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Introduction
°

Traditional crop insurance

Main Problems:

@ lack of methods to properly quantify agricultural risk,

inadequate pricing techniques,

@ insufficient sources of data,

@ systemic nature of the risk,

@ information asymmetries (moral hazard, adverse selection),

@ greater ruin probability.
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Information assimetries

Moral hazard:

- Farmers change their behavior in a way
that increases the risks beyond what the
insurer believed they would be when the
insurance was developed.

Adverse selection:

- It occurs when an individual’'s demand for
insurance is positively correlated with the
individual’s risk of loss, and the insurer is
unable to allow for this correlation in the
price of insurance.
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Index based crop insurance contracts

Two main types:

@ area yield insurance:

farmers collect an indemnity whenever the county average yield falls beneath a
yield guarantee, regardless of the farmers’ actual yields.

@ weather based insurance:

It is based on the events of a weather variable measured at a given location. The
payoff is based on the difference between an underlying weather index over a
specified period and an agreed strike value.
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Index based crop insurance contracts

Main features:

v their payoff depends on values of an index, related to the risk being hedged
against

v/ indexes can be measured objectively (do not depend on individual actions)

v loss adjustment costs at individual level are eliminated

v/ Their risk-reducing potential depends strongly on the extent to which individual
farmers are affected by basis risk
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Spatio-temporal modelling of crop yield

Main challenges:

crop yield estimates in some regions have a considerable error

short length of time series

missing values are very frequent

there are change of support problems

crop yield statistics are released with a lag of two years

the number of areas is not constant through time

planting date interval may be large = weak correlation covariates : crop yield
seasonal forecasting (some months ahead) for climatic covariates is needed

computational methods are time consuming.
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Spatio-temporal modelling of crop yield

Modelling strategies:

@ a Bayesian hierarchical approach
@ a Bayesian dynamic approach

Covariates:

@ drought indexes
@ change of technology indexes
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Study region and available data sets

@ Crop yield data:
average annual county yield
(1980 — 2007).
Source: IBGE / SEAB

@ Meteorological data:

daily precipitation series for 503
stations (01/01/76 — 31/12/08).
SOuUrce:. ANA/SUDHERSA / IAPAR /
SIMEPAR / INMET

) . State: Parana
daily temperature series for 87 N° counties: 399

stations (01/01/76 — 31/12/08). planted area (grains): 8.45 mill Ha
SOource: INMET / IAPAR / SIMEPAR
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Solving the change of support problem

@ Let {D(g) : g € G}, with G € R?, be a spatial random field, with g describing the
latitude and longitude of a point within the region of interest.

@ for a block (county) B c G, D(B)=| B[ [, D(g)dg (1)

where |B| represents the area of B.

@ predictions are obtained by approximating the integral in (1) by a sum, using
standard interpolation techniques.

@ areal predicted values are estimated as the mean of the predicted values at
points of a dense grid that fall within each county s.

@ the procedure is independently repeated at each time point, t =1,.--, T.



space-time models
00@000000

Solving the change of support problem

Interpolation (GAM, Geostatistics)
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Recovering the crop yield time series
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Imputing the missing values

@ We use a modified version of the EM algorithm for imputation of missing values in
multivariate time series (Junger et al, 2003)

@ The temporal pattern was modeled with a cubic spline.
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evolution of planting (soybean)

SOJA - NUCLEOS REGIONAIS DA SEAB - SAFRA 08/09 - EVOLUGAO DO PLANTIO - (em %)

