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Abstract. Common ratio-based approaches for analyzing gene expression microarray data
do not provide a framework for handling replication, although replication is clearly desirable for
this noisy data. In contrast, replication fits naturally into analysis of variance (ANOVA) meth-
ods. We use ANOVA to analyze data from a microarray experiment to compare gene expression
in drug-treated and control cells lines. We discuss issues that commonly arise in the analysis of
microarray data, and present practical solutions to some common problems.
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1 Introduction

This paper describes an analysis of a cDNA microarray experiment to compare gene expres-
sion in treated and control human cell line samples. We present the analysis as a case-study
in handling important issues that arise with microarray data (Kerr and Churchill, 2001). As
noted by Lee et al. (2000) and others, replication is crucial to microarray studies because there
is inherent noise in the data, even after systematic sources of variation are removed. However,
simple ratio-based approaches do not include a framework for analyzing data with replication.
Our primary tool for studying microarray data is the analysis of variance (ANOVA). The data
analysis discussed here demonstrates how ANOVA naturally handles experiments that incorpo-
rate replication. We will describe issues that arise in the analysis of microarray data concerning
model selection, data scaling, and statistical inference. Our experience demonstrates that some
relatively minor modifications to the modeling and bootstrapping used in Kerr, Martin, and
Churchill (2000) are necessary, useful, and valuable additions to the statistical analysis of mi-
croarrays.

Spotted cDNA microarrays are a tool for high-throughput analysis of genes expression
(Brown and Botstein, 1999). In the first step of the technique, DNA is “spotted” and im-
mobilized on glass slides or other substrate, the microarrays. Each spot on an array contains a
particular sequence, although a sequence may be spotted multiple times per array. Next, mRNA
from cell populations under study is reverse-transcribed into cDNA and one of two fluorescent
dye labels, Cy3 and Cy5, is incorporated. Two pools of differently-labeled cDNA are mixed
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and washed over an array. Dye-labeled cDNA can hybridize with complementary sequences on
the array, and unhybridized cDNA is washed off. The array is then scanned for Cy3 and Cy5
fluorescent intensities. The idea is that the mRNA sample that contained more transcript for a
given gene should produce higher fluorescence in the corresponding label in the spot containing
that gene. The experimental data consist of Cy3 and Cy5 measurements for every spot on every
array.

The data studied here are from an experiment to study 2,3,7,8-tetrachlordibenzo-p-dioxin
(TCDD) (Martinez and Walker, unpublished data). This compound is known to induce a
wide range of biological and biochemical responses, including gene induction. The experiment
used the human hepatoma cell line HepG2 as an in vitro model to study TCDD. HepG2 is an
established cell line for which metabolic enzymes are known to be inducible (Kikuchi et al.,
1998; Li et al., 1998). Thus it can be considered a prototype of the TCDD response.

The experimental design included replication to control the noise that is associated with
microarray data. Although each gene was spotted only once per array, replication was achieved
by using six arrays to study the two samples instead of just one or two. A separate labeling
reaction was performed for each hybridization. Each array was spotted with the same set of
1920 genes. Table 1 summarizes the “triple dye-swap” experimental design. As in Kerr and
Churchill (2000), we refer to the TCDD-treated and control cell lines as “varieties.” Control
cells are variety 1 and treated cells are variety 2. We refer to the fluor Cy3 as dye 1 and Cy5
as dye 2. Ninety-eight entries in the datafile, corresponding to 13 genes, were exactly 1 and
appeared to be artificial “floor” values. These genes were removed from the dataset for analysis.
There was no other data pre-processing. Thus the cleaned dataset has complete data for 1907
genes.

Dye 1 Dye 2

Array 1 Variety 2 Variety 1
Array 2 Variety 2 Variety 1
Array 3 Variety 1 Variety 2
Array 4 Variety 2 Variety 1
Array 5 Variety 1 Variety 2
Array 6 Variety 1 Variety 2

