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Abstract

Generalized linear models (GLMs) and classification trees were developed to predict the presence of four vegetation

alliances in a section of the Mojave Desert in California. Generalized additive models were used to provide response

shapes for parameterizing GLMs. Environmental variables used to model the distribution of the alliances included

temperature, precipitation, elevation, elevation-derived terrain variables (slope, transformed aspect, topographic

moisture index, solar radiation, and landscape position), and categorical landform/surface composition variables.

Vegetation distributions exhibit spatial dependence and therefore we used indicator kriging to derive neighborhood

values of ‘‘presence’’ also used as predictors in the models. The models were developed using 2859 observations coded

present or absent for each of the four alliances, and assessed using 960 observations. In general, all of the models were

improved with the addition of the kriged dependence term. However, models that relied heavily on the kriged

dependence term were less generalizable for predictive purposes. Classification tree models had higher classification

accuracy with the training data, but were less robust when used for predictions with the test data. Each of the models

was used to generate a map of predictions for each alliance and the results were often quite different. The predicted

maps with the kriged dependence terms looked unrealistically smooth, particularly in the classification tree models

where they were often selected as the most important variables, and therefore heavily influenced the spatial pattern of

the resulting map predictions.
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1. Introduction

Recent developments in remote sensing and

geographic information science have produced

alternatives for mapping vegetation beyond tradi-

tional field survey and photointerpretation. One of
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the most frequently used methods, predictive
vegetation modeling, can be defined as predicting

the distribution of vegetation across a landscape

based on the relationship between the spatial

distribution of vegetation and certain environmen-

tal variables (Franklin, 1995; Guisan and Zimmer-

mann, 2000). It requires digital maps of the

environmental variables, as well as spatial infor-

mation on the vegetation attribute of interest (e.g.
species, type, abundance), usually from a sample

of locations. The environment�/vegetation rela-

tionship can be based on observed correlation or

on the theoretical or experimental physiological

limitations of different plant species. The statistical

methods used to quantify this relationship have

become increasingly flexible in order to describe

what are now generally accepted to be non-
Gaussian species response curves (Austin and

Smith, 1989). The result is a vegetation map that

is stored in a geographic information system

(GIS), which allows for collection, analysis and

display of spatial data.

The models used to generate the predictive

vegetation maps can be separated methodologi-

cally into two types. ‘‘Static’’ or ‘‘equilibrium’’
models make the simplifying assumptions that

vegetation distribution is in temporary (or

pseudo-) equilibrium with the environment (Gui-

san and Theurillat, 2000), and that the relationship

between vegetation distribution and environmen-

tal variables detected in a sample of observed

distributions extends throughout the study area

(Franklin, 1995). Static models do not directly
consider dynamic ecological processes such as

competition, predation and disturbance, all of

which can affect the spatial arrangement of

vegetation. Dynamic vegetation models attempt

to simulate these processes to produce more

realistic process-based maps, but can be challen-

ging to develop because they require a large

number of parameters. For this reason they are
beyond the scope of this study.

Static predictive models are often developed

without considering the spatial pattern that exists

in biogeographical data. The traditional statistical

methods used to analyze the environmental�/

vegetation relationships are commonly based on

the implicit assumption that the distribution of

vegetation is random and, therefore, each observa-
tion is independent. This assumption violates one

of the basic tenets of geography, the direct

relationship between distance and likeness (Tobler,

1979), as well as of ecological theory, that elements

of an ecosystem close to one another are more

likely to be influenced by the same generating

process and will therefore be similar (Legendre and

Fortin, 1989). Ignoring spatial dependence in
biogeographical data can lead to poorly specified

models in general and inflated significance esti-

mates for explanatory variables in particular

(Legendre, 1993). Some of the spatial correlation

can be explained by the independent variables used

in the model. Environmental variables such as

precipitation, temperature and elevation exhibit

spatial dependence, some of which is responsible
for the spatial patterning in vegetation distribu-

tion, but remaining spatial dependence can result

from either unmeasured environmental variables

or biotic processes that cause spatial clustering.

Some studies have attempted to eliminate spa-

tial dependence by manipulating the sampling

strategy to avoid autocorrelated observations

(Sokal and Oden, 1978; Legendre and Fortin,
1989; Davis and Goetz, 1990; Smith, 1994), while

Borcard et al. (1992) were able to separate the

spatial component that was related to vegetation

pattern from the environmental component using

correspondence analysis. One problem caused by

spatially dependent data is that each observation

contributes less information and the degrees of

freedom used in analyses are exaggerated. Thom-
son et al. (1996) used a method to modify the

degrees of freedom based on spatial dependence in

order to proceed with analysis. Anselin (1993) used

a maximum likelihood regression method to deal

specifically with spatially dependent continuous

data.

Two conceptually different models were used in

this study to predict vegetation presence at un-
sampled locations in the study area. Both were

used also to assess the explicit inclusion of spatial

dependence as a predictor variable. One method,

generalized linear models (GLM), is basically

model-driven; i.e. a pre-specified model form is

fit to the data. In order to provide insight into

suitable transformations of the predictor variables,
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a more flexible extension of GLM, generalized
additive models (GAM), were used. The second

method, classification tree (CT) analysis, is data-

driven and allows for the development of a model

whose form is directly a function of that particular

data set. Both of these methods can be used for

vegetation mapping because they each can be

manipulated to produce a probability surface,

sometimes referred to as suitability (Carver,
1991), of vegetation presence. The specific objec-

tives of this study were to: (1) develop models that

describe the presence of four vegetation alliances,

two shrubland and two woodland (see the Na-

tional Vegetation Classification System (NVCS)*/

Grossman et al., 1998), based on environmental

variables using GLM and CT; (2) use indicator

kriging based on observed presence/absence data
to represent spatial dependence and add this

variable to GLM and CT models of each alliance;

(3) generate binary maps of predicted presence/

absence for each alliance from each of the four

models; and (4) compare predicted maps of each

alliance developed from GLM and CT models,

with and without spatial dependence, in terms of

prediction accuracy.

