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1 Introduction 

Statistical considerations are frequently to the fore in the analysis of microarray data, as 
researchers sift through massive amounts of data and adjust for various sources of variability in 
order to identify the important genes amongst the many which are measured. This article 
summarizes some of the issues involved and provides a brief review of the analysis tools which 
are available to  researchers to deal with them. 

Any microarray experiment involves a number of distinct stages. Firstly there is the design of the 
experiment. The researchers must decide which genes are to be printed on the arrays, which 
sources of RNA are to be hybridized to the arrays and on how many arrays the hybridizations 
will be replicated. Secondly, after hybridization, there follows a number of data-cleaning steps or 
`low-level analysis’  of the microarray data. The microarray images must be processed to acquire 
red and green foreground and background intensities for each spot. The acquired red/green ratios 
must be normalized to adjust for dye-bias and for any systematic variation other than that due to 
the differences between the RNA samples being studied. Thirdly, the normalized ratios are 
analyzed by various graphical and numerical means to select differentially expressed (DE) genes 
or to find groups of genes whose expression profiles can reliably classify the different RNA 
sources into meaningful groups. The sections of this article correspond roughly to the various 
analysis steps. 

The following notation will be used throughout the article. The foreground red and green 
intensities will be written �� and ��  for each spot. The background intensities will be ��  and 
�� . The background-corrected intensities will be �  and �  where usually � �� ��� �  and 
� �� ��� � . The log-differential expression ratio will be ���� �� � �� for each spot. 
Finally, the log-intensity of the spot will be �

� ����� ��� , a measure of the overall brightness 
of the spot. (The letter �  is a mnemonic for minus as ��� ���� � �� �  while �  is a 
mnemonic for add as ���� ��� ���� � �� � .) It is convenient to use base-2 logarithms for 
� and �  so that � is units of 2-fold change and �  is in units of 2-fold increase in brightness. 
On this scale, 	� �  represents equal expression, �� �  represents a 2-fold change between 
the RNA samples, �� �  represents a 4-fold change, and so on. 

2 Experimental Design 

Before carrying out a microarray experiment one must decide how many microarray slides will 
be used and which mRNA samples will be hybridized to each slide. Certain decisions must be 
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made in the preparation of the mRNA samples, for example whether the RNA from different 
animals will be pooled or kept separate and whether fluorescent labeling is to be done separately 
for each array or in one step for a batch of RNA. Careful attention to these issues will ensure that 
the best use is made of available resources, obvious biases will be avoided, and that the primary 
questions of interest to the experimenter will be answerable. The literature on experimental 
design is still small. Kerr and Churchill [1] and Glonek and Solomon [2] apply ideas from 
optimal experimental designs to suggest efficient designs for the some of the common 
microarray experiments. Pan, Lin and Le [3] consider sample size and Speed and Yang [4] 
examine the efficiency of using a reference sample as against direct comparison. 

It is not possible to give universal recommendations appropriate for all situations but the general 
principles of statistical experiment design apply to microarray experiments. In the simplest case 
where the aim is to compare two mRNA samples, A and B say, it is virtually always more 
efficient to compare A and B directly by hybridizing them on the same arrays rather than 
comparing them indirectly though a reference sample (Figure 1) [4]. In an experiment where the 
intention is to compare several mutant types with the wild type, the obvious design treats the 
wild type RNA effectively as a reference sample (Figure 2). When more than two RNA samples 
are to be compared, and all comparisons are of interest, it may be appropriate to use a saturated 
design (Figure 3). In time-course experiments a loop design has been suggested (Figure 4). For 
more complicated designs, with many samples to be compared, direct designs become more 
cumbersome and it may be more appropriate to use a common reference sample. Factors to be 
considered in designing the experiment include the relative cost and availability of reference 
versus treatment RNA as well as the cost of the arrays themselves. In direct comparison 
experiments it is generally advisable to use dye-swap pairs to minimize the effects of any gene-
specific dye-bias (Figure 3). 

The choice of experiment design depends not only on the number of different samples to be 
compared but on the aim of the experiment and on the comparisons which are primary interest. 
For example, suppose the primary focus of an experiment involving a large series of tumor and 
normal tissues is on finding genes that are DE between the tumor and normal samples. Then 
direct tumor-normal comparisons on the same slide may be the best approach. By contrast, if the 
focus of the analysis is to determine tumor subtypes as in [5], then the use of a common 
reference RNA on each array may be better. Here the choice follows from the aim of the study, 
although statistical efficiency considerations also play a role. In the first case, tumor-normal 
comparisons could be made indirectly, via a common reference RNA, but precision would be 
lost in so doing. 

3 Image Analysis 

The primary purpose of the image analysis step is to extract numerical foreground and 
background intensities for the red and green channels for each spot on the microarray. The 
background intensities are used to correct the foreground intensities for local variation on the 
array surface, resulting in corrected red and green intensities for each spot which become the 
primary data for subsequent analysis. A secondary purpose of the image analysis step is to 
collect quality measures for each spot that might be used to flag unreliable spots or arrays or to 
assess the reproducibility of each spot value. 



