
Probabilistic climate change predictions
applying Bayesian model averaging

BY SEUNG-KI MIN*, DANIEL SIMONIS AND ANDREAS HENSE

Meteorologisches Institut, Universität Bonn, 53121 Bonn, Germany

This study explores the sensitivity of probabilistic predictions of the twenty-first century
surface air temperature (SAT) changes to different multi-model averaging methods using
available simulations from the Intergovernmental Panel on Climate Change fourth
assessment report. A way of observationally constrained prediction is provided by
training multi-model simulations for the second half of the twentieth century with respect
to long-term components. The Bayesian model averaging (BMA) produces weighted
probability density functions (PDFs) and we compare two methods of estimating
weighting factors: Bayes factor and expectation–maximization algorithm. It is shown
that Bayesian-weighted PDFs for the global mean SAT changes are characterized by
multi-modal structures from the middle of the twenty-first century onward, which are not
clearly seen in arithmetic ensemble mean (AEM). This occurs because BMA tends to
select a few high-skilled models and down-weight the others. Additionally, Bayesian
results exhibit larger means and broader PDFs in the global mean predictions than the
unweighted AEM. Multi-modality is more pronounced in the continental analysis using
30-year mean (2070–2099) SATs while there is only a little effect of Bayesian weighting
on the 5–95% range. These results indicate that this approach to observationally
constrained probabilistic predictions can be highly sensitive to the method of training,
particularly for the later half of the twenty-first century, and that a more comprehensive
approach combining different regions and/or variables is required.
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1. Introduction

There have been increasing studies on regional-scale climate change detection
and attribution using surface air temperatures (SATs; Karoly et al. 2003; Stott
2003; Zwiers & Zhang 2003; Zhang et al. 2006; Min & Hense 2007). They have
found significant anthropogenic influence (greenhouse gases and sulphate
aerosols) on the observed SAT changes over continental and even smaller
spatial scales. Based on these regional assessment results, Stott et al. (2006)
suggested producing probabilistic climate predictions weighted with some
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measure of the model skills evaluated by observations (Allen et al. 2000; Stott &
Kettleborough 2002). Here, the main assumption is that past observed changes
attributable to anthropogenic forcing can be used as a constraint to future
warming. This seems to be reasonable considering that future scenarios such as
the well-known special report on emissions scenarios (SRES, Nakicenovic &
Swart 2000) are based only on anthropogenic forcing factors.

Since climate predictions are inherently uncertain, the information on the
uncertainty is essential to decision-makers. There have been recent efforts to
develop methods for a probabilistic treatment of uncertainty in the global
warming predictions. Murphy et al. (2004), Piani et al. (2005) and Stainforth
et al. (2005) used ‘perturbed physics ensembles’ in which model parameters are
changed within expert-defined ranges. Using distributed computing resources
through the climate-prediction.net project (Allen 1999), they obtained multi-
thousand simulations of an atmospheric general circulation model coupled to
mixed layer ocean and estimated climate uncertainty from that ensemble. Stott
et al. (2006) showed continental-scale temperature predictions in which
weighting factors are obtained from detection/attribution results using an
ensemble of atmosphere–ocean coupled climate models (AOGCMs) while the
necessary uncertainty is estimated from the control run with the same model.

Multi-AOGCM analyses have been carried out as well for climate change (e.g.
Cubasch et al. 2001; Giorgi & Bi 2005). More recently, in order to consider model
uncertainty systematically, Bayesian approaches have been suggested and
applied (Tebaldi et al. 2005; Greene et al. 2006; Min & Hense 2006a). Although
these approaches take Bayesian statistics as their basis, they are different in
dealing with variables and methods to obtain weighting factors. Tebaldi et al.
(2005) evaluated models with respect to the present-day climatology and the
inter-model consistency in predictions. Greene et al. (2006) fitted a linear model
to observation and model simulation, and the method of Min & Hense (2006a) is
based on measuring a generalized distance between observation and simulation.
On the other hand, Raftery et al. (2005) suggested the Bayesian model averaging
(BMA) as a method of calibrating multi-model weather forecast ensembles. BMA
produces a weighted probability density function (PDF) using the posterior
probability of each participating model as a weighting factor. Raftery et al.
(2005) showed the superiority of BMA in the probabilistic forecast as well as
deterministic one in the case of mesoscale weather forecasts.