2. Study area

The Mojave Desert, the smallest North Amer-

ican desert, covers 74,000 km2. Its location,

between the Great Basin Desert to the north and

the Sonoran Desert to the south, has resulted in its

characterization as an ecotone, with both Great
Basin and Sonoran vegetation, as well as its own

endemic species (Rowlands et al., 1982). The study

area is a portion of the Mojave Desert Ecoregion

within California, referred to as the Eastern

California Subsection (Fig. 1). The Mojave Vege-

tation Mapping Project (MVMP), sponsored by

the Department of Defense (DoD) and carried out

by the US Geological Survey (USGS), provided
data and support for this project (www.mojaveda-

ta.gov).

The physiography of the Mojave Desert region

is mainly one of basins and ranges. The basins

generally range from 600 to 1200 m and can have

dry lakes or playas (Norris and Webb, 1990).

However, the lowest point in the Mojave Desert
(as well as the Western Hemisphere) is at �/86 m in

the Death Valley basin. The highest point in the

Mojave is Telescope Peak at 3368 m. Several other

ranges greater than 2000 m are also found there

(Clark, Kingston, New York, and Providence

Mountains).

The Mojave Desert climate is characterized by

low, unevenly distributed precipitation, tempera-
ture extremes, windy conditions and high light

intensity (Schoenherr, 1992). Temperatures

throughout all of the Mojave Desert range from

a mean minimum January temperature of �/

2.4 8C at Beatty, Nevada to a mean July max-

imum temperature of 47 8C at Death Valley

(Rowlands et al., 1982). A typical daily tempera-

ture range is 28 8C (Schoenherr, 1992). Due to its
position on the leeward side of the Sierra Nevada

and Transverse Ranges, the Mojave Desert gets

very little precipitation, and the amount varies

greatly yearly as well as locationally. Winter

precipitation accounts for most of the average

annual precipitation. Mean annual precipitation

for Death Valley was 41.4 mm, and for Victorville

in the south-central region of the Mojave Desert, it
was 135.7 mm (Rowlands et al., 1982).

One result of the combination of low precipita-

tion and high evaporation rate is the presence of

alkaline soils, although Mojave Desert soils vary

widely in their properties. Many soils also have a

high proportion of sand and coarse fragments with

low organic material, while others are made up of

silt and clay with high organic content (Rowlands
et al., 1982). The most common land forms in this

section of the Mojave Desert are alluvial fans,

bajadas and alluvial plains (42%), rocky highlands

(45%), washes (5%), playas (2.5%) and sand sheets

and dunes (3.5%) (www.mojavedata.gov).

3. Data and methods

3.1. CTs and GLM

Decision tree-based analysis (Breiman et al.,

1984) has been used in ecological studies (dis-

cussed by De’ath and Fabricius, 2000) including

vegetation modeling (Moore et al., 1991a; Lees
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and Ritman, 1991; Lenihan and Neilson, 1993;

Michaelsen et al., 1994; Franklin, 1998; Franklin

et al., 2000; Guisan et al., 1998; Vayssières et al.,

2000; Meentemeyer et al., 2001*/reviewed by

Franklin, 1995; Guisan and Zimmermann, 2000).

Many of these studies emphasize the intuitive

ecological sense of the models developed by

decision tree analysis, including their ability to

express complex relationships among the predictor

variables that are non-linear, non-additive and

hierarchical. Rather than estimating a mean value

for a range of environmental variables associated

with the vegetation types (as with most parametric

techniques), decision trees identify specific thresh-

olds of environmental conditions above or below

which a species or vegetation type can be found

(Moore et al., 1991a).

Decision trees can be used with continuous

response variables such as species abundance

(regression trees) or with categorical response

variables such as species type (CTs). This study

focuses on the prediction of a dichotomous

categorical response variable (vegetation alliance

presence/absence) using CTs. CT models can

estimate the ‘‘probability’’ of class membership

based on the proportion of observations of each

class (presence or absence in this study) at any

terminal node of the tree. These proportions can

then be used to produce a discrete suitability

surface analogous to probability of occurrence.

GLMs have been used extensively in vegetation

modeling research (Nicholls, 1989; Le Duc et al.,

1992; Austin et al., 1994; Brown, 1994; Augustin et

al., 1996; Franklin, 1998; Guisan et al., 1998, 1999;

Guisan and Theurillat, 2000; Vayssières et al.,

2000*/reviewed in Franklin, 1995; Guisan and

Zimmermann, 2000). GLMs are a suite of para-

metric methods (see McCullagh and Nelder, 1989)

that allow more flexible relationships to be speci-

fied, in the form of a number of link functions,

between the response and predictor variables than

linear regression models. When response data are

binary, the appropriate GLM is a logistic model,

which uses a logit link to describe the relationship

between the response and the linear sum of the

predictor variables (see Hosmer and Lemeshow,

1989). The product of logistic regression analysis

can also be used to describe the probability of

membership in response classes.

Fig. 1. The Mojave Desert Study Area (box shows mapped subsection for CORA predictions used in Figs. 5 and 6).
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An even more flexible extension of GLMs is
GAM, discussed thoroughly by Hastie and Tib-

shirani (1990). A suitable link based on the

distribution family of the response data is again

selected, but the relationship between the response

and predictor variables is described by a number

of smoothing functions rather than a coefficient,

typically resulting in non-parametric shapes that

are more descriptive of the data. Although GAMs
have been used to develop vegetation models (Yee

and Mitchell, 1991; Bio et al., 1998; Leathwick,

1998; Franklin, 1998; Frescino et al., 2001*/

reviewed in Franklin, 1995; Guisan and Zimmer-

mann, 2000), here they were used to suggest an

appropriate shape for GLM specification, as in

Brown (1994) and Franklin (1998).