 

 

 

3 

The first step is to image the array using an optical scanner. The array is physically scanned to 
produce a digital record of the red and green fluorescence emissions at each point on the array. 
This digital record typically takes the form of a pair of 16-bit tiff images, one for each channel, 
which records the intensities at each of a large number of pixels covering the array. Depending 
on the scanner, a number of settings can be varied to improve the sensitivity of the resulting 
image, one of the most common being the photomultiplier tube (PMT) voltage. The PMT voltage 
is usually adjusted so that the brightest pixels are just below the level of saturation ( �
� ), thus 
increasing the sensitivity of the image analysis for the less bright pixels. Our own (unpublished) 
experiments with scanning a slide at varying PMT levels suggest that using different levels for 
the different channels has a negligible effect on the log-ratios and ranks for the great majority of 
genes provided that an appropriate normalization method is used. In particular any effect from 
varying the PMT levels is mitigated by using an intensity-based normalization method as 
described in Section 4. 

The next step after scanning is to locate each spot on the slide. This is done mostly automatically 
by the image analysis software, using the known number and basic layout of spots on the slide, 
with some user intervention to increase reliability. Once a region containing a spot has been 
found, the image analysis software must segment the pixels into those in the spot itself (the 
foreground) and those in the background. There are a number of methods for doing this. The 
oldest method is the histogram method [6]. A mask is chosen surrounding each spot and a 
histogram is formed from the intensities of the pixels within the mask. Pixels are classified as 
foreground if their value is greater than a threshold and as background otherwise. Variations on 
this method are implemented in QuantArray software [7] for the GSI Lumonics scanner and in 
DeArray [8] by Scanalytics. The main advantage of this method is simplicity. The resulting 
foreground pixels are not necessary connected though and the foreground and background 
intensities may be over and under-estimated respectively. 

Other methods are designed to find spots as connected groups of foreground pixels. The simplest 
method is to fit a circle of constant diameter to all spots in the image. This is easy to implement 
and works nicely when all spots are circular and of the same size. In practice this is not always 
the case. A generalization is to allow the circle’s diameter to be estimated separately for each 
spot. GenePix [9] for the Axon scanner and Dapple [10] are two software programs which 
implement such algorithms. Dapple calculates the second differences (Laplacian) between the 
pixels in each small square and finds the brightest ring (circle) in the Laplacian images. Adaptive 
circle segmentation often works well, but spots are rarely perfectly circular, especially from non-
commercial arrayers. 

Two methods for segmentation which do not assume circularity of the spot are the watershed 
method [11] and seeded region growing [12]. Both methods require the specification of starting 
pixels or seeds. Adjoining pixels are then progressively added to the spot until adjacent spots 
appear to be distinctly less intense. Seeded region growing is implemented in the software Spot 
[13] and AlphaArray [14]. Both the watershed method and seeded region growing allow for 
spots of general shapes. 

Once the foreground pixels have been identified, the foreground intensity for the spot is usually 
estimated as the average intensity of all foreground pixels, as this should be directly proportional 
to the number of RNA molecules hybridized to the spot’s DNA. When estimating the 
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background intensity, it is more common to use the median intensity, but there is a first a 
decision to be made regarding which pixels to include in the local background. 

One choice for the local background is to consider all pixels that are outside the spot mask but 
within the bounding box. Such a method is implemented by ScanAlyze [15]. An alternative 
method used by QuantArray and ArrayVision [16] is to consider a disk between two concentric 
circles outside the spot mask. This method is in principle less sensitive to the performance of the 
segmentation procedure because the pixels immediately surrounding the spot are not used. 
Another method is to consider the valleys of the array which are the background regions farthest 
from the nearest spot. The method is used by GenePix. It is also used by Spot as a quality control 
measure, although not for background correction. Since the valleys are further from any spot 
than the other local background regions, the valley definition is less subject than the previous 
definitions to corruption by bright pixels affected by printed cDNA. Any of the local background 
methods can result in background estimates which are higher than the foreground values either 
because of corruption by mis-segregated pixels or local artifacts or simply because of local 
variation. 

The Spot software estimates the background using a non-linear filter called morphological 
opening [17]. The filter has the effect of smoothing the entire slide image so that all local peaks, 
including artifacts such as dust particles as well as the spots themselves, are removed leaving 
only the background intensities. Technically, the filter consists of a local minimum filter 
(erosion) followed by a local maximum filter (dilation). This method of background estimation 
has several advantages over the use of local background regions. Firstly it is less variable 
because the background estimates are based on a large window of pixels values and are yet not 
corrupted by bright pixels belonging to the actual spots. Secondly it yields background intensity 
estimates at the actual spot location rather than merely nearby. Another characteristic is that the 
morphological background estimates are usually lower than the local background estimates and 
very rarely yield background estimates which are greater than the foreground values. Yang et al 
[18] compared various segmentation and background estimation methods. They found that the 
choice of background method has a larger impact on the log-ratios of intensities than the choice 
of segmentation method and that morphological opening provides a more reliable estimate of 
background that the other methods. 