Table 1: Experimental Design: Variety Assignments to Arrays

2 ANOVA modeling

We analyzed the data on the log scale using ANOVA models (Kerr, Martin, and Churchill,
2000). Every data value is identified by four factors, array (A), dye (D), variety (V ), and
gene (G). Because of the balanced design, three- and four-way interactions of these factors are
confounded with main effects and two-way interactions. Therefore, considering only lower-order
effects indirectly accounts for higher-order effects. Let yijkg be the log intensity reading from
array i = 1, . . . , 6, dye j = 1, 2, variety k = 1, 2, and gene g = 1, . . . , 1907. We considered the
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ANOVA model

yijkg = µ+ Ai +Dj + Vk +Gg + (V G)kg + (AG)ig + (DG)jg + εijkg, (1)

where Ai, Dj, and Vk are “global” effects to account for overall differences in arrays, dyes,
and varieties. The gene effects Gg account for the expression level of genes averaged over the
other factors. The (AG)ig terms are the “spot” effects. The (DG)jg terms are gene-specific
dye effects, which occur when subsets of genes exhibit higher fluorescent signal when labeled
with one dye or the other, regardless of the variety. We have seen such effects repeatedly in
microarray data. Finally, the variety×gene interactions (V G)kg capture the expression of gene g
specifically attributable to variety k. The V G effects are the effects of interest for studying the
relative gene expression in the two samples. The term ε represents independent random error
with mean 0.

The global effects A, D, V do not saturate the entire “design space” spanned by arrays,
dyes, and varieties. We also considered an alternate model that replaces the 1 degree of freedom
variety effect Vk with the 5 degree of freedom array×dye interaction (AD)ij,

yijkg = µ+ Ai +Dj + (AD)ij +Gg + (V G)kg + (AG)ig + (DG)jg + εijkg. (2)

This model saturates the design space so that every combination of arrays, dyes, and varieties
is directly or indirectly accounted for. In particular, variety effects are indirectly accounted for
by the AD effects. Table 2 shows the analysis of variance for models (1) and (2). The residual
mean square for model (2) is less than half of that for model (1) and model (2) is preferred.
Wolfinger et al. (2000) also use AD effects to model microarray data.

Model (1) Model (2)
Source SS df MS Source SS df MS

Array 328.28 5 65.66 Array 328.28 5 65.66
Dye 119.10 1 119.10 Dye 119.10 1 119.10

Variety 40.66 1 40.66 Array∗Dye 128.42 5 25.68
Gene 35285.23 1906 18.52 Gene 35285.23 1906 18.52
Spot 1671.35 9530 0.18 Spot 1671.35 9530 0.18

Variety∗Gene 230.60 1906 0.12 Variety∗Gene 230.60 1906 0.12
Dye∗Gene 316.84 1906 0.17 Dye∗Gene 316.84 1906 0.17
Residual 144.67 7628 0.0190 Residual 56.86 7624 0.0075
Adj Total 38136.69 22883 Adj Total 38136.69 22883

Table 2: Analysis of Variance for Log Data

Proceeding with model (2), we examined the fitted residuals to check our modeling assump-
tions. Figure 1(a) plots residuals vs. fitted values and shows some modest heteroscedasticity but
no other clear pattern. This is misleading, however. Examining residuals separately for each
array shows systematic patterns. Figure 1(b) shows the most dramatic example of this, which
occurs for array 3. There are two discernable intersecting arcs of points in these plots, which
correspond to the two dyes.
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Our first attempt to fix the analysis was to adopt the loess adjustment of Yang et al. (2000).
The approach is an array-by-array “normalization” method to account for non-linear effects of
the dyes. For each array, one takes the two readings for each spot on the log scale and plots the
differences in the two values, the log ratio R, versus the mean of the two values, the average log
intensity I. In other words, I = (yi1kg + yi2kg)/2 and R = yi1kg − yi2kg. Under the assumption
that most genes are not differentially expressed, one expects this plot to be a horizontal band
centered around 0. Instead, we see curvature (Figure 2(a)). The Yang et al. technique is to fit
a loess curve through these plots and then re-define this curve to be 0. This forces the plots
to straighten and center around 0 (Figure 2(b)). For any given gene, the loess adjustment does
not change the intensity value I but produces an adjusted ratio value R′.

Yang et al. (2000) use the loess technique to adjust the log-ratios R. We adapted the
technique to adjust the log signal yijkg. After obtaining the R′ value for each gene, we used the
mean log intensity value I and solved the equations (y′i1kg + y′i2kg)/2 = I, y′i1kg − y′i2kg = R′ to
get adjusted log signal intensities y′i1kg and y′i2kg. We performed the loess in S-Plus using the
default settings for the loess span parameters.