3.2. Environmental predictor variables

The vegetation models were developed and

predictions subsequently generated using digital

layers of climatic and topographic variables (Table

1) in a GIS. The relationship between climate and
vegetation distribution is based largely on organ-

isms’ physiological tolerances and has been used

historically to map vegetation (see Austin et al.,

1994; Franklin, 1995 for review). Simple topo-

graphic variables such as elevation, slope and

aspect are often empirically important, but as

they represent indirect gradients related to vegeta-

tion distribution (sensu Austin and Smith, 1989),

their predictive power is less than that of complex

topographic variables (e.g. solar radiation, topo-

graphic moisture) that are more directly related to

vegetation distribution (Franklin et al., 2000).

The climate variables consisted of precipitation

and temperature, both of which are important in

the altitudinal and latitudinal ‘‘zoning’’ of plants

described by Hunt (1966) in Death Valley. Mini-

mum temperature and available water have been

significant in explaining the distribution of Mojave

Desert shrubs (Beatley, 1975; Parker, 1991). These

variables were interpolated to a resolution of 1

km2 and include mean minimum and maximum

monthly temperature for each month, and annual

and quarterly mean precipitation (see www.moja-

vedata.gov and methods described in Franklin et

al., 2001).

Terrain variables have been correlated with

vegetation distribution at a finer scale than climate

variables (Franklin, 1995) and those used here

include both simple and complex. A United States

Geological Survey (USGS) 7.5’ digital elevation

model (DEM) was used to provide elevation

Table 1

Environmental variables used in this study

Variable

name

Variable Range of values

Sumprecip Average summer precipitation 11�/146 mm

Winprecip Average winter precipitation 45�/579 mm

Jantemp Minimum January temperature �/11.3�/4.8 8C
Jultemp Maximum July temperature 16.6�/44.4 8C
Elevation Elevation; from USGS 7.5’ DEM �/85�/3390 m

Slope Slope 0�/788
Swness Cosine(aspect�/2258) (Franklin et al., 2000) �/1�/1

Lpos4 Landscape position; Average difference between cell and neighbors;

positive in valleys, neutral in mid-slope position, and negative on ridges

(Fels, 1994)

�/1732�/2311

Solrad Solar radiation (Dubayah, 1994) 0�/383 W/m2

TMI Topographic moisture index; number of cells draining into a cell divided

by the tangent of slope (Beven and Kirkby, 1979)

0�/22.6

Landform Geomorphic landform (Dokka et al., 1999) 29 nominal classes

Landcomp Surface composition 6 aggregated nominal classes: CalcCarb,

Evap, IgnPlut, IgnVolc, Meta, Sed

Climate variables are 1 km resolution; all others are 30 m resolution.
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values; from this slope and aspect were derived.
Parker (1991) found that slope was an important

determinant in Sonoran vegetation distribution,

while elevation was important in determining the

range of several Yucca species in the Mojave

Desert (Yeaton et al., 1985). Aspect was scaled

to an index of ‘‘southwestness’’ using a cosine

transform (cos(aspect�/2258)), where higher values

indicated more xeric exposures, in order to distin-
guish between pole-facing (moist), neutral, and

equator-facing (dry) slope aspects.

Elevation, slope, and aspect were subsequently

used to derive the three more complex topographic

variables: potential solar radiation, landscape

position and topographic moisture index. Topo-

graphic moisture is related to the water availability

of a site (Moore et al., 1991b) and hillslope
position is related to soil depth, texture and

potential soil moisture (reviewed in Franklin,

1995). Hillslope position and slope are also

important proxy measures of soil texture (Fels,

1994), which was a significant factor in Mojave

Desert (Beatley, 1975; McAuliffe, 1994) and So-

noran Desert (Parker, 1991) vegetation patterns.

Aspect is strongly associated with potential solar
radiation (Dubayah, 1994), but both southwest-

ness (indirect) and potential solar radiation were

tested as explanatory variables because previous

studies have given conflicting evidence as to which

is more strongly related to vegetation patterns

(Franklin, 1998; Franklin et al., 2000; Franklin,

2002).

Valverde et al. (1996) found that landform was
the most important of several topography-related

variables in determining vegetation distributions.

They suggest that it measures an indirect gradient

along which temperature, exposure and geology

vary. Two categorical geology/geomorphology

variables were used here (see Dokka et al., 1999).

One has land surface composition aggregated into

six classes and the second has 29 landform classes.

3.3. Vegetation response variables

The vegetation variable predicted was the vege-

tation assemblage or type at the alliance level of

NVCS. An alliance is defined as ‘‘a physiognomi-

cally uniform group of plant associations sharing

one or more dominant or diagnostic species, which
as a rule are found in the upper-most stratum of

the vegetation’’ (Grossman et al., 1998). However,

it should be noted that it is actually the plant

species defining the alliance classification whose

responses to the environmental variables affect the

spatial patterning of the alliances (Franklin, 1995).

Modeling plant species may be more rigorous, but

appropriate data are sometimes less available, so
for mapping and data practicality, vegetation type

or alliance (as in Fischer, 1990; Lenihan and

Neilson, 1993; Zimmermann and Kienast, 1999)

is the response variable used in this study.

Alliance data were collected using three different

sampling strategies. A modified gradient-directed

sampling strategy (from Austin and Heyligers,

1989) was used to select the field plot locations
where vegetation would be sampled for the Mojave

Vegetation Mapping Project (MVMP) (Franklin

et al., 2001). Stratification was aimed at maximiz-

ing the observed floristic variation by sampling

across a broad spectrum of environmental condi-

tions. The purpose of the survey was to define

vegetation alliances by quantitative analysis of

plot species composition, as well as to develop
predictive models under the auspices of MVMP.

Based on gradient-directed sampling 1133 obser-

vations were collected in 1998�/1999. Each plot

was of uniform dimension (1 km radius), and

classification of the alliances was based on detailed

observations of cover by species. To this, MVMP

added 676 plots from five ‘‘retrospective’’ datasets

collected between the 1970s and 1990s. Although
plot size and geographic sampling intensity varied,

species cover data were available so that each plot

could be assigned an alliance label by vegetation

experts through ordination/classification analysis

(T. Keeler-Wolf, pers. comm.).