Having estimated the background intensities, it is almost universal practice to correct the 
foreground intensities by subtracting the background, � �� ��� �  and � �� ��� � , and the 
adjusted intensities then form the primary data for all subsequent analyses. The motivation for 
background adjustment is the belief that a spot’s measured intensity includes a contribution not 
specifically due to the hybridization of the target to the probe, for example non-specific 
hybridization and fluorescence emitted from other chemicals on the glass. If such a contribution 
is present, we would like to measure and remove it to obtain a more accurate quantification of 
hybridization. An undesirable side-effect of background correction is that negative intensities 
may be produced for some spots and hence missing values if log-intensities are computed, 
resulting in loss of information associated with low channel intensities. Research has begun on 
more sophisticated methods of background adjustment which will produce positive adjusted 
intensities even when the background estimate happens to be larger than the foreground [19]. 
Empirical experience suggests that local background estimates often over-estimate the true 
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background while the morphological method may under-estimate and these differences have a 
marked impact on the M-values for less intense spots. There is a need for further research on 
adaptive background correction methodologies which can produce intensities with consistent 
behavior regardless of background estimator used. 

4 Graphical Presentation of Slide Data 

It is a good idea to use routinely a variety of exploratory graphical displays to examine the 
results of any microarray experiment. Graphical displays can help assess the success of the 
experiment, can guide the choice of analysis tools and can highlight specific problems. 

The first and most obvious diagnostic graphics is the well-known image in which the scanned 
microarray output images of the Cy3 and Cy5 channels are false-colored green and red 
respectively, with yellow representing an equal balance of the two. Co-registration and overlay 
of the two channels offer a quick visualization of the experiment revealing information on color 
balance, uniformity of hybridization, spot uniformity, background and artifacts such as dust or 
scratches. Overlay images also provide a rough impression of the number of genes that are DE 
between the two samples. 

Other diagnostic plots involve plotting the numerical values of the red and green intensities. 
Since the raw intensities are strictly positive and vary by orders of magnitude, they should almost 
always be log-transformed before plotting or carrying out further analysis. There are a number of 
reasons for this. Firstly the intensities in a successful microarray experiment typically span the 
full 16-bit range from 0 to 65,535 with the vast majority in the lower range of values, less than 
1,000. If the data is not transformed it must by necessity be presented in very compressed form 
in the low range. Calculating log-values spreads the values more evenly across the range and 
provides readier visualization of the data. Secondly the random variation, as measured by the 
standard deviation of the intensities, typically increases roughly linearly with the average signal 
strength. Converting to logarithms tends to make the variability more constant. Thirdly 
logarithms convert the ratios �� �  to differences ��� ���� � �� � . 

Any negative values of R or G will have to be excluded from any analysis on the logarithmic 
scale. Negative values can be made very rare by using an unbiased background estimator as 
described in Section 2. In any case, spots with negative values for either R or G are usually too 
faint to show evidence of differential expression and therefore tend to be of less interest in any 
subsequent analysis. 

The most common graphical display of data from a microarray slide is a scatterplot of the two 
channel intensities, 2log R versus 2log G . Although such a plot is straightforward, the very high 
correlation between the two channel intensities always dominates the plot making the more 
interesting features of the plot difficult to discern. Since the interest lies in deviations of the 
points from the diagonal line, it is beneficial to rotate the plot by 45 degrees and to re-scale the 
axes as in the MA-plot of Dudoit et al [20] which has the M-values on the vertical axis and the 
intensity A-values on the horizontal axis. The MA-plot serves to increase the room available to 
represent the range of differential expression and makes it easier to see non-linear relationships 
between the log intensities (Figure 5). It also displays the important relationship between 
differential expression and intensity which is used in later analysis steps. 
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Boxplots can be useful for comparing M-values between various groups. A boxplot displays 
graphically the so-called 5-number summary of a set of numbers, the three quartiles and the 
maximum and minimum. The central box of the plot extends from the first to the third quartile 
and therefore encompasses the middle 50% the data. Figure 6 displays side-by-side boxplots of 
the normalized M-values for a series of six replicates arrays. The much longer boxes for slides 
five and six show that the inter-quartile range is much larger for these two slides. The different 
slides appear to be on varying scales, because of changes in PMT settings or other factors, and 
some re-scaling seems to be called for to make the arrays more comparable. 

A spatial plot of the background or M-values can often reveal spatial trends or artifacts of 
various kinds. Figure 7 shows a spatial plot of red channel morphological background for one 
array. Each spot on the array corresponds to one small square region on the plot. High 
background trends towards the edges of the plot stand out in the plot. 

5 Normalization 

The purpose of normalization is to adjust for any bias which arises from variation in the 
microarray technology rather than from biological differences between the RNA samples or the 
printed probes. Most common is red-green bias due to differences between the labeling 
efficiencies and scanning properties of the two fluors complicated perhaps by the use of different 
scanner settings. Other biases may arise from variation between spatial positions on a slide or 
between slides. Positions on a slide may vary because of differences between the print-tips on the 
array printer, variation over the course of the print-run or non-uniformity in the hybridization. 
Differences between arrays may arise from differences in print quality or from differences in 
ambient conditions when the plates were processed. It is necessary to normalize the intensities 
before any subsequent analysis is carried out. 