The objective of this study is to examine the effect of BMA on probabilistic
predictions by comparing weighted and unweighted PDFs given a rather small
number of a multi-model ensemble of opportunity very similar in method to the
case of Raftery et al. (2005). The questions are: can we apply the BMA method
in general directly to climate projections, can it be modified and do the results
lead to interpretable results? To answer these questions, we will apply the BMA
method to climate change predictions using a multi-AOGCM dataset from the
Intergovernmental Panel on Climate Change (IPCC) fourth assessment report
(AR4). As a first step, we focus on SAT changes in the twenty-first century
under the SRES A1B scenario. The method is applied to global mean SATs and
then extended into continental regions. To test modifications, we use two
methods of estimating the weighting factors with both based on an analysis of
the likelihood.
Phil. Trans. R. Soc. A (2007)
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Figure 1. Spatial domain of observations (filled grids) for 1950–1999 applied to model simulations
for both training and prediction periods. Continental regions are shown for NAM, ASI, SAM, AFR,
AUS and EUR following Stott (2003).
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2. Data

Observations of monthly SAT anomalies over land are taken from the Climate
Research Unit dataset (CRUTEM2v) for the period 1950–1999 (Jones & Moberg
2003). Area-averaged SATs are calculated over global and continental regions
using a temporally varying observational mask for the analysis period. Six
continental regions are defined as North America (NAM), Asia (ASI), South
America (SAM), Africa (AFR), Australia (AUS) and Europe (EUR) following
Stott (2003) and Min & Hense (2007). Figure 1 shows the distribution of
observational grids where monthly mean data exist at least once. The same time-
varying spatial coverage is applied to the model simulations for the training
period (1950–1999) while the constant pattern shown in figure 1 is used for the
future simulations (2001–2099).

As model data, we take 21 AOGCMs of IPCC AR4 which provide simulations
under the SRES A1B scenario (model description and data are available from the
Coupled Model Intercomparison Project phase 3, CMIP3 archive). According to
the implemented external forcing, the models are divided into two groups:
MME_ALL (natural plus anthropogenic forcing, 10 models) and MME_ANTH
(anthropogenic-only forcing, 11 models). Here, we treat ALL and ANTHRO
members as a common ensemble, considering that, for the second half of the
twentieth century, both ALL and ANTHRO signals are detectable in the
observed SAT changes with similar amplitudes (Min & Hense 2007). This
approach would not be possible if the complete twentieth century would be taken
for the model-data assessment. For the list of analysed models, we refer the
reader to figure 2. The ensemble mean of each model is used as an input variable
Phil. Trans. R. Soc. A (2007)



CCSM3

CGCM3.1(t47)
CGCM3.1(t63)

CNRM–CM3
CSIRO–Mk3.0

ECHAM5/MPI–OM
ECHO–G

FGOALS–g1.0
GISS–AOM
IPSL–CM4

UKMO–HadCM3
UKMO–HadGEM1

GFDL–CM2.0
GFDL–CM2.1

GISS–EH
GISS–ER

INM–CM3.0
MIROC3.2(hi)

MIROC3.2(med)
MRI–CGCM2.3.2

PCM

(a) (b)

M
M

E
_A

L
L

M
M

E
_A

N
T

H

4

3

2

1

0.5

0.1

G
L

B

N
A

M

A
SI

SA
M

A
FR

A
U

S

E
U

R

G
L

B

N
A

M

A
SI

SA
M

A
FR

A
U

S

E
U

R

Figure 2. Distributions of normalized weighting factors for global (GLB) and six continental
(figure 1) mean SATs simulated by 21 coupled climate models, (a) BF and (b) EM. Ten models
include both natural and anthropogenic forcing (MME_ALL) while 11 models take anthropogenic-
only forcing (MME_ANTH). Note that weighting factors are normalized (divided by mean value of
1/21Z0.048). See text for details.
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for skill comparisons among models. For models with a single member, we regard
the single realization as ensemble mean. To estimate the internal variability of
area-averaged SATs, pre-industrial control runs of the 21 models (MME_PI) are
used as in the previous studies (Min & Hense 2006b, 2007). There are 80
independent samples of 100-year long SATs available. Therefore, this ensemble
of opportunity addresses mainly the modelling (epistemic) uncertainty and its
effect upon the projections.