Table 3(a) gives the analysis of variance for the loess-transformed data. We see that the
array×dye sum of squares is much smaller here than with the unadjusted log data. This is to
be expected because of the way the loess adjustment centers the data. Figure 3 shows that the
systematic trends in the residual plots have been removed. There seems to be a small degree of
heteroscedasticity, especially on array 3. One possibility we had hoped for was that the loess
adjustment would remove the need for DG effects in the ANOVA model. However, we see
evidence for persistent gene×dye effects — the loess adjustment does not account for all the
aberrant behavior of the dyes. Figure 4 shows that many genes at low levels of intensity and
some genes at higher levels of intensity exhibit the largest dye interactions in the loess-adjusted
data.

(a) Loess (b) Shift-Log
Source SS df MS SS df MS

Array 328.28 5 65.66 337.07 5 67.41
Dye 0.02 1 0.02 4.47 1 4.47

Array∗Dye 2.34 5 0.47 245.62 5 49.12
Gene 35285.23 1906 18.52 34712.49 1906 18.22
Spot 1671.35 9530 0.18 1657.78 9530 0.17

Variety*Gene 221.28 1906 0.12 222.62 1906 0.12
Dye*Gene 61.52 1906 0.03 64.12 1906 0.03

Residual 35.96 7624 0.0047 39.62 7624 0.0052
Adj Total 37605.98 22883 37283.78 22883

Table 3: Analysis of Variance for Transformed Data

Some transformation of the data, other than the simple log transform, is clearly needed
in order for the ANOVA effects to be considered additive. However, we were not completely
satisfied with the loess adjustment. It is unclear how to choose the loess span parameter, a
typical concern of statisticians using this kind of smoothing technique. If the span is too small,
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Log Data Loess Data Shift-Log Data
Array Dye 1 Dye 2 Dye 1 Dye 2 Dye 1 Dye 2

1 1.05 1.28 1.17 1.16 1.16 1.17
2 1.16 1.42 1.29 1.29 1.27 1.28
3 1.07 1.34 1.21 1.20 1.18 1.20
4 1.23 1.42 1.33 1.33 1.31 1.32
5 1.29 1.40 1.34 1.34 1.33 1.33
6 1.26 1.39 1.33 1.32 1.31 1.32

Table 4: Data Standard Deviations

there will be overfitting. In this case, differentially expressed genes will have high leverage for
the local fit and their signal may be muted. On the other hand, if the span is too large the fit
will be crude and the adjustment will not have the desired effect. We were generally concerned
about the large numbers of parameter used in estimating the loess curve and wondered whether
such an elaborate procedure was really required. We decided to look more closely at the data
and consider other options for data transformations.

For all six arrays, the data associated with dye 2 have smaller values. Because the derivative
of the log function is higher at the low end, the log transform magnifies this difference in the
data for the two channels. One way to see this effect is by looking at standard deviations.
Table 4 shows that the log data for dye 2 are more spread out than for dye 1. In contrast, the
loess-transformed data have roughly equal standard deviations for each dye. We hypothesized
that the curvature in the difference vs. mean plots could arise simply because of a single additive
difference between the two channels on the raw (pre-log) scale. Of course, this hypothesis is
not the only explanation for the observed patterns in the data. However, it suggests alternative
data transformations that might replace the loess procedure.

Assuming there is a single additive difference in the dyes on the raw data scale, the next
question is how to estimate and correct for the difference. We did not want to simply align the
data to have the same mean or median on the pre-log scale because then medium and large data
values would have high influence on the transformation whereas the effect of an additive shift
is most pronounced for low data values. Therefore, we adopted the following procedure.

The goal is to estimate a shift for each array to be applied to the raw data so that, after taking
logs, the difference vs. mean plots are as close as possible to a line with 0 slope. Taking logs
reduces the influence of large data values. Let si be the shift for array i. For each i, estimate si to
minimize the sum of the absolute deviations from the median of log(xi1k1g−si)− log(xi2k2g +si),
where xijkg = exp(yijkg) is the data on the pre-log scale and g = 1, . . . , 1907. We chose the
absolute deviation criterion instead of a least-squares criterion to make the procedure robust
against the influence of differentially expressed genes. The fitted value of the si are 101.0, 133.6,
120.5, 66.7, 38.6, and 39.5 for arrays i = 1, . . . 6. Although the shifts are rather small compared
to the range of the data, applying the shifts before taking log straightens the resulting difference
vs. mean plots (Figure 2(c)). Table 4(c) shows the standard deviations of the “shift-log” data
are very close to the loess-transformed data. Table 3(b) gives the analysis of variance for the
shift-log data. This ANOVA is remarkably similar to the ANOVA for the loess-transformed
data in Table 3(a). The exceptions are the dye and array×dye effects, which the loess transform
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necessarily reduce to near zero.
As with the loess-transformed data, the residual plots for the ANOVA modeling of the shift-