The need for normalization can be seen most clearly in self-self experiments, in which two 
identical mRNA samples are labeled with different dyes and hybridized to the same slide. 
Although there is no differential expression and one expects the red and green intensities to be 
equal, the red intensities often tend to be lower than the green intensities. Furthermore, the 
imbalance in the red and green intensities is usually not constant across the spots within and 
between arrays, and can vary according to overall spot intensity, location on the array, slide 
origin, and possibly other variables. 

Normalization can be carried out within each array or between arrays. The simplest and most 
widely used within-array normalization method assumes that the red-green bias is constant on 
the log-scale across the array. The log-ratios are corrected by subtracting a constant �  to get 
normalized values M M c� � .  The global constant c  is usually estimated from the mean or 
median M-value over a subset of the genes assumed to be not DE, but many other estimation 
methods have been proposed. Chen et al [6] proposed iterative estimation of �  as part of one of 
the first proposed normalization procedures. Kerr et al [21] and Wolfinger et al [22] have 
proposed the use of ANOVA models for normalization. These methods are equivalent to 
subtracting a global constant as above. Global normalization is still the most widely used in spite 
of the evidence of spatial and intensity dependent biases in numerous experiments. We favor 
more flexible normalization methods based on modern regression which take into account the 
effects of predictor variables such as spot intensity and location. 
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The next level of complication, which we have always found necessary, is to allow the correction 
c  to vary between spots in an intensity-dependent manner. In Figure 8, a constant value for c 
would imply no trend between M and A. Instead it can be seen that the majority of points lie on a 
curve, showing that the red-green bias depends on the intensity of the spot. Write ��� �  for the 
height of the curve at each value of A. We normalize the M-values by subtracting this curve, 

( )M M c A� � . The curve is estimated using a suitable robust scatterplot smoother, for example 
local weighted regression (loess) [23] [24]. A few other intensity dependent methods have been 
proposed. Finkelstein et al [25] proposed an iterative linear regression method which is 
essentially equivalent to what is known as robust linear regression in the statistics literature. This 
is similar to the above intensity-dependent normalization except that the curve ��� �  is 
constrained to be linear. Kepler et al [26] proposes an intensity dependent normalization which is 
similar to above but uses a different local regression method. 

A further generalization is to use a different curve for different regions of the array, 
( )iM M c A� � , where �  indexes the region of the array. We have found sub-array 

normalization based on the print-tip groups to be particularly useful. Not only does this allows 
for physical differences between the actual tips of the printer head but the print-tip groups act as 
a surrogate for any spatial variation across the slide (Figure 9). 

There are often substantial scale differences between microarrays, because of changes in the 
PMT settings or other reasons. In these circumstances we have also found it useful to scale-
normalize between arrays, a simple scaling of the M-values from a series of arrays so that each 
array has the same median absolute deviation (Figure 6). 

In all of the above normalization methods, it is usual to use all or most of the genes on the array. 
It can be useful to modify the normalization method if a suitable set of control spots is available. 
A traditional method is to use housekeeping genes for normalization. However housekeeping 
genes often do show sample specific bias. Housekeeping genes are also typically highly 
expressed so they will not allow the estimation of dye-biases for less expressed genes when the 
dye-bias is intensity dependent. Housekeeping genes may also not be well represented on all 
parts of the plate so that spatial effects may not be well estimated. The most satisfactory set of 
controls is a specially designed microarray sample pool (MSP) titration series. MSP is analogous 
to genomic DNA as control with the exception that non-coding regions are removed. Typically a 
concentration titration is done to span as wide an intensity range as possible. Theoretically all 
labeled cDNA sequences could hybridize to this mixed probe sample, so it should be minimally 
subject to any sample specific biases. On the other hand, the use of all genes for normalization 
offers the most stability in terms of estimating spatial and intensity dependent trends in the data. 
In some cases it may be beneficial to use a compromise between the sub-array loess curves and 
the global titration series curve [24]. 

An alternative method is to select an invariant set of genes as described for oligonucleotide 
arrays by Schadt et al [27] and Tseng et al [28]. A set of genes is said to be invariant if their 
ranks are the same for both red and green intensities. In practice the set of invariant or 
approximately invariant genes is too small for comprehensive normalization. When there are 
sufficient invariant genes, the use of invariant genes is similar to global intensity-dependent 
normalization as described above. 
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Sub-array loess normalization is able to correct for a variety of spatial and intensity-dependent 
biases. It is advisable though to check using the exploratory plots mentioned in Section 4 to 
check whether other systematic effects exist in the data of which account should be made before 
the primary data analysis is carried out. 

6 Quality Measures 

6.1 Array Quality 

It is important to assess the quality of the data obtained from each microarray experiment, on a 
global array basis and also on an individual spot basis. The quality of the results from each 
microarray will vary with cDNA purity, variations in the printing process, RNA quality, success 
in carrying out the hybridization protocols and scanning effectiveness. A simple global 
assessment of quality is found in the distribution of log-intensity values in each of the two 
channels across the spots on the slide. Pixel intensities are usually scaled to be between 0 and 16 
on the log base 2 scale. If the observed intensities fail to use the greater part of this scale, this is a 
strong indication that something is wrong; possibly the hybridization has failed. More precisely, 
we expect the intensity A-values to span the majority of the response range. Control spots should 
be represented in this spread: null control spots such as blanks and printing buffers should have 
low intensities while house-keeping genes and titration series spots should show a range of 
higher intensities. At the same time, the intensity values should not be too dense around the 
largest value, suggesting that the scanner has been set too high and pixels have been saturated. 
This will lose discrimination and linearity of response on the log scale. 