Finally, in spring 2000, MVMP had an addi-

tional 2353 locations surveyed using a modified

sampling protocol (K. A. Thomas, pers. comm.).
Field observers traveled along all major roads in

the study area and recorded the alliance as well as

several dominant species for every mile or when-

ever vegetation appeared to change for an area

consistent with the MVMP minimum mapping

area (5 ha). While these data were sufficient for

modeling the spatial distribution of alliances, the
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lack of comprehensive species cover data rendered
them insufficient for defining the alliances them-

selves.

After observations that extended beyond any of

the 12 digital environmental layers were removed,

the total sample available for modeling was 3819

plots. The main purpose of our research was to

develop predictive models so despite inconsistency

in the three sampling strategies, the data were
combined. Limitations in the use of these models

for explanation rather than, or in addition to,

prediction, should be noted. Four alliances were

selected for modeling (Table 2) and a dataset was

developed for each, coded to represent presence/

absence of that alliance. Each of these four

datasets was then divided randomly into a 75%

training portion (used to build the models) and a
25% test portion (used to assess the models).

3.4. Spatial dependence variable

In addition to the 12 environmental predictor

variables described above, a variable used to

represent spatial dependence was calculated.
When it results from unspecified biotic processes

or unmeasured environmental variables, spatial

dependence, as evidenced by clustering in alli-

ances, can be an important addition to predictive

models. A logistic model that includes a spatial

dependence variable, usually the sum of neighbor-

hood presence values, is formally called an auto-

logistic model (see Besag, 1972, 1974), and has

been used to model plant presence/absence (Wu

and Huffer, 1997). In CT models, spatial depen-

dence has been specified indirectly with the use of

geographic coordinates as variables (e.g. Franklin,

1998).

The calculation of a spatial dependence variable

is straightforward when presence/absence informa-

tion is known for all locations, but when only a

sample has been observed the specification is more

complex. From the sample data, spatial informa-

tion has to be generated, usually either by simula-

tion or interpolation. Generally, studies that have

used simulation to this end have been based on

small, regularly shaped study areas with either

extensive or complete response data available

(Besag, 1972, 1974; Augustin et al., 1996, 1998;

Gumpertz et al., 1997; Wu and Huffer, 1997;

Hoeting et al., 2000). While simulation is better

at preserving any ‘‘roughness’’ characteristic of the

sample dataset, when data are sparse, interpola-

tion methods with more ‘‘smooth’’ effects may be

more robust.

Kriging, one of the most widely used interpola-

tion methods, attempts to optimize interpolation

by dividing spatial variation into three compo-

nents: deterministic variation, spatial autocorrela-

tion (defined by a variogram), and noise

(Burrough and McDonnell, 1998). The non-linear

form of kriging used with binary response data

(e.g. presence/absence or continuous data discre-

Table 2

Vegetation alliances modeled

Label Alliance name n

test

n

train

Dominant and indicator species Habitat

ATCA Atriplex canascens */

Shrubland alliance

7 16 A. canascens , Bromus madritensis Margins of playas

CORA Coleogyne

ramosissima*/ Shrubland

alliance

21 110 C. ramosissima , Atriplex confertifolia , Ephedra

nevadensis , Ephedra viridis , Eriogonum fascicu-

latum , Salizaria mexicana

Widespread: shallow rocky soils

on upper bajadas, pediments and

hill slopes

PIMO Pinus monophylla*/

Woodland alliance

12 38 P. monophylla , Artemisia tridentata , Quercus

cornelius-mulleri , Nama californica

Upper elevations: cool, moist

mountain areas

YUBR Yucca brevifolia*/

Wooded shrubland alli-

ance

87 265 Y. brevifolia , Artemisia tridentata , Artemisia

confertifolia , C. ramosissima , Opuntia acantho-

carpa

Narrow zone, base of mountains

The data set of 3819 observations was divided randomly into a 75% train and 25% test subsets. n test gives the number of

observations present in the n�/960 test dataset; n train gives the number of observations present in the n�/2859 training dataset.
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tized based on a threshold value) is called indicator
kriging and while the methods used are roughly

the same, the output is different. Kriging produces

a surface of estimated values based on specified

assumptions about the three components in the

model, whereas indicator kriging produces a sur-

face with the probability that the condition coded

‘‘1’’ would occur (Burrough and McDonnell,

1998). When continuous data that have been
thresholded are the response, it is the probability

that the threshold will be exceeded that is mapped;

when binary presence/absence data are used, it is

the probability of presence that is mapped.

For each of the four alliances, a lattice of

probability values was calculated by indicator

kriging in GS�/ software using four sets of the

3819 sample data points recoded ‘‘0’’ for absent
and ‘‘1’’ for present for each alliance. The lattice

values were interpolated to a continuous grid in

ARCVIEW GIS software at a resolution of 30 m to

be consistent with the environmental variables.

This resulted in four maps with values that

represented the probability that a specific alliance

would be present in each 30 m grid cell, based on

the presence/absence of that alliance in the 3819
points. To represent the neighborhood around

each cell, the kriged values for the eight surround-

ing grid cells for each observation were summed

using ARC/Info and added to the modeling

datasets as the kriged dependence variable (K_x):

(Kx)�
X8

i�1

IKi: (1)

The kriged value for each cell (IKi) can range from

0 to 1, therefore the kriged dependence term

representing the neighborhood sum, K_x, can

range from 0, indicating no observations of pre-

sence nearby, to 8, indicating a cluster of observa-
tions of presence (Besag, 1974; Augustin et al.,

1996).

3.5. Vegetation models

Two classification tree models were developed

for each of the four alliances: one using up to 12

environmental predictor variables, and a second to

which the kriged spatial variable was added. The

trees were pruned (based on cross-validation) to

sizes that ranged from 8 to 25 terminal nodes.

Exploratory GAMs were developed for each

alliance with all 13 predictor variables using a

stepwise (forward/backward elimination) proce-

dure. Plots of the additive contribution of each

variable to each of the four response functions

were examined in order to estimate the appro-

priate shape for continuous variables (e.g. linear,

second order polynomial, or piecewise linear) to be

used in GLMs. Pairwise interaction terms that

were indicated by CT or that were suggested by

biophysical principles (e.g. temperature/precipita-

tion; aspect/temperature) were also tested for

significance. From this, two GLMs were devel-

oped for each of the four alliances: one that used

predictor variables selected in CTs or retained in

GAMs; and a second to which the kriged depen-

dence variable was added and from which any

resulting non-significant variables were removed.

