market microstructure and
other complications often render practical situations less than ideal. Thus, even when
high-frequency data are available, the range-based volatility forecast evaluation regres-
sion,

(7.12)σ 2
r,t :t+1 = a + (b + 1)σ̂ 2

t :t+1|t + εt+1,

may still provide a useful robust alternative, or complement, to the realized volatility
regression in (7.9).

To illustrate, consider Figure 7, which graphs a simulated geometric Brownian mo-
tion price process during a “24 hour” or “288 five-minute” period. The “fundamental”,
but unobserved, price process is given by the dashed line. In practice, however, we
only observe this fundamental price plus a random bid–ask spread, as indicated by the
jagged solid line in the figure. The figure conveys several important insights. First, no-
tice that the squared daily return is small (close to zero) even though there are large
within-day price fluctuations. As such, the true but unobserved volatility is fairly high,
and poorly estimated by the daily squared return. Second, the bid–ask bounces effect
introduces artificial volatility in the observed prices. As a result, realized volatilities
based on very finely sampled high-frequency squared returns produce upward biased
volatility measures. As previously discussed, it is, of course, possible to adjust for this
bias, and several procedures for doing so have recently been proposed in the litera-
ture. Nonetheless, the figure highlights the dangers of using too small a value for �

in the realized volatility estimation without accounting for the bid–ask spread effect.
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Figure 7. Simulated fundamental and observed intraday prices. The smooth dashed line represents the funda-
mental, but unobserved, simulated asset price. The jagged solid line solid represents the observed transaction
prices reflecting bid or ask driven transactions. The two horizontal lines denote the min and max prices ob-

served within the day.

Third, the bid–ask spread only affects the range-based measure (the difference be-
tween the two horizontal lines) twice as opposed to 1/� times for every high-frequency
return entering the realized volatility calculation. As such, the range affords a more
robust (to market microstructure frictions) volatility measure. Meanwhile, an obvious
drawback to the range-based volatility measure is that the multiplicative adjustment in
Equation (7.11) only provides an unbiased measure for integrated volatility under the
ideal, and empirically unrealistic, assumption of a geometric Brownian motion, and the
“right” multiplication factor is generally unknown. Moreover, extensions to multivariate
settings and covariance estimation is difficult to contemplate in the context of the range.

The preceding discussion highlights the need for tools to help in choosing the value
of � in the realized volatility measure. To this end Andersen et al. (1999, 2000) first
proposed the “volatility signature plot”, as a simple indicative graphical tool. The sig-
nature plot provides a graphical representation of the realized volatility averaged over
multiple days as a function of the sampling frequency, �, going from very high (say one-
minute intervals) to low (say daily) frequencies. Recognizing that the bid–ask spread
(and other frictions) generally bias the realized volatility measure, this suggests choos-
ing the highest frequency possible for which the average realized volatility appears to
have stabilized. To illustrate, Figure 8 shows a simulated example corresponding to the
somewhat exaggerated market microstructure effects depicted in Figure 7. In this situ-
ation the plot suggests a sampling frequency of around “120 to 180 minutes” or “2 to
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Figure 8. Volatility signature plot. The figure depicts the impact of the bid–ask spread for measuring realized
volatility by showing the unconditional sample means for the realized volatilities as a function of the length
of the return interval for the high-frequency data underlying the calculations. The simulated prices are subject

to bid–ask bounce effects shown in Figure 7.

3 hours”. Meanwhile, the actual empirical evidence for a host of actively traded assets
indicate that fixing � somewhere between 5 and 15 minutes typically works well, but
many other more refined procedures for eliminating the systematic bias in the simple
realized volatility estimator are now also available.

7.3. Interval forecast and Value-at-Risk evaluation

We now discuss situations where the dynamic volatility constitutes an important part
of the forecast, but the volatility itself is not the direct object of interest, leading exam-
ples of which include Value-at-Risk and probability forecasts. Specifically, consider the
interval forecasts of the form discussion in Section 2,

(7.13)ŷt+1|t ≡ {
ŷL
t+1|t , ŷU

t+1|t
}
,

where the lower and upper parts of the interval forecast are defined so that there is a
(1 − p/2) probability of the ex-post realization falling below the lower interval and
above the upper interval, respectively. In other words, the forecast promises that the
ex-post outcome, yt+1, will fall inside the ex-ante forecasted interval with conditional
probability, p. This setting naturally suggests the definition of a zero–one indicator
sequence taking the value one if the realization falls inside the predicted interval and
zero otherwise. We denote this indicator by

(7.14)It+1 ≡ I
(
ŷL
t+1|t < yt+1 < ŷU

t+1|t
)
.
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Thus, for a correctly specified conditional interval forecast the conditional probability
satisfies

P(It+1 | Ft ) = p,

which also equals the conditional expectation of the zero–one indicator sequence,

(7.15)E(It+1 | Ft ) = p · 1 + (1 − p) · 0 = p.