In most experiments, the great majority of genes should not be differential expressed, so the 
range of M-values for the bulk of genes should be much less than the range of A-values. On an 
M-A plot the bulk of points should follow an elongated shape in the M and A axes are on a 
similar scale. If morphological background estimation has been used, the M-A plot will typically 
follow an elongated comet shape with a long tail on the right. If a local background estimate has 
been used, the M-A plot will typically follow a fan shape with again a long tail on the right 
(Figures 8 and 9). 

The ability of normalized intensities to follow a full range of values partly depends on the 
background level. A good quality array will typically have a relatively low background 
intensities and in particular a low average ratio of background to foreground intensity across the 
spots on the array. 

The exploratory plots described in Sections 4 and 5 will give an impression of array quality. The 
false-colored and spatial plots are particularly useful for judging spatial variation. Marked 
variation in the red-green dye bias across different parts of the array is an indication of quality 
problems. Although the sub-array normalization will partly correct for spatial variation, strong 
variation will persist even after normalization and is an indication of problems with the 
experimental protocol. 

6.2 Spot Quality 

If the overall quality of an array is satisfactory, then it becomes relevant to assess the quality of 
individual spots. There are two broad approaches to this. The first is to assess the quality of a 
spot according to the physical characteristics of the spot. The second is to assess the quality of a 
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spot according to whether the observed intensities for that spot are in general agreement with 
those from other spots printed with the same gene and hybridized with the same RNA. The first 
approach is an attempt to predict the repeatability of each spot’s M-value. Spots with low quality 
scores are supposed to be less repeatable and are typically removed from subsequent analysis. 
The second is a data-based approach which observes repeatability empirically given a suitable 
series of replicate arrays or duplicate spots on the same array. A fully integrated approach to 
quality will include both approaches. 

The first approach constructs quality measures for each spot from information collected by the 
image analysis program. Most image analysis programs routinely record a variety of spot details. 
These might include heterogeneity measures, such as standard deviations or inter-quartile ranges 
across pixels in the foreground and local background, as well as more basic details such as spot 
area, perimeter and location. Further quantities, such as circularity (area/perimeter2) or inter-
pixel coefficient of variation (standard deviation/mean), can obviously be derived from the basic 
measures. In general spots can be expected to be unreliable if they are very small or very large 
relative to the bulk of spots on the array, if they are markedly non-circular, if the background 
intensities are high, if the signal to noise ratio is low, or if the foreground or background regions 
are very heterogeneous. Examples of such work include [10] [29] [30] [14]. Buhler et al [10] 
reject or accept spots based on brightness and position of the spot centre. Brown et al [29] 
consider pixel-level variability for each spot. Yang et al [30] omit points with low intensities. 
Wang et al [14] measure spot quality using a composite index involving spot size, signal to noise 
ratio, level and heterogeneity of background and saturation of pixels.  

Examples of the more empirical quality approach include [31] [28]. Nadon et al [31] reject spots 
which are judged to outliers relative to a normal distribution for a series of M-values from 
replicate slides. Tseng et al [28] filter out genes according to the variability of duplicate spots on 
the same slide. 

In all of the above work, spots which are flagged as low quality are omitted from the primary 
analysis. Naturally this improves the look of the data, as indicated by a range of visual 
diagnostics. However spots do not go from “good”  to “bad”   in a sharp way and the cut-offs 
which are used to judge low quality are inevitably somewhat arbitrary. A more satisfactory 
approach would be to give less weight to lower quality spots in a graduated way, with excellent 
spots getting full weight, down to excluding really bad spots entirely. 

In the empirical quality approach, a more systematic approach to handling outlier spots can be 
achieved by using robust estimation procedures mentioned in the next Section. Robust M-
estimators of location and scale will automatically down-weight any M-value which is discordant 
with other comparable values. Robust methods down-weight outlying M-values in a graduated 
way and avoid the need to choose an arbitrary cut-off. 

In the physically based approach to quality, a graduated approach is more difficult. Ideally, 
quality measures should be found which predict the between-slide variance of the M-values. 
Spots can then be weighted inversely according to the predicted variances. An obvious treatment 
of spot area, for example, would be to weight small spots directly proportional to their area, for 
example � 	
 � �� , where 
  is the weight, �  is the area of the spot in pixels, and 	�  is the 
area of a full-sized spot. Figure 10 demonstrates empirically that spots with small areas can be 
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more substantially more variable than larger spots. The correct treatment of other measures such 
as signal-to-noise ratio is less obvious, although Brown et al [29] and Wang et al [14] have 
promising results. Wang et al [14] demonstrate graphically an increasing trend relationship 
between spot variance and their composite quality measure. However we have not observed the 
same variance trends using data from our own institutions, and the results may be sensitive to the 
particular image analysis and background correction method which was used. 

