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Summary: Gene expression microarrays are an innovative technology with enormous promise to

help geneticists explore and understand the genome. Although the potential of this technology

has been clearly demonstrated, many important and interesting statistical questions persist.

We relate certain features of microarrays to other kinds of experimental data and argue that

classical statistical techniques are appropriate and useful. We advocate greater attention to

experimental design issues and a more prominent role for the ideas of statistical inference in

microarray studies.

1Direct reprint requests to M. Kathleen Kerr.
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1. INTRODUCTION

Gene expression microarrays are an exciting new tool in molecular biology (Brown & Bot-

stein, 1999). Geneticists are intrigued by the prospect of collecting and mining expression

data for thousands of genes. Statisticians have taken a correspondingly enthusiastic interest in

the many quantitative issues that arise with this technology. These issues begin with analyz-

ing scanned array images and extracting signal (Yang et al., 2000a). After one has estimates

of relative expression in hand, there are problems in data visualization, dimension reduction

(Hilsenbeck et al., 1999), and pattern recognition (Brown et al., 2000). In the world of gene

expression, a lot of attention has been focused here, particularly on clustering tools. In contrast,

our focus is on the analysis that takes place after image analysis and before clustering. Namely,

how does one get from fluorescence readings off an array to valid estimates of relative expression,

and how does one put error bars on those estimates?

With the rush to embrace microarray technology and its potential, we believe a number

of fundamental experimental principles have been neglected. In addition, we believe there are

some common misconceptions about which quantitative issues with microarrays are truly novel.

Accordingly, we have somewhat different ideas about the areas of statistical research that are

key to improving microarray data analysis. This article discusses spotted cDNA arrays because

this is the data we have the most experience with. There are similar issues with oligonucleotide

arrays, but these are outside the scope of this article.

2. “IT’S ALL RELATIVE”

In the context of microarray technology, the word “spotted” refers to the process by which

sequences of DNA are attached to a glass slide or other surface. By various mechanisms, a

robotic arm with blocks of pins places DNA strands as spots on an array. Any given spot

contains one particular DNA sequence, although the same sequence may be spotted multiple

times per array. The mRNA samples under study are reverse-transcribed into cDNA and a dye

label is incorporated. One sample is labeled with a “green” dye and the other with “red.” The

samples are then mixed and washed over the array, where the dye-labeled cDNA strands can

hybridize to their complementary sequences on the array. Unhybridized cDNA is washed off,
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and the green and red fluorescence are measured from each spot on the array. There is little

information in a single fluorescence measurement from a spot because there is poor control over

the amount of DNA target in each spot. What is interesting is the relative fluorescence of red

and green from a spot, because the sample that contained more transcript should produce the

higher signal. This makes the two-dye system integral to the process. An alternative proposal is

to use radioactive labeling in place of dye labeling (Friemert et al., 1989). However, with single

reads from each spot each measurement becomes confounded with spot-to-spot variation. This

adds to error and can only be overcome with extensive replication and careful randomization.

As we will discuss, spot effects can be accounted for with the two-dye system. This results in

greater precision and more power to test for differences in expression.

Although there is no question that relative comparisons are the meaningful quantities, we

disagree with two common conclusions drawn from this fact. The first is that all the relevant

information is captured in the ratio of the two signals from a spot. The second is that the

“relativeness” of microarray data is a novel feature of this technology and thus traditional

statistical analyses are inadequate.

To the contrary, relative data is about as old as statistics itself. The “grandfather” of

statistics, R.A. Fisher, worked with agricultural field trials. In controlled experiments with

clear objectives, scientists sought to determine the productivity of different varieties of a crop,

for example different strains. They recognized that there is no such thing in absolute terms as

the yield of a variety because productivity depends on soil fertility, sunlight, rainfall, and myriad

other factors. They understood that the only meaningful direct comparisons are for strains grown

on the same block of land. Consider a hypothetical experiment to study three varieties. Suppose

there are three blocks of land available, but each block only has room for two varieties. Table 1

gives possible experimental plans. It is easily accepted that the yield data contain information

about the varieties grown in the same block. However, there is a corresponding fact relying on

the same logic that can be overlooked. Namely, there is also information about the blocks of

land because they have varieties in common. Fisher recognized this duality and realized one

could simultaneously estimate the relative yield of varieties and the relative effects of the blocks
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of land. The quantitative tool for doing this is a simple linear model,

yij = µ+Bi + Vj + εij, (1)

where yij is the measured yield for variety j grown on block i, µ is the overall mean, the block

effect Bi is the effect of block i, and Vj is the effect of variety j. The term ε represents random

error. In a large experiment with many varieties and blocks, unbiased yield comparisons can be

made, even for varieties not grown on the same block of land.

