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Multivariate Distributions

Consider n random variables X = (Xj, ..., X;) with

@ joint density f(x1, ..., X,) and marginal densities fi(x;), i =1,...,n

@ joint cdf F(x1, ..., x,) and marginal cdf’s Fi(x;),i=1,..,n
@ f(.|.) denote corresponding conditional densities

and consider the factorization

f(X1,..., f Xr, | X1, e ,Xn,1).f(X1,...,Xn,1)

[ f(x: 1 xq, .. Xm)}-ﬁ()ﬁ)
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Copula

A copula is a multivariate distribution on [0, 1]” with uniformly distributed marginals.

@ copula cdf C(uy, ..., Un)
@ copula density c(uy, ..., Uy)

Using Sklar's Theorem (1959) we have for absolutely continuous bivariate
distributions with continuous marginal cdf’s

f(X1,X2) = C12(F1 (X1), Fg(Xg)).f1 (X1).f2(X2)
f(X1 ‘ Xg) = Cq2 (F1(X1 ), FQ(XQ)) .f1(X1)

for some bivariate copula density ¢;2(.).
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Pair-copula constructions (PCC)

@ Multivariate data can be modelled using a cascade of pair-copulae, acting on two
variables at a time.

@ The basic idea is to decompose an arbitrary distribution function into simple
bivariate building blocks and stitch them together appropriately.

@ These bivariate blocks are two-dimensional copulas and we have a large
selection to choose from.
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The two dimensional case

For the base case in two dimensions we can easily see that

f(x1,X2) = ci2(F1(x1), F2(X2)).fi (x1).f2(X2)

F(X1,X2) = C(F1 (X1 ), FZ(XZ))

f(X1 , X2)

)~ Cre(Fixn), Fa(x2)) ()

fat (Xalx1) =
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The three dimensional case

@ Any three-dimensional density function can be written in the form
(X1, X2, X3) = f1(X1).Ta1 (Xa|X1 ). Ta1 2 (X3l X1, X2)
@ we can write fo (XolX1) = Cr2(F1(x1), Fa(X2))-f2(X2)

@ conditioning in X,, we have that

fy1,2(Xalx1, X2) = Crz2(F1i2(X11x2), Faz(XalX2)).-fap (X3X2)

@ This yields the full decomposition

f(X1, X2, X3) If1 (X1 )
Cr2(F1(x1), Fa(x2))f2(X2).
Cia2(Fr(X11X2), Fap(Xalx2)).Cos (Fa(x2)-Fa(x3)).f3(X3)
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The four dimensional case

@ For a four-dimensional density we start with

f(Xw s X2, X3, X4) =1 (X1 )~f2|1 (X2|X1 )-f3\1/2(X3|X1, X2).f4“/2/3(x4|x1, X2, Xs)

@ and rewrite it in terms of six pair-copulas and the four marginal densities f;(x;) for
i=1,2,3,4:

f(x1, X2, X3, Xa) =fi(X1).
Ci2(F1(x1), F2(X2)).f2(X2).
Cagy1 (Fait (Xalx1), Fap (Xalx1))-Cia(Fi(X1), F3(Xs))-f3(X3)-
Caaj12(Fa2(Xalx1, X2), Faji2(Xalx1, X2)).
Co41 (F2|1 (X2|X1 ), F4\1(X4|X1))-
C1a(F1(x1), Fa(xs))-fa(xs)
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Pair-copula constructions (PCC)

@ For distinct i, j, iy, ..., ik with i < jand iy < ... < i let

Cijliy i “= Cifiiv,ic (F(Xi | Xiy s oes X3 )y (F(Xj | Xty 000 X))

@ Reexpress f(x; | X1,..., Xt-1) as

f(Xt | X1, .00s X—1) = €4 2, =1 F(Xe | X1, ey Xi2)

H Cs,tls+1...

@ Using (1) and s =i, t =i+ jit follows that

Ct-1),t X fi(xt)

f(X‘] 7.