NUOCLEO AREA ESTI- outd8 I nov08 I dez08
REGIONAL maDAa) [ 6 [13 [ 2027 [ 3 w1724 1 [8[15][22[29]5]
APUCARANA 438450 0 | 0 10 10 &0 B85 95 99 100 100 100 100 100 | 100
C. MOURAO 361596 0 |10 15 50 80| 90 95 98 100 100 100 100 100 | 100
CASCAVEL 184000 7 3% 60 70 90 95 98 100 100 100 100 100 100 | 100
C. PROCOPIO 020 0 0o 1 | 7 153 s 80 8 95 95 93 100 100
CURITIBA 132250 0 | 0 0 10 15 25 35 &0 &0 | 90 100 100 100 | 100
F. BELTRAO 150900 0 | 5 7 |20 30 60 G0 | 70 A0 | 95 95 100 100 | 100
GUARAPUAVA %410 0 0 2 5 10|25 35 & 70 B0 90| 97 99 | 100
IRATI B9A00 O 0 1 18 30 A5 G0 | 78 94 | 95 93 | 100 100 | 100
IVAIPORA 3016 0 0 3 5 20 50 70D 90 90 | 98 100 100 100 | 100
JACAREZINHO 195009 0 | 0 2 10 15 | 45 50 55 &5 | 95 100 100 100 | 100
LARANJEIRASUL | 198220 O 10 & 15 35 &0 &0 | B30 &0 80 94 100 100 100
LONDRINA 783 0 10 10 |30 44 | 44 53 74 83 85 100 100 100 100
MARINGA 190BE0 0 | 0 0 &0 75 80 90 95 95 % 9% 97 9% 100
PARANAVAI 244600 0 |10 15 | 20 S0 BO B0 | 92 | 92 92 100 100 100 100
P. BRANCO 384300 1 |10 20 25 30|45 45 B0 70 0 90 95 100 100
P. GROSSA 3132 0 2 10 18 32 55 G5 B85 99 | 95 95 | 95 95 | 100
TOLEDO 17800 10 3 B8O 90 97 | 100 100 | 100 100 | 100 | 100 100 100 | 100
UMUARAMA 2773458 1 20 15 &5 80 | 90 90 100 100 100 100 100 100 | 100
U. VITORIA i 00 1 | 2 3 /12 25 42 74 78 90 95 100 100
TOTAL 5489818 2 | 12 22 | 23 54 B3 74 | B6 | 92 94 | 98 | 93 93 100
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evolution of planting (maize)

MILHO 12 safra 2009/10 Ano 2008
NUCLEO Plantio (%)
REGIONAL Aug | Set [ out | Nov | Dez |
27 | 2] 90 [15] 22 |29 6] 3 ] 20 | 27| 3 | 10 [17 24| 1 ] 8 | 15 | 22 | 29|
APUCARANA 2 5 10 50 85 95 97 99 100
C. MOURAO 5 35 70 8 95 97 100
CASCAVEL 15 60 80 87 98 99 100
C.PROCOPIO 40 50 70 80 85 90 95 97 100
CURITIBA 10 20 35 60 80 90 100
F.BELTRAO 10 12 27 70 82 86 93 94 95 96 97 0 0 98 100
GUARAPUAVA 2 10 15 36 46 65 72 78 80 85 88 89 90 91 93 95 100
IRATI 4 15 45 70 85 90 92 95 97 0 99 100
IVAIPORA 10 15 20 45 70 85 95 98 100
JACAREZINHO 4 6 10 20 25 30 35 45 73 76 81 86 91 93 100
LARANJEIRAS SUL 20 45 54 56 68 73 77 81 83 85 90 92 100
LONDRINA 15 20 35 45 60 70 73 88 98 100
MARINGA 50 70 75 93 95 96 97 100
PARANAGUA 20 25 30 60 80 85 100
PARANAVAI 5 15 35 40 60 70 90 100
P.BRANCO 2 3 15 45 60 80 90 92 97 98 98 99 100
P. GROSSA 2 10 30 45 68 80 85 90 95 97 98 99 100
TOLEDO 28 72 96 98 100
UMUARAMA 1 3 5 20 80 85 100
U. VITORIA 1 2 6 20 40 55 67 70 90 95 97 100
TOTAL 1] 2] 6[18] 3248 [061]72] 81 [88]92] 94 | 96] 97 | 98 | 98 [98.6] 99.2] 100

Fonte: SEAB/DERAL
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Chronological scheme
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The Bayesian hierarchical approach