The GLMs were developed based on a combina-

tion of stepwise and subjective, iterative variable

addition and subtraction methods with a goal of

minimizing the Cp (Atkinson, 1981) statistic.

To summarize, a total of four models for each of

the four alliances were developed using SPLUS

statistical software: (1) a CT model with the 12

environmental variables; (2) the same CT model to

which the kriged variable was added (these models

will be referred to as ‘‘K_CT’’); (3) a GLM with a

subset of the twelve environmental variables; (4)

the same GLM to which the kriged variable was

added (referred to as ‘‘K_GLM’’ models). The

four models developed for each alliance (CT,

K_CT, GLM, K_GLM) were assessed using two

different measures: adjusted D2 and area under the

curve (AUC) of the receiver operating character-

istic (ROC) plot. The adjusted D2 is suitable for

comparison of similar conceptual models with

different combinations of variables and interaction

terms (Guisan and Zimmermann, 2000) and, as

with the R2 in linear models, a higher value

indicates that the model explains more deviance.

Comparisons can be made with the adjusted D2

between GLMs with and without the kriged

variable, but due to different assumptions about

the error function involved in CTs, the adjusted D2
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is not appropriate for comparisons between CTs
and GLMs (Austin et al., 1994; Franklin, 1998).

Another comparison among models involved

assessing the classification accuracy of the result-

ing predictions, typically with an error matrix that

shows omission (false negative) and commission

(false positive) errors (see Fielding and Bell, 1997

for review). Sensitivity (fraction of observed pre-

sent correctly predicted) and specificity (fraction of
observed absent correctly predicted) can also be

calculated from the error matrix components. The

intermediate step between GLM and CT model

predictions and error matrix calculation involves

discretizing the vector of probability values into

model predictions of presence versus absence. This

‘‘threshold’’ value of the probability of presence

predicted by the model, above which an alliance is
predicted present and below which it is predicted

absent, can be optimized based on, among other

things, relative importance of omission versus

commission errors, and whether an alliance is

rare or common in the sample.

CT model predictions are based on the propor-

tion of observations of presence and absence at a

terminal node. A probability threshold of 0.5 is
often used, but when an alliance is rare, as with

ATCA in this study, a lower threshold can

significantly reduce the omission errors (Fielding

and Bell, 1997; Franklin, 1998).

An increasingly used measure of binary classi-

fication accuracy that is threshold-independent is

the ROC plot. The ROC technique has been used

in medical and engineering research and can gauge
how well a ‘‘receiver’’ (in this case a model) assigns

cases into dichotomous categories (Fielding and

Bell, 1997). A ROC plot is obtained by plotting

sensitivity values on the y -axis against 1*/specifi-

city values for a range of probability thresholds on

the x -axis. The AUC provides a measure of overall

accuracy based on several different probability

thresholds, and can be translated as the probabil-
ity that the model will correctly distinguish be-

tween two cases (DeLeo, 1993).

Both the GLM and CT models can be used to

generate predictions of alliance presence for un-

sampled locations based on their integration with

the digital maps of the predictor variables. The

implementation of the logistic models for predic-

tions is straightforward*/each predictor variable
is multiplied by its model coefficient then summed

to provide the linear predictor (LP) for the

alliance. Second order polynomials are treated as

two separate terms (one that is squared) with two

different coefficients, categorical variables are

treated so that only one class is used in the

equation at a time, and piecewise linear variables

are broken into two parts: one whose coefficient
has a linear effect and the other whose coefficient

has a constant effect.

In order to obtain probability values between 0

and 1, a logistic transformation of LP is used, e.g.

Prob(Alliance) �
eLP

(1 � eLP)
(2)

Each CT model produces a set of hierarchical
decision rules (see Fig. 2) based on threshold

values for the continuous predictor variables and

specific classes for the categorical predictor vari-

ables. The variables and rules are selected by

maximizing the homogeneity of training data

observations at each terminal node, which repre-

sents a set of specific environmental conditions. A

tree that classifies perfectly would have only
observations of a uniform class at each terminal

node. The proportion of observations correctly

classified at each terminal node (in practice, this

value is often less than 1) can be used to represent

the likely proportion of similarly classified obser-

vations of unsampled data at the environmental

conditions defined by that terminal node. There-

fore this proportion of presence can be used to
estimate a suitability or ‘‘probability’’ that is

analogous to the probability of presence produced

by the logistic models.

A binary presence/absence map (30 m grid cells)

was then developed for each alliance from each of

these four models based on an optimum prob-

ability threshold. Because the entire study area is

very large (ca. 56 million 30 m grid cells), a
subsection of the area, containing a sufficient

number of occurrences for each alliance, was

used for presenting the mapped predictions. The

quantity and spatial distribution of grid cells

predicted to be present from the four different

models were compared for each alliance.
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4. Results

4.1. Overall model assessment

Model fits based on the adjusted D2 values were

higher when the kriged dependence term was

included (Table 3). The alliance PIMO has the

strongest environmental correlations, specifically

with elevation, temperature and precipitation and

its predictive models were therefore improved the

least by including the kriged dependence term. The

models developed for the ATCA alliance have the

lowest D2, which is likely a result of the scarcity of

ATCA observations in the dataset (23 out of 3819

total).
Using prediction errors (sensitivity and specifi-

city), comparisons were made between CT models

and GLM in terms of classification accuracy

Fig. 2. Classification tree for CORA.