This study is based on the assumption that models which simulate better
consistency with the observed change will provide more reliable predictions of
future climate changes. Dealing with large-scale SAT changes, we also assume
that some of the models are plausible representations of the real world and that
one can ignore the interactions with and the behaviours of other variables.
Additionally, we consider only long-term components of model responses to given
external forcing (mainly the anthropogenic ones for 1950–1999). To accomplish
the latter, projections on Legendre polynomials in time are used as a low-pass
filtering method following Min & Hense (2006b). Legendre coefficients from the
first to fourth degree (LP1–LP4) are computed for the 50-year SAT changes of
observations and model simulations. Zero degree coefficients (LP0) which
represent time averages are omitted here to avoid any effect from selecting
different reference periods and to reduce the influence of the difference between
the ALL and ANTHRO forcing runs which are basically visible in LP0
Phil. Trans. R. Soc. A (2007)
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(Min & Hense 2007). This corresponds to using SAT anomalies relative to 1950–
1999 for both observations and model simulations. Model data are interpolated
to the observational grid of 58!58 before analysis.
3. Bayesian model averaging

In ensemble forecasting, it is customary to take the arithmetic ensemble mean
(AEM) as a prediction quantity and in most cases AEM already provides a better
skill than any of the ensemble members alone. However, this approach gives no
information about any kind of uncertainty contained in the predictions. BMA
can be a powerful tool because it produces a complete PDF as a forecast and
provides a quantification of the uncertainties. If one has a high enough number of
ensemble members forming a sample of the climate model population, BMA will
give a realistic estimate of the modelling uncertainty of the climate system.
However, one has to admit that this assumption probably does not hold due to an
undersampling of the ‘climate model space’: even available models cannot be
regarded as independent because they share components or are from the same
institution (Allen & Stainforth 2002). Accordingly we focus on examining the
sensitivity of multi-model probabilistic predictions to different weighting
methods. In addition, BMA delivers a way of model selection by weighting
each ensemble member according to a measure of models’ performance in the
training period. Weighted probabilistic predictions of the twenty-first century
climate change are obtained on the basis of the model evaluation results for the
twentieth century.

The theory of BMA is comprehensively described in Hoeting et al. (1999). Given
forecast from K models fk, kZ1,., K, and the training data yT, the weighted
forecast PDF for predictand y is obtained by

pðyjf1;.; fK ; y
TÞZ

XK
kZ1

wkgkðyjfk ; s2Þ; ð3:1Þ

wherewk is weight for eachmodel and gk is a normal PDFwithmean fk and variance
s2 which is statistically denoted by yjfkwN(fk, s

2). The weights wk are estimated
from evaluating the models in view of yT for which we use two different methods
based on Bayesian statistics. Then BMA predictive mean is just the conditional
expectation which is defined as weighted multi-model averaging:

~yhE½yjf1;.; fK �Z
XK
kZ1

wkfk : ð3:2Þ

If the weighting factors are all equal, the BMA mean becomes identical to AEM
which is simply

�y Z
1

K

XK
kZ1

fk : ð3:3Þ

As climate variables underlie long-term variations, they are correlated not
only in space but also in time. Therefore, a time-series of SAT anomalies has to be
treated as the realization of a multivariate normally distributed random variable.
Phil. Trans. R. Soc. A (2007)



Table 1. Standard deviations of annual and 30-year mean SATs for global and continental regions,
estimated from the pre-industrial control simulations with multi-AOGCMs (MME_PI). (Refer to
figure 1 for spatial domains.)

region for area averages

s.d.

annual mean 30-year mean

GLB 0.17 0.10
NAM 0.37 0.18
ASI 0.25 0.13
SAM 0.20 0.08
AFR 0.23 0.08
AUS 0.31 0.11
EUR 0.44 0.22

S.-K. Min et al.2108
Dealing with 50-year annual time-series, a dimension reduction is required. As
explained above,we applyLegendre expansions in time restricting fromLP1 toLP4
by which the linear trend and the long-term variations are only considered. Now
observation and model dataset are analysed on a reduced temporal space
(dimension qZ4) which are hereafter denoted by d and mk, respectively.