ﬁ ﬁ Cstist1,. } [ﬁ C(H),r] [ﬁ fk(Xk)]

t=2 s

L"] T [10]

o
E
E
E
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Marginal conditional distributions

@ many of the pair-copulas need to be evaluated at a conditional distribution of the
form F(x|v), where v denotes a vector of variables.

@ The calculation of these conditional distributions is also recursive.

@ Let v_; denote the vector v but excluding the jth component v;. For every j,
ICxyiv_; (F(XIvp), F(vjlv_))
IF (vjlv;)

where C, yiv_j is a bivariate copula function.

F(xlv) =

@ For the special case where v has only one component we have

acx,v(Fx(X)/ FV(V))

FUV =—""3rv)
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Pair-Copula Constructions and Vines

@ The above decomposition is called a pair-copula construction (PCC).

@ The decomposition is not unique. That is, for high-dimensional distributions there
are many possible pair-copula constructions.

@ Bedford and Cooke (2002) introduced a graphical model called regular vine that
help us organize a subset of all possible decompositions.

@ The class of regular vines is large and embraces a large number of possible
PCC’s. Two special cases are:
@ D-Vine
@ Canonical Vine

Both consists of sequences of trees that show us how to write a joint density
function into pair-copulas and marginal densities
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Canonical Vine Representation

G

f(X1, X2, X3, Xa) =1 (X1)fa(X2)f3(X3)fa(X4)
Cs1(Fs(Xs), F1(x1))cs2(Fa(xs), F2(X2))Cas(Fa(Xs), Fa(X4))
Co13(Fap(X2lX3), F13(X11X3)) Coaiz(Faa(XalXa), Faiz(XalXs))
Craps(Fris(X11X2, X3), Fajps(XalX2, X3))

The intuition behind canonical vines is that one variable plays a key role in the
dependency structure and so everyone is linked to it.
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D-Vine Representation

f(x1, X2, X3, Xa) =fi (X1) o (X2)f3(X3) 4 (X4)
Ci2(F1(x1), Fo(X2))Coa(Fa(x2), Fa(x3))Caa(Fa(Xa), Fa(Xa))
Ciap(Fip(X11x2), Fap(X3|X2)) Coaia(Faa(XalX3), Fai(XalXs))
Ciaia(Friza(X11X2, X3), Faez(XalX2, X3))
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Estimating the Pair-Copula Decomposition

The canonical or D-vine constructions decompose an n-dimensional multivariate
density function into two main components.

@ the product of each of the marginal density functions.
@ the product of the density functions of n(n-1)/2 bivariate copulas.

To estimate the parameters of either construction we need to

@ decide which family to use for each pair-copula and
@ estimate all necessary parameters simultaneously
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chi-plots (Fischer and Switzer, 1985)

@ A chi-plot is a graphical method to help us extract information about the
dependence between two random variables.

@ The essence of the chi-plot is to compare the empirical bivariate distribution
against the null hypothesis of independence at each point in the scatterplot.

@ To construct this plot from a set of points (X1, y1), (X2, ¥2), ..., (Xa, ¥n) we calculate
three empirical distribution functions: the bivariate distribution H and the two
marginal distributions F and G.

@ For each point (x;, y;) let H; be the proportion of points below and to the left of
(xi, yi)- Also let F; and G; be the proportion of points to the left and below of the
point (x;, yi), respectively.
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chi-plots (Fischer and Switzer (1985)

Each point (x;, A;) of the y-plot is then defined by

Xi= —— Hi-FGi (24)
VE(1-F)Gi(1-Gy)
and
102 . 1y
ilz-l-blmax]lllF,—;J G- lf (25)
where
. ( 1y~ 1y
Si = sign “F.‘ - E-‘I |ILv|' - 5."} . (26)
The formal definitions for H, F and G are
H;= 1 V' Ix; < x5, 0 < W), (27)
I ”—lL‘ | iy £ I ) |
J#1
Fi= g )10 < %), (28)
1
Gi= L V' I(yi < wi) (29)
I n— l L‘ A= Ml —

oy
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chi-plots (Fischer and Switzer (1985)
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