log data exhibit modest heteroscedasticity. The next question is how to proceed from modeling
to inference. That is, given the variability in the data, how do we infer differential expression?

3 Bootstrap Confidence Intervals for Relative Expression

For the remainder of this paper yijkg refers to the shift-log data (i.e. the ANOVA in Ta-
ble 3(b)). The next step is to estimate confidence intervals for the difference in expression
V G2g−V G1g. The bootstrapping technique (Efron and Tibshirani, 1986) used in Kerr, Martin,

and Churchill (2000) involves creating B simulated datasets y∗ijkg = µ̂+ Âi+ D̂j +(ÂD)ij + Ĝg +

(V̂ G)kg+(ÂG)ig+(D̂G)jg+ε
∗
ijkg. In each simulated dataset, µ̂, Âi, D̂j, (ÂD)ij, Ĝg, (V̂ G)kg, (ÂG)ig,

and (D̂G)jg are the parameter estimates from the original model estimation and ε∗ijkg are drawn
randomly and with replacement from the set of studentized residuals. We use studentized resid-
uals so that the empirical distribution has the same variance as the corresponding theoretical
distribution. Model (2) is fit to each bootstrap dataset, producing bootstrap distributions for
the quantities of interest. Confidence intervals are obtained via the percentile method. This
procedure yields estimated 99.9% confidence intervals (V̂ G)2g − (V̂ G)1g + / − 0.116 based on
B=10,000 bootstrap datasets. This is about the same as intervals based on normal theory
(+/− 0.137). Since e0.116 = 1.123 this means a fold-change of approximately 12% appears sig-
nificant. However, this bootstrapping method is based on the assumption of homoscedasticity,
which is contradicted by the heteroscedasticity in the residual plot. Therefore these confidence
intervals are unsatisfactory.

One alternative is to assume very generally that each gene has its own associated error dis-
tribution, that is εijkg ∼ Fg with mean 0. To incorporate this assumption into the bootstrapping
procedure, we created a different set of simulated datasets y∗ijkg, but this time ε∗ijkg was drawn
with replacement from the residuals corresponding to the observations for gene g. Obviously,
this procedure produces different size confidence intervals for every gene. Although there is a fair
amount of replication in this experiment, there are still only 12 residuals associated with each
gene. The results are extremely narrow confidence intervals for some genes. Figure 5 shows that
some very small estimated differences in expression appear significant. We found such strong
confidence unconvincing. With 1907 genes and only 12 residuals per gene, we expect some genes
will have small residuals by chance. This will lead to deceivingly high estimated precision for
the estimates.

The residual plot shows that larger error is associated with smaller intensities. Rather
than making the extreme assumption that each gene has its own error distribution, it seemed
reasonable to assume that the magnitude of the error is intensity-dependent. By pooling the
information about genes with similar average levels of expression, we get around the problem of
so few residuals per gene.

The procedure we adopted was to plot the standard-deviation of the 12 residuals per gene
against the estimated gene effect Ĝg. We then fit a loess curve through the plot. For each gene g
we estimated the standard deviation of the residual distribution associated with gene g, denoted
ŜDg, to be the value of the loess curve corresponding to Ĝg. Next, we re-scaled the studentized
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Gene-specific Homoscedastic Homoscedastic
0 + 0 + 0 +

Intensity- 0 897 277 1138 36 Gene- 0 902 35
dependent + 40 693 153 580 specific + 389 581

Table 5: Pairwise comparisons of the three bootstrapping method. Each 2×2 table is a cross-
tabulation comparing the number of genes found to be differentially expressed by the three
methods. A ‘+’ means the estimate of differential expression was found significant; ‘0’ means it
was not.

residuals by dividing each residual by the estimated standard deviation of the associated gene.
Let ê denote the rescaled residuals, so that êijkg = ε̂ijkg/ŜDg. Since the estimated εijkg are
divided by their estimated standard deviation, the êijkg should have approximately unit variance.