Returning to microarrays, consider the spots for a particular gene on different arrays (or

reproduced within arrays). The spots vary in size, shape, and concentration, analogous to

the variation in fertility of blocks of land. Using the same principles as in the agricultural

experiment, we can simultaneously measure the relative transcription level of the corresponding

gene and the “fertility” of the spots. However, this is only possible if we use all the information

in the data and do not reduce to ratios.

Of course, microarray experiments are considerably more complicated than the simple agri-

cultural experiment just described. With the agricultural experiment we can speak of the plots

of land as the experimental units, but with microarrays there are different sizes of experimental

units. Spots may be organized into blocks or pin groups, which in turn are nested within the

slides themselves, which may also belong to batches or print runs. The hypotheses that motivate

a particular experiment may also necessitate a complex design structure to the mRNA samples.

For example, mRNA samples may be obtained from tissues from different strains of mice and

different treatment conditions. We note, however, that the comparisons of interest are across

samples but within genes. That is, one makes inferences about the relative levels of expression

for a gene in the different samples but not about the level of expression of one gene with respect

to another. This is because hybridization properties differ from sequence to sequence so that the

correspondence between fluorescent signal and any kind of absolute measure of transcript level is

unknown. Because the meaningful comparisons are within genes, the fundamental experimental

units are the spots.

3. EXPERIMENTAL DESIGN FOR MICROARRAYS

Once we recognize that microarray data contains information about both expression and

spot characteristics, new possibilities arise for designing these experiments. In particular, it is
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not necessary to use a reference sample on every array. The logic behind using reference samples

is that if the expression of a gene is twice the level in sample 1 compared to the reference, and

six times higher in sample 2 compared to the reference, then the expression is three times as

large in sample 2 compared to sample 1. However, the same logic that allows these indirect

comparisons also allows one to consider experimental designs that only include the samples of

interest. Introducing a reference as an intermediate step is unnecessary and generally inefficient

because it means fully half of the data are dedicated to an extraneous sample. These precious

resources could be better allocated to gather more information about the samples of interest so

that they may be compared with the best possible precision.

We return to the hypothetical agricultural experiment to illustrate this idea. Consider the

two experimental plans in Table 1. To compare three varieties of interest in three blocks of

size two, the “reference” design uses a fourth, arbitrary reference variety in each block. This

is analogous to a common experimental strategy used with microarrays. An alternative is the

“balanced design,” which does away with the reference variety. The balanced design doubles the

amount of data on the varieties of interest without requiring any additional resources. Using the

model in (1) and assuming independent error with constant variance, the least-squares estimate

of the yield difference for two varieties of interest will have variance one-third as large for the

balanced design compared to the reference design. In other words, the balanced design allows

one to compare the varieties of interest with much greater precision.

<<< Table 1 approximately here. >>>

Although statistics is commonly viewed as primarily dealing with post-experimental data

analysis, statistical experimental design is one of the oldest sub-disciplines. Fisher (1951; p.3)

noted that “statistical procedure and experimental design are only two different aspects of the

same whole, and that whole comprises all the logical requirements of the complete process of

adding to natural knowledge by experimentation.” With the two-dye system, microarrays are

effectively blocks of size two (Kerr & Churchill, 2000b). When there are more than two samples

under study, a microarray design is necessarily an incomplete block design (Cochran & Cox,

1957). While it is not a trivial task to find a good incomplete block design, the topic has been

under study for decades and there is a body of research to help find efficient experimental plans.
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The designs that are most suitable for any particular experiment depend on the questions of

interest and the hypotheses to be investigated.

A different aspect of good design that is conceptually simple to incorporate is replication. As

Fisher noted, replication serves two purposes. The first is to increase the precision of estimation.

The second purpose, “which there is no alternative method of achieving, is to supply an estimate

of error by which the significance of these comparisons is to be judged” (Fisher, 1951; p.60).

Fisher lamented that “it is possible, and indeed it is all too frequent, for an experiment to be so

conducted that no valid estimate of error is available” (Fisher, 1951; p. 34). Without the ability

to estimate error there is no basis for statistical inference. One has the experience of seeing

some data and can look for patterns, but there is no way to decide whether patterns are real or

spurious. As noted by Lee et al. (2000), many microarray experiments are currently completed

without replication. Replication can be incorporated at several levels: genes can be spotted

multiple times per array, mRNA samples can be used on multiple arrays, and mRNA samples

can be taken from multiple specimens to account for inherent biological variability. The last

example represents true replication while the others are probably more accurately described as

repeated measures.