7 Selecting Differentially Expressed Genes 

7.1 Ranking Genes 

One of the core goals of microarray data analysis is to identify which of the genes show good 
evidence of being DE. This goal has two parts. The first is select a statistic which will rank the 
genes in order of evidence for differential expression, from strongest to weakest evidence. The 
second is to choose a critical-value for the ranking statistic above which any value is considered 
to be significant. The first goal is the more important of the two and, as it turns out, also the 
easier. The primary importance of ranking arises from the fact that only a limited number of 
genes can be followed up in a typical biological study. In many microarray studies the aim is to 
identify a number of candidate genes for confirmation and further study. It will usually be 
practical to follow-up only a limited number of genes, a hundred say, so it is most important to 
identify the 100 most likely candidates. The complete list of all genes which can be considered 
statistically significant may be of less interest if this list is too large to be followed up.  

For simplicity we will assume in this section that we have data from the simplest possible 
experiment. We will assume that we have a series of �  replicate arrays on which samples A and 
B have been hybridized and we wish to identify which genes are DE. Many data analysis 
programs sort the genes according to the absolute level of  M , where � is the mean of the M-
values for any particular gene across the replicate arrays. This is known to be a poor choice as it 
does not take account of the variability of the expression levels for each gene [32] [33]. The 
shortcoming of the method is that the variability of the M-values over replicates is not constant 
across genes and genes with larger variances have a good chance of giving a large �  statistic 
even if they are not DE. A better choice is to rank genes according to the absolute value of the t-
statistic 

 
/

M
t

s n
�  

where s  is standard deviation of the M-values across the replicates for the gene in question, as 
this incorporates a different variability estimate for each gene. An added advantage of the t-
statistic is that it introduces some conservative protection against outlier M-values and poor 
quality spots. Any M-value which is an outlier will give rise to a large standard deviations 
  
which will usually prevent the gene in question from being spuriously identified as DE. 

The ordinary t-statistic is still not ideal because a large t-statistic can be driven by an 
unrealistically small value for s. The shortcoming of the t-statistic is the opposite of that of � . 
Genes with small sample variances have a good a chance of giving a large t-statistic even if they 
are not DE. A suitable compromise between the �  and t-statistics is therefore desirable. 
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Lönnstedt and Speed [33] adopt a parametric empirical Bayes approach to the problem of 
identifying DE genes. They produce a B-statistic which is an estimate of the posterior log-odds 
that each gene is DE (Figure 11). Subject to the parametric assumptions being valid for the data, 
values for the B-statistic greater than zero correspond to a greater than 50-50 chance that the 
gene in question in DE. The B-statistic is equivalent for the purpose of ranking genes to the 
penalized t-statistic 

 
�� ��

�
�

� 
 �
�

�

 

where the penalty �  is estimated from the mean and standard deviation of the sample variances 
�
 . Tusher et al [32] and Efron et al [34] have used penalized t-statistics of the form 
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�

 

when assessing DE for oligonucleotide microarrays. This differs slightly from the previous 
statistic in that the penalty is applied to the sample standard deviation 
  rather than to the sample 
variance �
 . Tusher et al [32] choose �  to minimize the coefficient of variation of the absolute t-
values while Efron et al [34] choose  a  to be the 90th percentile of the s  values. These choices 
are driven by empirical rather than theoretical considerations. Efron et al [34] uses the above t-
value as the basis for a non-parametric empirical Bayes method leading to an estimated log-odds 
that each gene is DE. Lönnstedt and Speed [33] show in a simulation that both forms of 
penalized t-statistic are far superior to the mean � or to the ordinary t-statistic for ranking DE 
genes. 

The penalized t-statistics can be extended in several natural ways to apply to more general 
experimental situations. If there are missing values for some arrays, perhaps because low quality 
spots have been flagged for removal, then the value �  in the denominator will reflect the actual 
number of observations for each gene rather than the total number of arrays. 

The t-statistic also extends naturally to more complicated experiment designs. For example we 
might use a penalized two-sample t-statistic if we are comparing samples A and B through a 
reference rather than directly on the same arrays. In that case there will be ��  replicate arrays 
comparing sample A with reference RNA and ��  replicate arrays comparing B with the same 
reference and a two-sample t-statistic, 
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where �
�
 � 
� �  is the penalized pooled sample standard deviation, might be used. Here ��  

and ��  are the average of the M-values for the two groups of arrays. For more complicated 
experiment designs, a multiple regression model will in general be estimated for each gene as for 
example in [35]. In the general case, differential expression can be judged using a penalized t-
statistic of the form 
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�  

where �  is a regression coefficient estimated by the multiple regression which discriminates 
between the RNA samples of interest, �
 is the unscaled standard error for �  returned by the 

multiple regression, and �
�
 � 
� �  where 
  is the residual standard deviation returned by the 

multiple regression. See Lönnstedt et al [36], who indicate the extension of the empirical Bayes 
B-statistic to general experimental designs. 