Table 3

Adjusted D2 for all models, and change when kriged variable was added

Models ATCA DD2 CORA DD2 PIMO DD2 YUBR DD2

CT 0.698 �/ 0.572 �/ 0.905 �/ 0.675 �/

K_CT 0.886 0.188 0.779 0.207 0.924 0.019 0.846 0.171

GLM 0.179 �/ 0.179 �/ 0.817 �/ 0.521 �/

K_GLM 0.596 0.417 0.596 0.417 0.858 0.041 0.730 0.209
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Table 4

Optimum probability threshold and sensitivity/specificity for all models based on test data (n�/960)

Models ATCA CORA PIMO YUBR

Optimum

probability

Sensitivity Specificity Optimum

probability

Sensitivity Specificity Optimum

probability

Sensitivity Specificity Optimum

probability

Sensitivity Specificity

CT 0.2 28.6 99.5 0.1 85.7 89.9 0.2 41.2 99.7 0.2 65.5 94.6

K_CT 0.3 42.9 99.2 0.2 85.7 95.6 0.2 41.7 99.4 0.2 83.9 95.7

GLM 0.1 0.0 100 0.2 85.7 75.6 0.3 100 86.9 0.3 85.1 69.3

K_GLM 0.2 62.5 99.7 0.2 100 94.4 0.3 91.7 93.3 0.4 90.8 94.9
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(Table 4). An optimum probability threshold was

selected for each alliance based on plots of

sensitivity and specificity at a range of probability

thresholds 0, 0.1, 0.2,. . .�/0.9 (c.f. Fielding and

Bell, 1997 Fig. 2 and Franklin, 1998 Fig. 6). As is

usually the case in vegetation mapping, the percent

present correctly classified was considered more

important than percent absent correctly classified

and the thresholds were chosen accordingly. The

GLM for the ATCA alliance was the poorest

model: none of the probability of presence values

exceeded 0.1. In addition to being the most rare of

the four alliances, ATCA occurs mainly along

playa edges*/an environmental correlation that

should be captured by one of the two categorical

landform/landcomp variables. While landform

was the most important variable in the CT model

for ATCA, it was not selected at all in GLM. The

CORA K_GLM model has the best combination

of sensitivity and specificity with the test data.

Table 5 shows AUC for all four models for each

alliance using both training and test data. In

general, the accuracies of all models for all

alliances using training data were high, ranging

from an AUC of 0.89 for GLM for ATCA to 1.0

for both K_CT and K_GLM for PIMO. As

expected, the accuracy of models using test data

is lower than that of models using training data,

with the exception of K_GLM for CORA. The

difference in accuracy between training data and

test data is most notable for CTs, indicating that

these models are less robust and less useful for

prediction. CTs are particularly sensitive to out-

liers (Breiman et al., 1984) and their performance

could be attributed to this.

4.2. CT results

Fig. 2 shows the pruned CT model developed

for the CORA alliance. The highlighted path can

be translated as the following set of decision rules:

‘‘Where elevation is greater than 1045.5 m and

slope is greater than 3.58 and Jultemp is greater

than 33.38 and landcomp is Ignplut or Meta, 38

observations occurred in the training dataset and

six were CORA.’’ For predictive purposes, where

these same environmental conditions exist

throughout the unsampled study area, there is a

0.16 (6/38) probability or suitability of CORA

presence. Variables in CT models are selected to

create splits that maximize the resulting node

homogeneity, therefore the variables used in early

splits can be considered to be more important (and

in fact the amount of deviance explained at each

split is calculated). When the kriged dependence

term was added as a predictor variable (K_CT

model), it was used in the first three splits,

replacing elevation and slope and resulting in a

model that had higher prediction accuracy with

the test data, but at the expense of more satisfying

and generalizable ecological relationships.

Although slope remained an important variable

even after the kriged dependence term was added,

elevation was not used in a split until much later

and solrad is used much earlier in the K_CT model

than in the CT model (Table 6). This is probably a

function of the arbitrariness with which variables

with similar effects are selected in the CT models.

Different variables could explain very similar

amounts of deviance but sort the data quite

differently. The kriged dependence term was the

most important in three of the four models in

Table 5

Area under the curve (AUC) from ROC plots depicting model accuracy

Models ATCA CORA PIMO YUBR

Train Test Train Test Train Test Train Test

CT 0.993 0.610 0.975 0.895 0.999 0.786 0.978 0.768

K_CT 0.999 0.709 0.994 0.911 1.000 0.786 0.993 0.956

GLM 0.890 0.689 0.923 0.890 0.998 0.981 0.953 0.851

K_GLM 0.998 0.655 0.981 0.983 0.998 0.985 0.987 0.981
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which it was used. As discussed earlier, the
distribution of the PIMO alliance is highly corre-

lated with elevation, which remained the most

important variable even after the kriged depen-

dence term is added.

4.3. GLM results

The GLMs were specified by using variables
that were significant in GAMs or were used in the

CT models and are summarized in Table 7.

Response shapes tested were suggested by GAMs

and included linear, piecewise linear and second

order polynomial. In general, the climate variables

explained the most deviance in the models, parti-

cularly Jantemp and Jultemp. Slope, swness, and

elevation were also retained often in the models. In
contrast to the CT models, the variable that

explained the most deviance for PIMO was

sumprecip rather than elevation. The correlation

between these variables is high (r�/0.786) but

because sumprecip is specified as a linear term

and elevation is a second order polynomial (and

uses two degrees of freedom), sumprecip makes a

more parsimonious model.

4.4. Spatial predictions

The four binary presence/absence maps for each

alliance were derived using the optimum prob-

ability threshold and compared in terms of spatial

pattern of presence as well as number of grid cells

predicted present. Fig. 3 shows the percentage of

the mapped area predicted present by a union of

all four models, divided by the total number of

cells predicted to be present by each of the models

individually. In other words, for PIMO, a union of

all four models predicted 22% of cells in the

mapped area to have PIMO present. Of these cells

predicted present, there was less disparity among

the four models for PIMO than for any of the

other alliances. In general, the model that pre-

dicted the highest proportion of cells present was

CT, but generalizations regarding the kriged vari-

able are more difficult to make. With CORA and

PIMO, both models with the kriged variable

predicted a smaller proportion of cells present,

but with YUBR, the kriged variable increased the

proportion of cells predicted present. The ATCA

model has a much higher proportion of cells

predicted present by the classification tree model

(and resulting higher commission errors) but no

comparisons can be made between the GLM and

K_GLM models because none of the GLM

predictions exceeded the optimum probability

threshold (all were B/0.1).