In addition to finding a good pairing of samples on arrays and incorporating replication, a

third aspect of design we recommend is balance with respect to dyes. That is, we recommend

each sample be labeled with both the red and green dyes and both aliquots be incorporated

into the experimental plan. In multiple datasets from different labs we have seen genes that

exhibit higher expression when labeled with one dye or the other, regardless of the sample. This

difference is beyond any overall dye effect. If samples are only labeled with one dye, not only

can this phenomenon not be corrected, it cannot be detected. Then, if these effects are present,

they will lead to biased estimates of relative expression and misleading results. Although we

do not yet have a satisfactory explanation for these gene-specific dye effects, at this stage we

advocate incorporating balance into designs until the issue is resolved.

4. MICROARRAY DATA ANALYSIS AND STATISTICAL INFERENCE

The analysis of variance (ANOVA) is a natural tool for studying data from experiments

with multiple categorical factors (Kerr et al., 2000). Borrowing terminology from agriculture,
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the term variety refers to the mRNA samples under study. Varieties can be different strains,

tissue types, timepoints in a biological process, etc. Let yijkgr be the signal on the appropriate

scale from the rth spot for gene g on array i for dye j and variety k. A typical ANOVA model

for a microarray experiment is

yijkgr = µ+ Ai +Dj + (AD)ij +Gg + (AG)igr + (DG)jg + (V G)kg + εijkgr. (2)

Here, µ represents the average signal across all the factors in the experiment. The “global” effects

Ai, Dj, and (AD)ij account for overall variation in arrays and dyes. These terms saturate the

design space of arrays and dyes, indirectly accounting for overall effects of varieties. These effects

are not of interest, but accounting for them amounts to data normalization. We advocate, as

much as possible, normalizing data as an integral part of the data analysis so that it is done

systematically and the degrees of freedom are explicitly acknowledged. In addition to these

“global” normalization terms, there are sources of variation to consider at the level of individual

genes. The gene effects Gg account for the average signal for gene g across arrays, dyes, and

varieties. The (AG)igr terms in the model are the “spot” effects. These are analogous to the

block effects B in the agricultural experiment. The (DG)jg terms are gene-specific dye effects. As

mentioned in the previous section, we did not anticipate such effects, but they have appeared

repeatedly and are a potential source of bias if ignored. The terms (V G)kg account for the

expression of gene g specifically attributable to variety k. Contrasts in the (V G)kg for fixed g

are the quantities of interest.

A fundamental assumption of ANOVA is that there exists a scale on which the various effects

are additive. We share with others a bias for the logarithmic scale. Biological phenomena tend

to be thought of in terms of multiplicative effects, such as fold-changes in expression. The log

transforms these into additive effects, providing interpretability that is a clear advantage of

the log. However, the log transform is problematic with image analysis programs that produce

non-positive data values. Ad-hoc “flooring” gets around the problem but produces undesirable

artifacts in the data. We have seen cases where ANOVA modeling of the log data produced

residual plots with systematic trends. In some cases a simple shift in the data before taking logs

solves the problem (manuscript in preparation). Figure 1 demonstrates this simple adjustment,

but a more complicated correction may be required in some cases (Yang et al., 2000b). Another
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problem that occurs is truncation at the high end of the data, either because every probe

molecule is hybridized or because the dynamic range of the scanner has been reached. We

routinely use the diagnostic plots shown in Figure 1 and advocated by Yang et al. (2000b) to

monitor for this phenomenon.

An additional issue is whether the error ε in the model can reasonably be treated as ho-

moscedastic. If not, one must consider the nature of the heteroscedasticity and its consequences

for estimation and statistical inference. In some data we have analyzed there was no clear ev-

idence against homoscedasticity (Kerr et al., 2000; Kerr & Churchill, 2000a). In these cases

we used a straightforward application of bootstrapping (Efron & Tibshirani, 1994) to produce

non-parametric confidence intervals for differences in gene expression across samples (Figure 2).

We have observed heteroscedasticity in other data (manuscript in preparation), although the

nature of the heteroscedasticity has not been obvious. For example, we are uncertain whether

the error variance depends on intensity or is perhaps more particular to genes. In either case, we

prefer randomization techniques such as bootstrapping over classical t-tests and F -tests because

we have consistently observed non-normality in residual distributions.