Third, we created B bootstrap datasets y∗ijkg = µ̂+ Âi + D̂j + (ÂD)ij + Ĝg + (V̂ G)kg + (ÂG)ig +

(D̂G)jg + ŜDg ∗ e∗ijkg., where e∗ijkg is drawn with replacement from the êijkg. This procedure
accounts for the intensity-dependent heteroscedasticity while using the full set of fitted residuals
to capture the uncertainty in the data.

Figure 6 shows this procedure requires genes with lower average expression to exhibit larger
differences in expression in order to be found to have significant evidence of differential expres-
sion. Table 5 compares the numbers of significant genes according to the nominal 99.9% con-
fidence intervals found by the three bootstrap variations. The intensity-dependent bootstrap
and the gene-specific bootstrap agree on 83% of genes and the former is more conservative,
finding fewer genes to be differentially expressed. This is consistent with our suspicion that
the gene-specific bootstrap is prone to error that leads to false-positives in finding differential
expression. On the other hand, the intensity-dependent bootstrap finds more genes to be differ-
entially expressed than the homoscedastic bootstrap; these two methods agree on 91% of genes.
The gene-specific bootstrap and the homoscedastic bootstrap are the most discrepant, agreeing
on only 78% of genes.

4 Discussion

This analysis illustrates some of the issues that arise with microarray data. As others have
noted (Yang et al., 2000), there are dye effects in microarray data that are not linear on the log
scale. A more elaborate transform than the log transform is required to put the data on a scale on
which the effects are additive. A simple additive shift in the data before taking logs removed the
systematic dye trends in the data. We preferred this adjustment to the loess transform because
it is a robust procedure with a simple interpretation — that there is an additive difference
between the dyes on the raw data scale. However, it would be naive to expect such a simple
adjustment to work for all datasets. We found it effective here and with other datasets, but
we consider it an open question to understand why these patterns reoccur and find the proper
scale for the analysis of microarray data. For both the loess and shift-log adjustments, there are
issues about the consequences for the final analysis of estimating a transformation from the data
rather than using a pre-determined one. In addition, both transforms eliminate straightforward
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interpretation of differences in variety×gene effects as log fold-changes.
After settling on a scale for the data and a model, we observed non-constant variance in the

residuals. To incorporate this into our statistical inference, we used a modified version of the
bootstrap. In light of the observed heteroscedasticity, a natural question is whether weighted
least-squares would be more appropriate than simple least-squares for fitting the model in the
first place. Since the observed heteroscedasticity was modest, incorporating weighted least-
squares would complicate the model estimation without much effect on the results. Furthermore,
there is error in estimating the weights for weighted-least-squares that could discount any gain
in estimation efficiency. For these reasons we decided to keep things simple and use ordinary
least-squares.

To handle heteroscedasticity, we assumed that residual variance is a function of the intensity
of the overall gene effect Gg. It may be the case that all genes of similar intensity are not
alike and the general assumption of gene-specific error distributions Fg is closer to reality. In
larger experiments involving more arrays and greater replication there may be sufficient data
to investigate this question. In this experiment, with only twelve residuals per gene, we could
not estimate a gene-dependent error distribution Fg with satisfactory precision. We found the
intensity-dependent variance assumption to be a workable middle-ground.

It is instructive to consider what was achieved by the replication included in this experimen-
tal design. First, if the experiment had been done with only a single array, then the effects of
interest, V G, would have been completely confounded with DG effects. The gene-specific dye
effects would bias any estimates of relative expression based on a single slide. Suppose instead
that a single dye-swap experiment had been done using two arrays. In this case V G and DG
effects would be orthogonal so unbiased estimates of V G effects could be obtained. One the
other hand, Model (2) would be completely saturated, leaving 0 degrees of freedom to estimate
error and evaluate the results. In order to obtain non-zero residuals one would be forced to
assume that some effects were error. To illustrate this, we randomly chose one of the nine
dye-swap experiments contained within this experiment. The sub-experiment chosen by chance
contains arrays 3 and 4. Assigning DG effects to be error, the residual mean square is 0.0145,
2.8 times larger than in the full triple dye-swap experiment. This translates into less power
to detect genes with small differences in expression between the varieties. Because larger DG
effects are associated with lower overall gene expression, the heteroscedasticity observed in this
sub-experiment is more pronounced (Figure 7). It is clearly desirable to employ an experimental
plan with sufficient replication to be able to account for these systematic sources of variation
and to reduce error variance.