A general regression version of this conditional expectation is readily expressed as

(7.16)It+1 − p = a + b′xt + εt+1,

where the joint hypothesis that a = b = 0 would be indicative of a correctly condition-
ally calibrated interval forecast series.

Since the construction of the interval forecast depends crucially on the forecasts for
the underlying volatility, the set of information variables, xt , could naturally include
one or more volatility forecasts. The past value of the indicator sequence itself could
also be included in the regression as an even easier and potentially effective choice of
information variable. If the interval forecast ignores important volatility dynamics then
the ex-post observations falling outside the ex-ante interval will cluster corresponding
to periods of high volatility. In turn, this will induce serial dependence in the indicator
sequence leading to a significantly positive b coefficient for xt = (It − p).

As noted in Section 2, the popular Value-at-Risk forecast corresponds directly to a
one-sided interval forecast, and the regression in (7.16) can similarly be used to evaluate,
or backtest, VARs. The indicator sequence in this case would simply be

(7.17)It+1 = I
(
yt+1 < VaRp

t+1|t
)
,

where yt+1 now refers to the ex-post portfolio return. Capturing clustering in the in-
dicator series (and thus clustered VaR violations) is particularly important within the
context of financial risk management. The occurrence of, say, three VaR violations
in one week is more likely to cause financial distress than three violations scattered
randomly throughout the year. Recognizing that clusters in VaR violations likely are
induced by neglected volatility dynamics again highlights the importance of volatility
modeling and forecasting in financial risk management.

7.4. Probability forecast evaluation and market timing tests

The interval and VaR forecasts discussed above correspond to quantiles (or thresholds)
in the conditional distribution for a fixed and pre-specified probability of interest, p. In
Section 2 we also considered probability forecasting in which the threshold of interest is
pre-specified, with the probability of the random variable exceeding the threshold being
forecasted. In this case the loss function is given by

(7.18)L(yt+1, ŷt+1|t ) = (
I(yt+1 > c) − ŷt+1|t

)2
,
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where c denotes the threshold, and the optimal forecast equals

ŷt+1|t = P(yt+1 > c | Ft ).

The generalized forecast error follows directly from (7.3), −2(I(yt+1 > c) − ŷt+1|t ),
resulting in the corresponding forecast evaluation regression

(7.19)I(yt+1 > c) − ŷt+1|t = a + b′xt + εt+1,

where the hypothesis of probability forecast unbiasedness corresponds to a = 0 and
b = 0. Again, the volatility forecast as well as the probability forecast itself would both
be natural candidates for the vector of information variables. Notice also the similarity
between the probability forecast evaluation regression in (7.19) and the interval forecast
and VaR evaluation regression in (7.16).

The probability forecast evaluation framework above is closely related to tests for
market timing in empirical finance. In market timing tests, yt+1 is the excess return on a
risky asset and interest centers on forecasting the probability of a positive excess return,
thus c = 0. In this regard, money managers are often interested in the correspondence
between ex-ante probability forecasts which are larger than 0.5 and the occurrence of
a positive excess return ex-post. In particular, suppose that a probability forecast larger
than 0.5 triggers a long position in the risky asset and vice versa. The regression

(7.20)I(yt+1 > 0) = a + bI(ŷt+1|t > 0.5) + εt+1

then provides a simple framework for evaluating the market timing ability in the fore-
casting model underlying the probability forecast, ŷt+1|t . Based on this regression it is
also possible to show that b = p+ + p− − 1, where p+ and p− denote the probabili-
ties of a correctly forecasted positive and negative return, respectively. A significantly
positive b thus implies that either p+ or p− or both are significantly larger than 0.5.

7.5. Density forecast evaluation

The forecasts considered so far all predict certain aspects of the conditional distribution
without necessarily fully specifying the distribution over the entire support. For many
purposes, however, the entire predictive density is of interest, and tools for evaluating
density forecasts are therefore needed. In Section 2 we explicitly defined the conditional
density forecast as

ŷt+1|t = ft+1|t (y) ≡ f (yt+1 = y | Ft ).

The Probability Integral Transform (PIT), defined as the probability of obtaining a value
below the actual ex-post realization according to the ex-ante density forecast,

(7.21)ut+1 ≡
∫ yt+1

−∞
ft+1|t (s) ds,

provides a general framework for evaluating the predictive distribution. As the PIT vari-
able is a probability, its support is necessarily between zero and one. Furthermore, if the
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density forecast is correctly specified, ut+1 must be i.i.d. uniformly distributed,

(7.22)ut+1 ∼ i.i.d. U(0, 1).