The variance s2 in equation (3.1) is estimated from MME_PI simulations.
From 80 independent 100-year long samples, we calculate variances of global and
continental-scale averaged SATs. Table 1 shows the standard deviations. The
estimated standard deviation of the global mean annual SAT is 0.17 K. The
corresponding continental values are larger, ranging from 0.20 to 0.44 K. NAM
and EUR have relatively stronger variabilities than other regions which might be
related to the North Atlantic Oscillation. Variances of 30-year mean SATs are
smaller by about half of the annual values.
(a ) Bayes factor

The first approach to calculate the model weights wk is to use normalized
Bayes factors (BFs) as described in Min & Hense (2006a). Given observational
data d, the BF Bkr of the model Mk with respect to the reference model Mr is
defined as the ratio of posterior odds to prior odds:

Bkr Z
pðMk jdÞ=pðMrjdÞ
pðMkÞ=pðMrÞ

Z
lðdjMkÞ
lðdjMrÞ

: ð3:4Þ

Selecting a different reference model has no effect on estimating wk due to the
normalization of the BFs. When two models are single distributions with no free
parameters, theBFbecomes identical to the likelihood ratio (Kass&Raftery 1995).

Assuming multivariate normal distribution for the observation and
simulations, the likelihood can be expressed as

lðdjMkÞZ
1ffiffiffiffiffiffiffiffiffiffiffi
ð2pÞq

p
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

det AK1
k

det Sk det So

s
exp K

1

2
Lk

� �
; ð3:5Þ

where So and Sk are the covariance matrix of the observation and model
simulation, respectively, AkZSK1

k CSK1
o , and LkZðdKmkÞTðSkCSoÞK1ðdKmkÞ
Phil. Trans. R. Soc. A (2007)
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which represents a generalized Mahalanobis distance between observation and
model simulation (for more details refer to Min et al. 2004). We assume that So

and Sk are identical to the covariance matrix Sctl estimated from MME_PI.
(b ) Expectation–maximization algorithm

Another convenient way taken from Raftery et al. (2005) is to maximize the
log-likelihood function for the training dataset

lðw1;.wK ;SÞZ
X
i

ln
XK
kZ1

wkgkðdjmkiÞ
 !

; ð3:6Þ

by the expectation–maximization (EM) algorithm (Dempster et al. 1977). This
algorithm is adapted for a problem that can be formulated with unobserved
quantities zki. Here, we define zkiZ1 if model k is the best in realization i (see
below) and zkiZ0 otherwise.

The EM algorithm is iterative and consists of two steps. In the first E
(expectation) step, the current zki is estimated. The E step for iteration j is given by

ẑ
ðj Þ
ki Z

w
ðjK1Þ
k gðdjmki;S

ðjK1ÞÞPK
mZ1

w
ðjK1Þ
m gðdjmmi;S

ðjK1ÞÞ
: ð3:7Þ

In the M (maximization) step, weights and covariance matrix are estimated as
follows:

w
ðj Þ
k Z

1

n

X
i

ẑ
ðj Þ
ki ;

Sðj Þ Z
1

n

X
i

XK
kZ1

ẑ
ðj Þ
ki ðdKmkiÞðdKmkiÞT;

where n is the number of realizations of each model. This method requires the same
large number of realizations for every model. However, some models have only a
single realization available. Thus, we need a way to expand the sample size. An
adequate way can be to generate additional realizations by parametric resampling.

Ideally different realizations of models should represent the whole range of
internal variability. Assuming that internal variabilities in control and forced
(ALL and ANTH) runs are identical, we can apply a parametric bootstrap
technique as described in Efron & Tibshirani (1993). The idea is to assume that
the data follow a parametric model which in our case is a multivariate normal
distribution N(m, S). Then the parametric model has two parameters m (mean)
and S (covariance). Here, we take mk as mean and estimate the covariance Sctl

from the MME_PI control runs. Now we randomly draw a sample of size n from
the multivariate normal distribution

Nðmk ;SctlÞ/ðmk1;mk2;.;mknÞ:
With these resampled mki , the log-likelihood function equation (3.6) is calculated
and maximized as described above.
Phil. Trans. R. Soc. A (2007)