We comment that the parameter estimates and residuals from this analysis have distributions
that are notably heavier-tailed than normal (Figure 8(a)). A striking exception is the spot effects,
whose distribution is extremely close to normal (Figure 8(b)). These effects are an obvious
candidate to consider as random instead of fixed because they can been viewed as the result of
the randomness associated with the robot that prints the spots on the arrays. Indeed, Wolfinger
et al. (2000) use an ANOVA approach similar to ours but consider spot effects to be random
with an underlying normal distribution. We agree that random effects are more appropriate,
but are uncertain of proceeding with standard methods because of the non-normality in the
residuals. This is an area of continuing research.

Finally, this paper and others have stressed the importance of replication with microarray
studies (Lee et al., 2000; Kerr and Churchill, 2000; Kerr and Churchill, 2001). The “replication”
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in this study is multiple measurements of the same RNA samples. This kind of replication allows
one to reduce the uncertainty introduced by experimental noise for more precise knowledge about
the samples studied. In our study, inference extends to the two cell cultures that produced the
RNA samples. This study does not include replication in the classical sense, which involves
sampling multiple individuals from a population. Sampling multiple individuals allows one to
make inferences about their populations. Callow et al. (2000) conducted a microarray experiment
with this kind of replication. In that study, investigators used eight animals from each of three
strains of mice to infer expression differences among the strains. A more accurate term for the
replication we discussed in this paper might be “subsampling” (Snedecor and Cochran, 1989, p.
247). Terminology is certainly not the primary concern, but it is unfortunate the language does
not readily differentiate between these two types of studies. Careful consideration of the goals
of a microarray experiment will help determine what level of “replication” is required to make
desired inferences.

We hope the analysis described here will serve as a guide for analyzing microarray data
and for computing unbiased estimates of relative gene expression with confidence bounds. We
have presented practical solutions to some of the complications that regularly arise with this
data. We do not claim to have found the most theoretically optimal solutions to these problems.
Rather, we have chosen methods that are theoretically reasonable but also realistic for routine
implementation by conscientious data analysts.

The data discussed here and MATLAB scripts for ANOVA on multiple flip-dye microarray
experiments are available at http://www.jax.org/research/churchill.
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Figure Captions

Figure 1. (a) Residual plot for the data analyzed on the log scale using Model (2). (b)
The residuals for array 3 show systematic trends that are not visible in the plot of all residuals.
The two broad, intersecting bands correspond to the two dyes.

Figure 2. Difference vs. mean (R vs. I) plots for (a) the unadjusted log data, (b) the
loess-transformed data, and (c) the shift-log data, all representing array 1.

Figure 3. Residual plots for the loess-adjusted data analyzed with Model (2) show the
loess adjustments remove systematic trends (compare to Figure 1(b)).

Figure 4. A plot of DG effects vs. G effects show that most, but not all, genes exhibiting
the largest dye interactions have lower overall levels of expression.

Figure 5. Differentially expressed genes according to 99.9% confidence intervals computed
by assuming gene-specific error distributions. Genes whose 99.9% bootstrap confidence interval
does not contain 0 are plotted with an asterisk. Horizontal lines show the cut-off obtained with
the homoscedastic bootstrap. Some genes with extremely small estimated relative expression
are found differentially expressed with this bootstrap procedure.

Figure 6. Differentially expressed genes according to 99.9% confidence intervals computed
by assuming intensity-dependent error distributions. Genes whose 99.9% bootstrap confidence
interval does not contain 0 are plotted with an asterisk. Horizontal lines show the cut-off
obtained with the homoscedastic bootstrap. Gene with lower overall levels of expression require
a greater estimate of relative expression in order to be found significant.
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Figure 7. Residual plot for the sub-experiment containing only arrays 3 and 4. In order
to have residual degrees of freedom, DG effects were assigned to error. Heteroscedasticity is
somewhat more pronounced because the model does not account for DG effects, which are larger
at low levels of expression.

Figure 8. Normal probability plots for residuals and spot effects corresponding to Model
(2) and the shift-log data. The residuals are much heavier-tailed than normal, while the spot
effects are very close to normal.
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