Intuitively, if the density forecast on average puts too little weight, say, in the left ex-
treme of the support then a simple histogram of the PIT variable would not be flat but
rather have too many observations close to zero. Thus, the PIT variable should be uni-
formly distributed. Furthermore, one should not be able to forecast at time t where in
the forecasted density the realization will fall at time t +1. If one could, then that part of
the density forecast is assigned too little weight at time t . Thus, the PIT variable should
also be independent over time.

These considerations show that it is not sufficient to test whether the PIT variable
is uniformly distributed on average. We also need conditional tests to properly assess
whether the ut+1’s are i.i.d. Testing for an i.i.d. uniform distribution is somewhat cum-
bersome due to the bounded support. Alternatively, one may more conveniently test for
normality of the transformed PIT variable,

(7.23)ũt+1 ≡ Φ−1(ut+1) ∼ i.i.d. N(0, 1),

where Φ−1(u) denotes the inverse cumulative density function of a standard normal
variable.

In particular, the i.i.d. normal property in (7.23) implies that the conditional moment
of any order j should equal the corresponding unconditional (constant) moment in the
standard normal distribution, say µj . That is,

(7.24)E
[
ũ

j

t+1

∣∣ Ft

] − µj = 0.

This in turn suggests a simple density forecast evaluation system of regressions

(7.25)ũ
j

t+1 − µj = aj + b′
j xj,t + εj,t+1,

where j determines the order of the moment in question. For instance, testing the hy-
pothesis that aj = bj = 0 for j = 1, 2, 3, 4 will assess if the first four conditional
(noncentral) moments are constant and equal to their standard normal values.

Consider now the case where the density forecast specification underlying the fore-
cast supposedly is known,

(7.26)yt+1 = µt+1|t + σt+1|t zt+1, zt+1 ∼ i.i.d. F.

In this situation, it is possible to directly test the validity of the dynamic model specifi-
cation for the innovations,

(7.27)zt+1 = (yt+1 − µt+1|t )/σt+1|t ∼ i.i.d. F.

The i.i.d. property is most directly and easily tested via the autocorrelations of various
powers, j , of the standardized residuals, say Corr(zj

t , z
j
t−k).
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In particular, under the null hypothesis that the autocorrelations are zero at all lags,
the Ljung–Box statistics for up to Kth order serial correlation,

(7.28)LBj (K) ≡ T (T + 2)

K∑
k=1

Corr2(zj
t , z

j
t−k

)/
(T − k),

should be the realization of a chi-square distribution with K degrees of freedom. Of
course, this K degree of freedom test ignores the fact that the parameters in the density
forecasting model typically will have to be estimated. As noted in Section 7.1, refined
test statistics as well as simulation based techniques are available to formally deal with
this issue.

As previously noted, in most financial applications involving daily or weekly returns,
it is reasonable to assume that µt+1|t ≈ 0, so that

z2
t+1 ≈ y2

t+1/σ
2
t+1|t .

Thus, a dynamic variance model can readily be thought of as removing the dynamics
from the squared observations. Misspecified variance dynamics are thus likely to show
up as significant autocorrelations in z2

t+1. This therefore suggests setting j = 2 in (7.28)
and calculating the Ljung–Box test based on the autocorrelations of the squared inno-
vations, Corr(z2

t , z
2
t−k). This same Ljung–Box test procedure can, of course, also be

used in testing for the absence of dynamic dependencies in the moments of the density
forecast evaluation variable from (7.23), ũt+1.

7.6. Further reading

This section only scratches the surface on forecast evaluation. The properties and eval-
uation of point forecasts from general loss functions have recently been analyzed by
Patton and Timmermann (2003, 2004). The statistical comparison of competing fore-
casts under general loss functions has been discussed by Diebold and Mariano (1995),
Giacomini and White (2004), and West (1996). Forecast evaluation under mean-squared
error loss is discussed in detail by West in Chapter 3 of this Handbook. Interval, quan-
tile and Value-at-Risk forecast evaluation is developed further in Christoffersen (1998,
2003), Christoffersen, Hahn and Inoue (2001), Christoffersen and Pelletier (2004),
Engle and Manganelli (2004), and Giacomini and Komunjer (2005). The evaluation of
probability forecasts, sign forecasts and market timing techniques is surveyed in Breen,
Glosten and Jagannathan (1989), Campbell, Lo and MacKinlay (1997, Chapter 2), and
Christoffersen and Diebold (2003). Methods for density forecast evaluation are devel-
oped in Berkowitz (2001), Diebold, Gunther and Tay (1998), Giacomini (2002), and
Hong (2000), as well as in Chapter 5 by Corradi and Swanson in this Handbook.