Another direction in which the t-statistic can be generalized is to replace the sample mean �  
and sample standard deviation 
  with location and scale estimators which are robust against 
outliers. This extension is very useful for microarray data because it is impossible to guarantee or 
adjust for the data quality of every individual spot. The general idea of robust estimation is to 
replace �  and 
  with values which behave very much like �  and 
  when the data actually are 
normally distributed but which are insensitive to a small proportion of aberrant observations [37] 
[38]. For general microarray experiments, a robust multiple regression can be computed for each 
gene and a penalized t-statistic formed from the robust versions of � , 
 , and �
. 

7.2 Assigning Significance 

Having ranked the genes on the basis of a suitable statistic, the next step is to choose a cut-off 
value above which genes will be flagged as significant. The crux here is the need to control for 
the massive level of multiple testing inherent in the need to conduct a test for each gene. 

A simple graphical method for assigning significance which is applicable even for single 
microarray experiments is to display the sorted gene-wise test statistics in a normal or t-
distribution probability plot. The bulk of the genes should follow an approximate straight-line on 
the plot. Genes whose points deviate markedly from the line are identified by the method as 
significantly DE. Unfortunately this remains an informal method because the implicit 
assumptions of normality for the M-value and independence between genes are unlikely to be 
satisfied. The method tends in practice to over-estimate the number of DE genes somewhat 
because the null distribution of the M-values tends to have heavier tails than does the normal 
distribution. Tusher et al [32] do use a variant of this method in conjunction with other multiple 
testing methods. 

Shaffer [39] has reviewed the issues involved in multiple testing. The most stringent approach to 
multiple testing is to control for family-wise error rate, which is the probability of at least one 
false positive among the genes selected as DE regardless of what configuration of the genes truly 
are DE. Dudoit et al [20] consider a design for which two-sample t-statistics are appropriate, 
comparing two RNA samples indirectly through a reference sample. They give a rigorous 
method for controlling the family-wise error rate using a re-sampling method [40] which 
computes a step-down adjusted P-value for each gene. Unfortunately this method requires a 
moderate to large number of microarrays to give useful results. If for example there are 15,000 
distinct genes to be tested then the method requires at least 16 microarrays to be able to detect 
DE genes because of the granularity of P-values computed by re-sampling. 
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It can be argued that controlling the family-wise error rate is unnecessarily stringent in the 
microarray testing context, because falsely selecting a handful of genes as DE will not be a 
serious problem if the majority of significant genes are correctly chosen. A less stringent and 
therefore more powerful method is to control the false discovery rate, defined to be the expected 
proportion of errors amongst the genes selected as significantly DE [41]. Tusher et al [32], Efron 
et al [34] and Storey and Tibshirani [42] take an alternative approach to the false discovery rate. 
Rather than trying to control the false discovery rate, they treat the false discovery rate as an 
exploratory tool. After choosing the subset of DE genes by other means, they estimate the false 
discovery rate amongst this subset using a re-sampling method. Estimation of the false discovery 
rate, which is described in detail in [42], relies formally on some assumptions about dependence 
between the genes which are difficult to verify in practice. However this is a very promising 
approach. 

The empirical Bayes methods of Efron et al [34] and Lönnstedt and Speed [33] do not allow 
absolute cut-off values because the overall proportion of DE genes is an indeterminate parameter 
in the models. In using these methods one has to a specify a value in advance, say 1%, for the 
overall proportion of DE genes, including those which are detected and those which are not. 
Moving this value up or down will move all the posterior odds of differential expression up or 
down by a similar amount, but will not change the order in which the genes are ranked. Efron et 
al [34] suggest that the posterior odds can be calibrated post-hoc by estimating the false 
discovery rate as mentioned above. 

There exist other methods which can in principle give absolute cut-off values for differential 
expression [6] [22] [43] [44], in some cases even for as few as a single microarray in the 
experiment [6] [44]. The price which is paid to achieve such results is that strong global 
distributional assumptions must be made about the red and green intensities. These assumptions 
are inevitably more simple than reality and seem to us too strong for routine data analysis use. 

8 Classification 

Two very important uses for microarray data are to generate gene expression profiles which can 
(i) discriminate between different known cell types or conditions, e.g. between tumor and normal 
tissue or between tumors of different types or (ii) identify different and previously unknown cell 
types or conditions, e.g. new subclasses of an existing class of tumors. The same problems arise 
when it is genes that are being classified: one might wish to assign an unknown cDNA sequence 
to one of a set of known gene classes, or one might wish to partition a set of genes into new 
functional classes on the basis of their expression patterns across a number of samples. 

These dual tasks have been described as class prediction and class discovery in the influential 
paper by Golub et al [45]. In the machine learning literature they are known as supervised and 
unsupervised learning, the learning in question being of the combinations of measurements – 
here gene expression values – which assign units to classes. In the statistical literature they are 
known as discrimination and clustering. The distinction is important. Clustering or unsupervised 
methods are likely to be appropriate if classes do not exist in advance. If the classes are pre-
existing, then discriminant analysis or supervised learning methods are more appropriate and 
more efficient than clustering methods.  
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There are many powerful techniques for class prediction in the statistical and machine learning 
literatures [46-48]. Such techniques invariably begin with data for which the existing class 
assignments are known, the so-called training set of units. These techniques can be effective 
even if some of the existing class assignments of the units are wrong or if there are unknown 
subclasses which would refine the existing classes. Indeed there are well established methods of 
evaluating the quality of prediction methods which at the same time check the assignment of 
individual units in the training set. 