S.-K. Min et al.2110
It has turned out that a relatively high number of realizations are necessary to
produce stable results with respect to the magnitude of the weights. We choose
nZ20 000 being a compromise between calculation time and stability of the
results. The variation of the weights is about two orders of magnitude smaller
than the weights themselves.
4. Results

(a ) Weighting factors

Figure 2 shows distributions of weighting factors for the global and six
continental area-averaged SATs for the 21 participating AOGCMs. The
weighting factors are obtained based on BF and EM methods as described
above. Results are also displayed for MME_ALL and MME_ANTH separately to
see any significant difference between the two groups. BF and EM results show
both similarities and differences. They share high-skilled models although there
are exceptions for some regions and models. A major difference between the BF
and EM results is that the weighting factors from BF are more evenly distributed
over a larger number of models, while EM selects only a few best models and
damps out the others. Higher weights to fewer models in EM reflects the fact that
the model predictions are highly correlated and thereby models that contribute
little additional information tend to have very low weights (Raftery et al. 2005).
In contrast, BF weights are based on a generalized distance measure and so
distributed across many models. One needs to note these different characteristics
when applying BF or EM methods.

Comparing weights in figure 2, one can find only a few models which have
consistently higher or lower weighting factors across the continental regions, for
instance, GFDL-CM2.0, MRI-CGCM2.3.2, GISS-AOM, INM-CM3.0,
CGCM3.1(t47), CGCM3.1(t63) and FGOALS-g1.0. The other models show
very different combinations of weighting factors at different regions. This implies
that there is no single best/worst model in simulating global and regional SAT
changes, in accord with the concept of multi-model approach.

(b ) Global mean temperature predictions

Using the standard deviations in table 1 and the weighting factors in
figure 2, we obtain the weighted PDFs (BF and EM) of model-simulated
future SATs and compare them with unweighted one (AEM). Figure 3 shows
the results for the global mean annual SATs for the twenty-first century
(2001–2099). From the middle of the twenty-first century onward, the PDFs
exhibit a multi-modal structure which is strongest in the EM result. Three
maximum densities in EM are delivered by the three models of largest
weights: MIROC3.2(hi), MRI-CGCM2.3.2 and UKMO-HadGEM1 (figure 2).
BF shows a broader response due to more distributed weighting factors. There
are no physical reasons for the global mean SATs such as multiple equilibria
to expect a multi-modal PDF response. The obvious explanation for the
behaviour shown in figure 2 is undersampling especially with respect to the
long-term response. The ensemble of opportunity yet seems to have not
enough information to represent faithfully the future variability as long as
Phil. Trans. R. Soc. A (2007)



(a)

temperature change (K) year

6

4

2

0

2000
2020

2040
2060

2080 2100

temperature change (K) year

6

4

2

0

2000
2020

2040
2060

2080 2100

(b)

temperature change (K) year

6

4

2

0

2000
2020

2040
2060

2080 2100

(c)

Figure 3. Time-series of PDF of global mean annual SATs for 2001–2099 with different weighing
methods: (a) BF, (b) EM and (c) AEM. Temperatures are represented as anomalies with respect to
1970–1999 mean. See text for details.
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the BMA-based calibrations are considered. At least this implies that skill-
weighted predictions are highly sensitive to the method of evaluating ensemble
members.

Figure 4 displays the annual time-series of multi-model-weighted ensemble
means and their 5–95% percentiles of probabilistic predictions of global mean
SATs. It can be seen that the mean values of BF and EM are very similar to each
Phil. Trans. R. Soc. A (2007)
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other and larger than AEMwhere the difference increases in time with a maximum
about 0.3 K by the end of the twenty-first century. The 5% percentiles of the three
predictions are very close to each other while the 95% percentiles of BF and EM are
larger than that ofAEM, indicating the broadenedPDFs in the upper tail due to the
Bayesian weighting. These characteristics are also found in figure 3 showing
enhanced densities in the upper branch of PDF time-series of BF and EM.
(c ) Continental-scale temperature predictions