White (2000) provides a framework for assessing if the best forecasting model from
a large set of potential models outperforms a given benchmark. Building on this idea,
Hansen, Lunde and Nason (2003, 2005) develop a model confidence set approach for
choosing the best volatility forecasting model.

http://dx.doi.org/10.1016/S1574-0706(05)01003-7
http://dx.doi.org/10.1016/S1574-0706(05)01005-0
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Moreover, combining a number of volatility forecasts may be preferable to choosing
a single best forecast. The general topic of forecast combination is discussed in detail in
Chapter 4 by Timmermann in this Handbook. Volatility forecast combination has been
found to work well in practice by Hu and Tsoukalas (1999).

Further discussion of volatility forecasting and forecast evaluation based on realized
volatility measures can be found in Andersen and Bollerslev (1998a), Andersen, Boller-
slev and Meddahi (2004, 2005), and Patton (2005). Andersen et al. (1999), Aït-Sahalia,
Mykland and Zhang (2005), Bandi and Russel (2003, 2004), Bollen and Inder (2002),
Curci and Corsi (2004), Hansen and Lunde (2004b), Martens (2003), and Zhang, Aït-
Sahalia and Mykland (2005) all analyze the important choice of sampling frequency
and/or the use of various sub-sampling and other corrective procedures in the practical
construction of unbiased (and efficient) realized volatility measures. Alizadeh, Brandt
and Diebold (2002) discuss the relative merits of realized and range-based volatility. For
early work on the properties of range-based estimates, see Feller (1951) and Parkinson
(1980).

Testing for normality of the transformed Probability Integral Transform (PIT) vari-
able can be done in numerous ways. A couple of interesting recent procedures for testing
dynamic models for correct distributional assumptions taking into account the parame-
ter estimation error uncertainty are given by Bontemps and Meddahi (2005) and Duan
(2003).

Several important topics were not explicitly discussed in this section. In the general
forecasting area they include covariance and correlation forecast evaluation [see, e.g.,
Brandt and Diebold (2005)], as well as related multivariate density forecast evaluation
[see, e.g., Diebold, Hahn and Tay (1999)]. In the area of financial forecast applica-
tions, we did not discuss the evaluation of time-varying betas [see, e.g., Ghysels (1998)],
volatility-based asset allocation [see, e.g., Fleming, Kirby and Ostdiek (2001, 2003)],
and option valuation models [see, e.g., Bates (2003) and Christoffersen and Jacobs
(2004a, 2004b)], to mention some. Nonetheless, the general volatility forecast evalu-
ation framework set out above is flexible enough so that it may easily be adapted to
each of these more specific situations.

8. Concluding remarks

This chapter has focused on rigorous yet practical methods for volatility modeling and
forecasting. The literature has obviously advanced rapidly and will almost surely con-
tinue to thrive for the foreseeable future, as key challenges remain at least partially
open. Some of these, such as large-dimensional covariance matrix modeling and prac-
tical ways in which to best make use of the newly available ultra-high-frequency data
have been touched upon.

Less obviously, and beyond the narrower realm of mathematical volatility models,
the financial–econometric volatility literature has impacted the financial landscape in
additional and important ways. Most notably, the newly-entrenched awareness of large

http://dx.doi.org/10.1016/S1574-0706(05)01004-9
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time variation and high persistence in asset return volatility has led to the emergence of
volatility as an asset class, with a variety of vehicles now available for taking positions
exclusively in volatility. This contrasts with traditional options-based instruments, the
value of which varies, for example, with the price of the underlying in addition to its
volatility. The new vehicles include both exchange-traded products such as the Chicago
Board Options Exchange’s VIX volatility index, which depends directly on the one-
month options implied volatility for the S&P500 aggregate market index, as well as
more specialized over-the-counter volatility and covariance swaps, which are essentially
futures contracts written on various realized volatility measures.

In addition to the obvious and traditional uses of such products, such as hedging
volatility exposure associated with running an options book, important new uses in
asset allocation environments are emerging, as portfolio managers add volatility to
otherwise-standard portfolios. While large positions in volatility may be undesirable,
because volatility reverts to a fixed mean and hence has zero expected return in the
long-run, small positions can provide a valuable hedge against crisis episodes in which
simultaneously plunging prices cause both correlations and volatilities to increase. This
type of hedge, of course, can be very appealing in both private and central bank asset-
management environments.

Although it would be an exaggeration to claim that the mathematical volatility fore-
casting models reviewed here are solely responsible for the emergence and deepening
of financial volatility markets, the development of the models nevertheless provided
(and continue to provide) a major push, the effects of which we predict will continue to
evolve and resonate with financial market practice for many years to come.
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