Yie ~ N(uit, i)
Uit = PiYit-1 + Po; + B1;t + P, 2 B3, COVjt
T = exp(u. + hy)

where:
pi ~ N(ay,, 7)) , a, ~ N(0,7,)

- Tp . .
ﬁj,|ﬁ17,~N([3,-(’), r‘) with = X p/n for  jel01,2,9)

i

— T i —
mihi~N(fo, ) with  Fg= X b5 pe~N(Ob)

i ked;
B, and h_; are the vectors of all ;s and h’s excluding f; and h;, respectively
di: set of neighbors of areai ; ri: number of neighbors of area i

Th, T, @nd T, are inverse gamma distributed
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The Bayesian dynamic approach

We use a Gaussian dynamic spatio-temporal model (Vivar and Ferreira, 2009):

y=Fx +¢&, &~ PGMRF (0s, V")
xi= GiXi_1 + w; wi~ PGMRF (0s, W; ")
where,
X Is pils pils 0s 0s w;' 0s 0s O0s
v |X2t| p_| 05| g _|0s p2Is 0s Os 4 | 0s W' 0s O0s
=By |7 T fcovi|” Tt [ 0s  0s  psls  Os | “|os os w;' os
Bt cov2 0s 0s 0s pls Os Os 0s w,’
V;'=1o(Is + M) W= i(Is + ¢;M)
hx; >0 is a measure of similarity between regions
me if k=} ¢ >0 controls the degree of spatial correlation
Mcj={-he; if keN, N; is the selt of neighbours of region j
0 otherwise. T is a scale parameter
M= Yjen, Micj




@ y;s represents the annual average crop yield for each year t and county s,

@ Xy represents the level and xo; represents the velocity of the process at time t,
@ F; connects the latent process to the observations,

@ G; describes the spatio-temporal evolution of the process,

@ The prior for x, is a multivariate normal with zero mean vector.

@ The prior for 7; and ¢;, i € {1,2,3, 4}, is the joint reference prior for PGMRFs.

@ Posterior inference is performed in a MCMC framework, with an embedded
forward filter backward sampler (FFBS) algorithm.
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The Kalman filter

Let Dy = {y1,.... y1}

and suppose that at t = 0, Xy | Dy ~ N(my, Cp), with known mg and Cy
@ Posterior at time t — 1: Xi—1 | Doy ~ N(my_4, Ci_+)
@ Prior attime t: Xi | Di-1 ~ N(ay, Ry)
with a; = Giymy_q, Ry = GiCi1G; + W,
@ Predictive at time t: Yt | Di-1 ~ N(f;, Qt)
with f; = Fja;, Q: = F{RiF; + V;
@ Posterior at time t: X | Dy ~ N(my, Cy)

with m; = a; +Atet, Ct = Fl)( - A,OtA,', At = RtFtO[_1a et =Yt — ft
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The FFBS algorithm

@ to sample X7 from N(mr, Ct) (Forward filtering)

@ to sample X; from (X; | Xi1, Vi, Wy, Dy), fort=T-1,T-2,..,2,1
(Backward smoothing),

with (X{ | Xt+1/ Vt/ Wf/ Df) ~ N(mean’ Var),
where
mean = (G;W; "G, + C;") (G W, Xis1 + C;'my)

var = (GIW;'G; + C;')™
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Preliminary results
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The covariates

The relationship between weather and yield variability is taken into account through
agricultural drought indexes:

> The drought index (Mota, 1981): DI =1 —[ETa/ETm]
where ETa and ETm are the daily actual and maximum evapotranspiration
accumulated during the critical period of the crop in terms of water deficit.

> The standardized actual evapotranspiration index (Blain et al., 2006):
it quantifies agricultural drought in a 10-days scale, based on the fit of the
ETa series to the beta distribution.

> P-ETO:
the accumulated difference between precipitation and reference
evapotranspiration through the critical period.




Evapotranspiration:

evapotranspiration =
transpiration + evaporation

—_—

transpiration

trees grass

groundwater
‘.’ recharge v

@ reference evapotranspiration (ET0):

is the evapotranspiration rate from a
hypothetical reference surface under
optimal soil water conditions.