Fig. 4 shows the amount of spatial coincidence

of pairs of model predictions. YUBR showed the

most uniformity in model predictions spatially.

The addition of the kriged variable had the least

effect on the PIMO models based on the model

evaluations, but there was a surprising lack of

Table 6

Variables used in classification tree models Atca2, Cora2, Pimo2, and Yubr2 are the kriged dependence varialbes

Model Number of vari-

ables

Number of

terminal

nodes

Variables used in order of importance in tree construction

ATCA 8 11 Landform Swness Sumprecip Jultemp Elevation Winprecip Jantemp Slope

K_ATCA 6 8 Atca2 Landform Solrad TMI Winprecip Elevation

CORA 10 25 Elevation Slope Sumprecip Jultemp Landform Landcomp Solrad Winprecip Lpos4

TMI

K_CORA 10 24 Cora2 Slope Solrad Elevation Landcomp Sumprecip Swness Jultemp Jantemp

Winprecip

PIMO 5 8 Elevation Jultemp Slope Landcomp Sumprecip

K_PIMO 6 8 Elevation Pimo2 Slope Sumprecip Winprecip Lpos4

YUBR 8 25 Sumprecip Jultemp Landcomp Landform Elevation Jantemp Winprecip Slope

K_YUBR 12 25 Yubr2 Elevation Lpos4 Sumprecip Slope Solrad Swness Winprecip Landform

Landcomp TMI Jultemp
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Table 7

Results from GLMs

Alliance, variables Response function Deviance explained Prob(x2)

Null deviance�/197.85

ATCA (GLM )

Slope Linear 20.4 B/0.00001

Jantemp Linear 0.1221 0.7268

Swness Piecewise linear (swnessB/52, swness]/52) 10.9 0.00098

Sumprecip:Jultemp Interaction term 4.6 0.033

Model Cp�/169.4

ATCA (K_GLM )

Slope Linear 20.4 B/0.00001

Jantemp Linear 0.1221 0.7268

Swness Piecewise linear (swnessB/52, swness]/52) 10.9 0.00098

Atca2 Linear 86.8 B/0.00001

Sumprecip:Jultemp Interaction term 0.002 0.964

Model Cp�/84.13

Null deviance�/932.4

CORA (GLM )

Slope 2nd order polynomial 87.8 B/0.00001

Jultemp Linear 111.8 B/0.00001

Jantemp 2nd order polynomial 85.6 B/0.00001

Elevation 2nd order polynomial 19.2 0.00007

Sumprecip 2nd order polynomial 15.9 0.00034

Winprecip Linear 4.9 0.026

Slope:Lpos4 Interaction term 2.16 0.142

Model Cp�/613.2

CORA (K_GLM )

Slope 2nd order polynomial 87.8 B/0.00001

Jultemp Linear 111.8 B/0.00001

Jantemp 2nd order polynomial 85.6 B/0.00001

Elevation 2nd order polynomial 19.2 0.00007

Sumprecip 2nd order polynomial 15.9 0.00034

Winprecip Linear 4.9 0.026

Cora2 Linear 225.6 B/0.00001

Slope:Lpos4 Interaction term 0.123 0.73

Model Cp�/390.3

Null deviance�/403.9

PIMO (GLM )

Sumprecip Linear 157.6 B/0.00001

Landcomp Categorical variable 23.2 0.0003

Slope Linear 29.3 B/0.00001

Elevation 2nd order polynomial 117.4 B/0.00001

Elevation:Solrad Interaction term 2.8 0.09

Model Cp�/75.4

PIMO (K_GLM )

Sumprecip Linear 157.6 B/0.00001

Landcomp Categorical variable 23.2 0.0003

Slope Linear 29.3 B/0.00001

Elevation 2nd order polynomial 117.4 B/0.00001

Pimo2 Linear 15.7 0.00007

Elevation:Solrad Interaction term 3.9 0.049
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Table 7 (Continued )

Alliance, variables Response function Deviance explained Prob(x2)

Model Cp�/57.6

Null deviance�/1765.1

YUBR (GLM )

Sumprecip 2nd order polynomial 604 B/0.00001

Slope Linear 74 B/0.00001

Jultemp 89.9 B/0.00001

Jantemp 2nd order polynomial 56.3 B/0.00001

Elevation 2nd order polynomial 34.6 B/0.00001

Sumprecip:Jultemp Interaction term 5.6 0.018

Jantemp:Winprecip Interaction term 58.3 B/0.00001

Model Cp�/870

YUBR (K_GLM )

Sumprecip 2nd order polynomial 604 B/0.00001

Slope Linear 74 B/0.00001

Jultemp 2nd order polynomial 89.9 B/0.00001

Jantemp 2nd order polynomial 56.3 B/0.00001

Elevation 2nd order polynomial 34.6 B/0.00001

Yubr2 Linear 430.1 B/0.00001

Model Cp�/501

Fig. 3. Percentage of total area of each alliance predicted present by all four models combined that was predicted present by each of

the models individually. Numbers under alliance names show the proportion of grid cells predicted present by any of the four models in

the mapped subsection.
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consistency in the overlap between the CT and

K_CT models (61%). According to the AUC

measure (see Table 5), the CT and K_CT models

would differ in discriminating between presence

and absence in 2% of the cases, yet the two models

showed only 25% spatial overlap in their predic-

tions. Although, the change in model performance

after the kriged variable was added was more

drastic with the GLM and K_GLM models (see

Tables 3 and 5), the spatial agreement in the

predictions generated by these two models was still

consistently better than that of CT and K_CT.