A crucial issue with ANOVA for microarrays is deciding whether effects should be treated

as fixed or random. Generally, fixed effects are those thought of as unknown constants. In

contrast, random effects are thought to arise from some random process, such as sampling from

an effectively infinite population. We have used fixed effect models as a starting point, but

agree with those who argue that random effects are more appropriate in some cases (Wolfinger

et al., 2000). Our hesitation has been that the empirical distributions of parameter estimates

and residuals we have seen have been decidedly non-normal, but standard methods for random

effects assume underlying normality. We believe this area is ripe for further research.

Wolfinger et al. (2000) present a microarray data analysis using ANOVA methods and ran-

dom effects. In line with classical techniques, they use random effects for the “blocking effects”

such as the spot effects. We believe there is a case to be made to go a step further and treat

the gene effects and gene interactions, including the effects of interest, V G, as random. This

may be appropriate because many microarray experiments are exploratory. The genes spotted

on the arrays are not specifically suspected to relate to the differences in the varieties under

study. Rather, they are a set of clones that happen to be available. The result would be some
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“shrinkage” in the estimates of differential expression, reducing the bias in the most extreme

estimates. The prospect of treating the effects of interest as realizations of a random process is

not without controversy. Robinson (1991) provides an excellent discussion of the topic.

5. DISCUSSION

The first microarray experiments demonstrated the promise of the technology by estimating

patterns of gene expression and showing these patterns were in good agreement with prior

knowledge of the systems under study (Chu et al., 1998; DeRisi et al., 1997). This was a

remarkable and noteworthy achievement. As we move forward, the purpose of experiments is

not to confirm known properties of well-studied genes. Rather, it is to acquire information

about unknown genes and unknown gene functions. To this end, one cannot consider just the

genes with large changes in expression that are obvious to detect without the aid of statistics.

This practice overlooks important genes that may have small, but reproducible, changes in

expression. In order to detect such genes, scientists need statistically designed experiments

and data analysis that not only produce estimates of relative expression but, in addition, error

bars for those estimates. Error bars provides a basis to decide which features in the data

likely represent interesting biology and which are likely to have arisen by chance. Measures

of confidence should be incorporated whether one is simply looking to identify differentially

expressed genes or evaluating the results of higher-order analyses such as clustering (Kerr &

Churchill, 2000a).

Ignoring potential sources of experimental bias, such as assuming the two dyes behave the

same, can yield misleading results. An advantage of model-based data analysis such as ANOVA

is that a model helps the analyst explore the data. If one finds a model inadequate, discovering

why it is inadequate can help the analyst identify sources of variation and bias. On the other

hand, sources of variation cannot be measured if they are confounded by the experimental design.

Any finite body of data contains a limited amount of information, which cannot be increased

by any amount of ingenuity expended by statisticians (Fisher, 1951; p.39).

Statistics has a long-standing relationship with biology, probably more than with any other

natural science. Biological data is inherently variable, and statistical inference is required in

order to draw conclusions from data and add to the body of knowledge. Collecting data and
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acquiring knowledge are not the same thing. Good design and sound statistical inference will

be a crucial factor in determining whether microarrays fulfill their potential.
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Reference Design

Block 1 Block 2 Block 3

A B C

R R R

Balanced Design

Block 1 Block 2 Block 3

A B C

B C A

Table 1: Experimental designs to study three varieties of interest in three blocks of size two.

Varieties A, B, and C are of interest, while R represents a fourth variety introduced to serve as

a reference. The second design is balanced in the sense that every pair of varieties in the design

appears together once.
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Figure 1: Difference vs. Mean Plots

A cDNA array used to compare a drug-treated with a control mouse liver sample. For each

spot on the array, the difference in the two signal intensities is plotted against the mean. As-

suming there is a uniform difference in the dyes and most genes are not differentially expressed,

most points should fall along a horizontal line. However, notable curvature at the low end is

seen in plot (a) for the data on the log scale. This curvature is removed by using a uniform shift

in each channel before taking log, as seen in plot (b). Each gene was spotted with 4x replication

on the array; like symbols were used for the four spots for the same gene (symbols had to be

re-used). Symbols tend to cluster in groups of four, but also show the inherent variability in the

signal.

Figure 2: Temporal Patterns of Expression with Bootstrap 99% Confidence Bounds

We analyzed the gene expression time series data of Chu et al. regarding the yeast sporulation

cycle using ANOVA. Confidence intervals on the estimates of relative expression serve as a gauge

for which changes in expression should be regarded as “real” and which changes are attributable

to noise. For example, there is strong evidence there is increased expression of YSW1 between

2 and 5 hours but little evidence for changes in expression between 5 and 12 hours.
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