We apply the same technique to continental regions using area-averaged
30-year mean (2070–2099) SATs. Standard deviations of 30-year mean SATs in
table 1 and the same weighting factors as in figure 2 are used for this prediction.
We take the long-term means to avoid the noisy patterns which arise on
interannual time-scales and to simplify comparisons across the regions and
weighting methods. Figure 5 shows the PDFs of SAT predictions over six
continental regions using BF, EM and AEM methods. The 5% percentile,
weighted multi-model mean, and 95% percentile are depicted on top of each PDF
plot. Weighted PDF patterns in 2070–2099 are not Gaussian in all three
methods. Comparisons to the 2010–2039 predictions (dashed lines) which are
more similar to a Gaussian distribution reveal that 21 multi-models are
insufficient to sample reasonably the large range of inter-model uncertainties
for the late twenty-first century. Hence, their PDFs produce fine structures
which can vary highly according to the composition of the sample.
Phil. Trans. R. Soc. A (2007)
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Although there is the possibility of multiple flow regimes on a regional scale, the
multi-modality illustrated in figure 5 cannot be regarded as a realistic modelling
of a probabilistic climate change. Multi-modality appears more clearly in BF and
EM; for instance, EM has two maximum peaks near 2.2 and 4.0 K over ASI and
Phil. Trans. R. Soc. A (2007)
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marked three peaks in AFR. Nevertheless, there is little change over EUR and
AUS. Across the regions, BF and EM patterns are very close, which is already
reflected by the similar weighting factors in figure 2.

In terms of multi-model averages, the differences between BF and EM are
very small (less than 0.2 K). The effect of Bayesian weighting is not found
clearly even in 5–95% percentiles in these 30-year mean SATs. SAM is the
region where largest changes appear (0.5 K increase in the 95% percentile).
Annual SAT prediction for the continental regions supports this result (not
shown). In short, unlike the global mean, we get only a little effect of Bayesian
weighting for continental SATs. Besides the problems arising from under-
sampling as discussed in the global scale, the regional results also point to
problems in estimating the weights. Here, we treated each of six regions
independently from each other. A more promising approach would be to
combine the SATs of each region and their temporal development into a
common space–time vector and evaluate the weights under the spatio-temporal
correlation implied by the observations and simulation.
5. Concluding remarks

The BMA technique is applied to the twenty-first century SAT changes
simulated by the multi-model AOGCM ensembles of IPCC AR4 to produce
probabilistic predictions of global and regional SATs. This approach provides a
way of observationally constrained prediction of PDFs by using weighting
factors which are obtained through evaluating models for the last 50 years of
the twentieth century. This training is based on long-term temporal
components (Legendre degrees from LP1 to LP4) to eliminate the noise on
shorter time-scales.

In order to consider the influence of inter-model and internal variability
systematically when estimating the weighting factors, we apply two estimation
methods for the weights: BF and EM algorithm. The BMA based upon the BF
approach takes the likelihood ratio which is an exponential function of a
generalized Mahalanobis distance between observation and model simulation.
Hence, it filters out low-skilled models more effectively than a mean-square error-
based approach (Min & Hense 2006a). The BMA based upon the EM algorithm,
which is the version suggested by Raftery et al. (2005) for mesoscale weather
forecasting, tends to select only a few high-skilled models and leave out the other
models more strongly than the BF-based method.

When applied to global and regional SAT anomalies, both BMAs exhibit
comparable results in mean and higher level quantiles. Especially, the occurrence
of multi-modal PDF for the global mean SATs suggests a severe undersampling
of the inter-model variability at least for the long-term projections for the second
half of the twenty-first century. Another possible or additional explanation could
be that the weighting factors which are obtained from simulations and
observations for the second half of the twentieth century could not be used
beyond a horizon of similar time length. Indications for this conjecture are the
prediction of the quasi-unimodal albeit non-Gaussian PDFs for the first half of
the twenty-first century.
Phil. Trans. R. Soc. A (2007)



2115Climate change predictions applying BMA
The results presented here demonstrate that observationally constrained
probabilistic climate change predictions using BMA are feasible and can provide
more information than the raw ensemble. However, a straightforward application
of the BMA relevant for ensemble weather forecasting is not possible and might be
highly dependent on the method of measuring weighting factors in the training
period even if we have a large enough multi-model ensemble to construct the
probabilistic predictions. Comprehensive measure of model skills based either on
space–time vectors of SAT or on multiple variables (e.g. temperature and sea level
pressure) might be useful to produce more robust weighting factors and hence
more reliable probabilistic predictions of global and regional climate changes.
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