It is a climatic parameter that
expresses the evaporation power of
the atmosphere independently of
vegetation characteristics and soil
factors.

potential evapotranspiration (ETP):
refers to the evapotranspiration of a
specific crop from well-watered fields
that achieve full production under the
given climatic conditions.

ETP = kc+ETO

actual evapotranspiration (ETA):

is the evapotranspiration from a crop
grown under management and
environmental conditions that differ
from the standard conditions.

ETA = ks« ETP
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Reference evapotranspiration (Penman)

800 UZEE e :l
T+273 = e

0408AR, -G+
ET, =

where

ET, reference evapotranspiration [mm day’w],

R, net radiation at the crop surface [MJ m? day’w].
G soil heat flux density [MJ m* day'w]‘

T mean daily air temperature at 2 m height [°C],
u, wind speed at 2 m height [m s"],

e, saturation vapour pressure [kPa],

e, actual vapour pressure [kPal,

e; - e, saturation vapour pressure deficit [kPa],

A slope vapour pressure curve [kPa DC"],

¥ psychrometric constant [kPa D(3"'].
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A weather-yield relationship
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Umuarama - level of aggregation: 39
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Model selection criteria

@ We used a slightly different version of the Gelfand and Ghosh (1998) criterion,
which is based on the posterior predictive distributions.

@ It considers the mean square predictive error (MSPE) relative to the number of
regions used in the analysis.

@ Additionally, the mean amplitude of the 95% credible interval for the predictions of
the models at T + 2, relative to the number of regions used in the analysis were
used.
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Rating the crop insurance contract

When a proportion A (0 < A < 1) of the expected crop yield y° is used to form the
basis of insurance, the premium rate (PR) is given by:

F(Ay®)Ey[Ay® —y |y < Ay

PR = e

E is the expectation operator and F is the cumulative distribution function of yields.

If we reparameterize y, such that y* = y/Ay®, and considering w = 1 — y*, then:

PR =P(w>0)[1-E,(1-w|w>0)]=P(w>0)E,[w|w>0],
which after some simplification reduces to:
PR = E[wl(0 < w < 1)].

The standard errors of the premium rate estimates obtained under the Bayesian
approach provide a natural metric to guide the specification of loading factors.
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Empirical pricing of crop insurance contracts

The empirical premium rate (EPR) as currently calculated by the insurers is given by:

Ely — Ay™]

EPR= =

where:

y" is the average historic crop yield

=]

Ely = Ay = X (yi - y™M)/n

I

Il
o

y; is the observed crop yield for year i, and

A is the coverage level.
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Preliminary results

Tabela: Results of the model selection criteria for the Bayesian hierarchical approach

aggregation | covariate MCIA* (95%) MCIA* (90%) MSPE** x 10°
mean sd mean sd
399 without 5588.4 2127.3 | 4609.2 1745.8 3454
with 4174.5 14451 | 3429.7 1186.3 2319

* MCIA: mean credible interval amplitude
** MSPE: mean squared predictive error
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Preliminary results

Tabela: Premium rates obtained from the Bayesian hierarchical approach

aggregation coverage (70%) coverage (90%)
area level mean  Clrange* | mean  Clrange*
Francisco Beltrao 399 0.0735 0.3010 0.2019 0.4563
Domingo Soares 399 0.0571 0.2905 0.1777 0.4482
Manoel Ribas 399 0.1589 0.4259 0.318 0.5535
Cerro Azul 399 0.0440 0.2523 0.1465 0.4184

* Cl range: 90% credible interval amplitude



Preliminary results

Results
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Some predictions obtained with the Bayesian hierarchical model:
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Future work

> spatio-temporal non-parametric modelling of crop yield through Dirichlet
processes;

> zone-based crop insurance;

> crop simulation models coupled into spatio-temporal models to pricing crop
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problems with MCMC in high dimensions;

> “|C” or “CI"? that’s the question.
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