Cluster methods tend to be over-used in microarray data analysis relative to discrimination 
methods. A common practice for example is to suppress existing class assignments, use an 
unsupervised learning technique to define new classes and assign the units to these classes, and 
then see how well the existing class assignments are reflected in the new classes. A more direct 
and efficient approach would be to use a supervised method to discriminate the classes in 
conjunction with a method such as cross validation to evaluate the repeatability of the results on 
new data. The efficiency of direct discrimination over clustering becomes increasingly important 
as the prediction problem becomes more challenging.  

Discrimination methods include linear discriminant analysis in various forms [46], nearest-
neighbor classifiers [48], classification trees [49], aggregating classifiers [50-51], neural 
networks [48] and support vector machines [52-53]. The first three methods are simple to apply 
once the genes have been filtered. The other methods are more sophisticated and require 
considerable skill in their application.  

Dudoit et al [54] compare the performance of different discrimination methods for the 
classification of tumors using gene expression data from three recent studies. The main 
conclusion is that simple classifiers such as linear discrimination and nearest neighbors 
performed remarkably well compared to more sophisticated prediction methods such as 
aggregated classification trees.   

There are factors other than accuracy which contribute to the merits of a given classifier. These 
include simplicity and insight gained into the predictive structure of the data. Linear discriminant 
methods are easy to implement and had low error rates in the above study, ignore interactions 
between genes. Nearest-neighbor classifiers are simple, intuitive, and had low error rates 
compared to more sophisticated classifiers. While they are able to incorporate interactions 
between genes, they do so in a “black-box”  way and give very little insight into the structure of 
the data. In contrast, classification trees are capable of exploiting and revealing interactions 
between genes. Trees are easy to interpret and yield information on the relationship between 
predictor variables and responses by performing stepwise variable selection. However, 
classification trees tend to be unstable and lacking in accuracy. Their accuracy can be greatly 
improved by aggregation (bagging or boosting). As more data become available, one can expect 
to observe an improvement in the performance of aggregated classifiers relative to simpler 
classifiers, as trees should be able to correctly identify interactions. 

The use of clustering methods to identify group co-regulated genes is an area of very active 
research, stimulated by influential papers such as Eisen et al [55] and Alizadeh et al [5]. The 
most popular clustering methods are nicely reviewed by Quackenbush [53]. Recent work 
includes that of Hastie et al [56] who form clusters around the largest principal components of 
the data, Lazzeroni and Owen [57] who propose models in which each gene can belong to a more 
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than one cluster to none at all as different characteristics are considered, Parmigiani et al [58] 
who consider more general probabilistic models, and Lin et al [35] who cluster genes on the 
basis of regression coefficients estimated by a linear model. 

9 Conclusion 

Attention to statistical issues at each stage of microarray data analysis can ensure that the best 
use of made of available resources, that biases of various sorts are avoided, and that reliable 
conclusions are made. R software to carry out the analyses mentioned in this article is described 
by Dudoit et al [59] and Dudoit and Yang [60]. 
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Figure 4. A possible design for a time-course experiment. 
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Figure 3. A saturated design with 
dye-swaps pairs. 
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Figure 2. Wild type RNA acts as a 
natural reference sample. 
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Figure 1. Direct comparison (b) is more 
efficient than indirect comparison (a). 
Each arrow represents one microarray, 
the arrow by convention pointing 
toward the red labeled sample. 
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Figure 5. (a) Scatter plot of log R versus log G and (b) MA-plot. The central dip - an artifact - is more evident in (b) 
than in (a) and differentially expressed genes stand out more clearly. Data from the Nutt Lab, WEHI.   
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Figure 6. (a) Side-by-side boxplots of the M-values from 6 arrays. The arrays are replicates except that three are 
dye-swap pairs of the others. Array 5 has a much larger spread than the others. (b) Boxplots of the same arrays after 
scale-normalization to equalize the median absolute deviation for each array. Data from the Corcoran Lab, WEHI. 
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Figure 7. Spatial plot of the morphological red channel background for a microarray slide. The gray-scale goes from 
white for low background to black for high. The background is much higher around the edges and near the right 
edge. The array contains 19200 spots in a 12 by 4 print-tip pattern. Data from the Scott Lab, WEHI. 
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Figure 8. Two MA-plots of the same microarray, (a) with morphological background and (b) with local median 
valley background. Data from the Nutt Lab, WEHI. 

 

Figure 9. The same two MA-plots as in Figure 8 after print-tip normalization. 



 

 

 

25 

 

Figure 10. A normalized MA-plot for one microarray showing that very small spots are more variable than larger 
spots. Spots with areas less than 75 pixels are highlighted. Data from the Corcoran Lab, WEHI. 
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Figure 11. Volcano style plot of the empirical Bayes B-statistic for a series of six replicate arrays. Genes with log-
odds of differential expression greater than three have been highlighted for follow-up and confirmation. Data from 
the Corcoran Lab, WEHI. 