Fig. 5 shows the subsection of the study area used

to generate predictions for the CORA alliance

with the kriged dependence term that ranges in

value from 0 (indicating that no observations of

CORA were nearby) to 6.7 (indicating probable

clustering of CORA). The predicted probability

maps resulting from the four models for CORA

(before using the probability threshold to make

binary maps) are shown in Fig. 6. The probability

map generated by the classification tree with the

kriged dependence term (Fig. 6B) is notably

smooth and ecologically unrealistic, due to the

use of the kriged dependence variable in the first

three splits, although there seem to be few

commission errors compared to the three other

maps. Both GLMs (with and without the kriged

dependence term, Fig. 6C,D) look similar, with a

potentially high number of commission errors, but

the map produced by the model with the kriged

dependence term should have fewer omission

errors and higher sensitivity (as was shown for

the test data, Table 4).
In summary, the CT model predicted CORA to

occur between 1046 and 1920 m, on gentle slopes

receiving low solar radiation, and on moderate

slopes between midslopes. The GLM also pre-

dicted CORA to occur at low July and January

temperatures on moderate slopes. Both GLMs and

CTs predicted PIMO to occur at elevations greater

than 1924 m, except where the summer precipita-

tion is below 51.5 mm. If the summer precipitation

is greater than 51.5 mm but less than 63.5 mm and

landcomp is either CalcCarb or IgnVolc, then it is

predicted to be absent. YUBR was predicted by

CT to occur generally where summer precipitation

is between 38 and 68 mm, but will occur below 38

mm when July temperature is less than 30.6 8C
and landcomp is CalcCarb, IgnPlut or IgnVolc.

The variable representing the interaction between

January temperature and winter precipitation was

Fig. 4. Percentage of spatial overlap between model predictions. ‘‘CT/K_CT’’ refers to a comparison between classification tree model

and classification model with kriged dependence term; ‘‘GLM/K_GLM’’ between GLM and GLM with kriged dependence term; ‘‘CT/

GLM’’ between classification tree and GLM; and ‘‘K_CT/K_GLM’’ between classification tree with kriged dependence term and

GLM with kriged dependence term.
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highly significant in GLM and the two variables

were also often nested in the CT model decision

rules (e.g. where winter precipitation is less than

179 mm, YUBR is predicted to be absent unless

January temperature exceeds �/3.1 8C). As dis-

cussed earlier, landform was the most important

variable in the ATCA CT model. The initial split

resulted in predictions of ATCA to be absent on

any landform other than alluvial fan, older alluvial

deposits, fluvial terrace, and active alluvial plain.

5. Conclusions

The CTs suggested several pair-wise interaction

terms that were also significant in the GLMs.

Although a measure to compare the performance

of both models in terms of deviance explained

could not be fully implemented, comparisons

could be made between the models based on

classification accuracy using threshold-dependent

and threshold-independent measures. These mea-

sures indicated that the CT models had higher

classification accuracy on the training data than

Fig. 5. Kriged dependence term for CORA alliance in mapped

subsection. Each pixel contains the sum of the kriged prob-

ability of presence for its eight neighbors.

Fig. 6. Predictions generated for test area with (A) CORA

classification tree (P�/0.1); (B) CORA classification tree with

kriged dependence term (P�/0.2); (C) CORA GLM (P�/0.2);

(D) Cora GLM with kriged dependence term (P�/0.2).

Optimum probability thresholds are given in parentheses.
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GLMs, but accuracy of the CT models degraded
more drastically when they were assessed using the

test data.

In general, the kriged dependence term im-

proved the model for all alliances, with PIMO

showing the least dramatic improvement because

its distribution is more easily delimited by envir-

onmental variables (elevation, summer precipita-

tion, slope). The PIMO alliance consistently had
better performing models by all measures, but this

was expected due to its clear correlation with high

elevation and high precipitation/low temperature.

The ATCA alliance had the poorest performing

models and this could be attributed to the fact that

it was the most rare of the four alliances, and

further its best-known ecological correlation is

with a landform type, which was not easily
specified in GLMs.

In terms of model specification, there is a great

deal of subjectivity and expertise (Austin and

Meyers, 1996) involved in variable selection for

GLMs. With 12 explanatory variables, it would

have been very time-consuming to test all possible

interactions and response shapes, so the models

that resulted could probably be improved upon.
Although the choice between two variables with

very similar effects in CT models is also somewhat

arbitrary and the variables can be difficult to

interpret in terms of response functions (Austin

et al., 1994), the resulting trees are easy to test for

ecological realism. However, CT models are ad-

versely affected by outliers, which can cause very

different tree results when they are included. Also,
CT models partition the data based on one

predictor variable at a time, therefore the resulting

predicted maps are more likely to adhere to

existing spatial patterns in the input data. Possibly

due to the arbitrariness with which both models

select equally good predictor variables, even CT

and GLM models with very similar classification

accuracy can generate very different spatial pre-
dictions.

While the addition of the kriged dependence

term always improved the model performance by

all measures, it is, in effect, relying too heavily on

the sample data used to construct the models and

will therefore produce less generalizable models

for prediction. In all models with the exception of

the PIMO alliance, the kriged dependence term
was very important and may have been replacing

more suitable predictive environmental variables.

When spatial dependence does exist but is not

included explicitly in the model, the importance of

some predictor variables may be overstated, as it is

their spatial autocorrelation that is being seized

upon as being important to the model. However, a

variable representing true spatial dependence re-
quires complete information on alliance presence

as well as absence, and, lacking this, methods to

interpolate it from sample data (as with kriging)

tend to overestimate the true condition. Addition-

ally, the predicted maps generated by the models

with the kriged dependence term appeared less

ecologically realistic in some cases than the models

with the environmental variables. The kriged
dependence variable maps show unrealistic

smooth circles around alliances*/an obvious over-

simplification of the true spatial pattern even when

extreme spatial dependence occurs. The spatial

dependence that the kriged dependence term was

intended to estimate can only be as accurate or

complete as the sample data on which the models

are built and rare alliances could result in distorted
kriged dependence terms. Future work will focus

on using spatial dependence in a more restricted

way in vegetation models so that environmental

variables are not replaced by an over-specified

dependence variable (see Gotway and Stroup,

1997; Pebesma et al., 2000; Bishop and McBrat-

ney, 2001).
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