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Abstract

We introduce a general technique for making statistical inference from gene expres-

sion microarray data. The approach utilizes an analysis of variance model to achieve

normalization and estimate differential expression of genes across multiple conditions.

Statistical inference is based on two applications of a randomization technique, boot-

strapping. Bootstrapping is used to obtain confidence intervals for differential expres-

sion estimates from individual genes, and then to assess the stability of results from a

cluster analysis. We illustrate the technique with a publicly available data set and draw

conclusions about reliability of clustering results in light of variation in the data. The

bootstrapping procedure relies on experimental replication. We discuss the implications

of replication and good design in microarray experiments.
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Microarray technology [1] is a revolutionary high-throughput tool for the study of

gene expression. The ability to simultaneously study thousands of genes under a multi-

tude of conditions is an exciting advancement. It is also a huge challenge to comprehend

and interpret the resulting mass of data. Early research with cDNA microarrays that

demonstrated the promise of the technology has also influenced the direction of research

to answer this challenge [2, 3]. Specifically, a variety of clustering techniques have been

developed and applied to identify groups of genes with similar patterns of expression

[3, 4, 5, 6]. A great deal of effort has gone into identifying the best clustering techniques

for microarray data. However, there is a second question at least as important that has

received less attention. Namely, how does one make statistical inference based on the

results of clustering? The input into any clustering technique is a set of estimates of

relative gene expression from a microarray experiment. In current practice, these esti-

mates are taken to be precisely known quantities, ignoring the fact that every estimate

has a margin of error. Consider two genes that cluster together. Are the patterns of

expression for these genes sufficiently similar beyond any reasonable doubts raised by

the noise in the data, or could these genes have clustered together by chance? Here, we

propose a bootstrap method to assess the reliability of clustering results in a statisti-

cally quantifiable manner [7]. We illustrate our approach with the clustering technique

used by Chu et al. [2], but bootstrapping can be applied to any clustering technique.

Details of the Chu et al. [2, 8] experiment are summarized briefly here. Spotted

cDNA microarrays containing 97% of the known genes of Saccharomyces cerevisiae

(yeast) were used to study gene expression during meiosis and spore formation. Yeast

cells were transferred to a nitrogen-deficient medium to induce sporulation and mRNA
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samples were taken at seven timepoints: 0, 30 minutes, and 2, 5, 7, 9 and 12 hours. For

each of the seven timepoints, the scientists prepared a “red”-labeled cDNA pool. In

addition, they prepared a “green”-labeled cDNA pool from the time 0 sample. Seven

microarrays were used in the study, one for each of the seven timepoints. Each array

was probed with the green-labeled sample mixed with one of the seven red-labeled

samples. In effect, time 0 serves as a reference for all of the samples. This experimental

setup has some peculiar consequences for analysis we will discuss later.

For any particular spot representing a particular gene there are four readings: green

signal, green background, red signal, red background. As their estimate of relative

expression of a gene at time k compared to time 0, Chu et al. use the background-

corrected ratio (red signal − red background)/(green signal − green background) from

the array containing red-labeled cDNA from time k and green-labeled cDNA from time

0. There is variability in spot size and the concentration of DNA in each spot, and

further variation in the hybridization efficiency of each probe. Thus the meaningful

interpretations of microarray data are in terms of relative comparisons, e.g. the relative

expression of gene g at timepoint A compared to timepoint B.

Chu et al. are particularly interested in genes induced (as opposed to repressed)

during sporulation. The authors identify seven temporal patterns or “profiles” of in-

duced transcription of special interest. Their clustering method matches genes to these

profiles based on the 7-vector of log ratios. First, they create a model profile based

on the average pattern of expression for a hand-picked set of 3 to 8 genes per profile.

Second, they filter out about 80% of the genes that do not increase relative to time

0. Third, they calculate correlation coefficients for each induced gene with each of the
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seven model profiles and match each gene to the profile with which it has highest cor-

relation. Of about 1000 genes that pass their filter, about 450 are assigned to one of

the seven profiles.

We modify the Chu et al. clustering methodology to incorporate two fundamental

changes. The first is the use of ANOVA (analysis of variance) estimates of the relative

expression between samples. The second is to evaluate the reliability of clustering

results by bootstrapping.

We base our estimates of relative expression on fitting a linear model designed to

capture the multiple sources of variation in microarray data [9]. For the sporulation

data, genes and timepoints are not the only sources of variation. There are also 7

arrays, each containing over 6000 spots, and two dyes. Systematic differences occur

across arrays, spots, and dyes that need to be taken into account. Our general approach

is to correct for these sources of variation in a systematic manner via a statistical model

rather than using a “pre-processing” approach to normalization. Let yijkg be the natural

logarithm of the background-corrected measurement from array i for dye j and gene g

representing time k. Consider the model

yijkg = µ+Ai +Dj + Tk +Gg + (AG)ig + (TG)kg + εijkg, (1)

where i = 1, . . . , 7; j = 1, 2; k = 1, . . . , 7; and g = 1, . . . , 6118. The Ai terms in

this model account for “array effects” — overall variation in fluorescent signal from

array to array. Such variation arises if, for example, hybridization conditions vary from

array to array leading to some arrays having greater overall signal. The Dj terms

account for overall differences between the dyes and the Tk terms are timepoint effects

that capture differences in the overall concentration of mRNA in the samples from the
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Source SS df MS

Array,Dye,Timepoint 6896.24 13 530.48

Gene 48329.71 6117 7.90

TG,AG 22907.16 73404 0.31

Residual 89.18 6117 0.0146

Adjusted Total 78222.28 85651

Table 1: Analysis of variance for sporulation data. SS=Sum of Squares; df=degrees of

freedom; MS=mean square

different timepoints [10]. The gene effects Gg capture the average levels of expression for

genes across the arrays, dyes, and timepoints. The array-by-gene interactions (AG)ig

represent the signal contribution due to the combination of array i and gene g. In

effect, the AG terms are the “spot” effects, capturing differences due to varying sizes

and concentrations of spots on arrays. None of the main effects or the spot effects are

of particular interest, but amount to a normalization of the data for ancillary sources

of variation. The effects of interest are the interactions between genes and timepoints,

(TG)kg. These terms capture differences from overall averages that are attributable

to the specific combination of a timepoint k and gene g. These timepoint-by-gene

interactions play the role of ratios in our framework. Table 1 gives the analysis of

variance [11, 12].

Instead of using ratios to estimate differential expression we estimate the relative

difference in gene expression for gene g at time k compared to time 0 with (T̂G)kg −
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(T̂G)0g (a ̂ over an effect means the least-squares estimate). In addition, we use

bootstrapping [13] to construct 99% confidence intervals for these estimates [9]. We

chose the bootstrap to construct confidence intervals to avoid making distributional

assumptions about the random error. In detail, we produced a set of simulated datasets

y∗ijkg, where

y∗ijkg = µ̂+ Âi + D̂j + V̂k + Ĝg + ̂(AG)ig + ̂(V G)kg + ε∗ijkg.

The ε∗ijkg are drawn independently from the studentized residuals [14] from the original

fit of the model [15]. For each simulated data set, we refit the model (1), so for 10,000

bootstrap data sets we obtained 10,000 bootstrap estimates (T̂G)kg − (T̂G)0g. We

take the limits of the middle 99% of these estimates as a 99% confidence region for

(TG)kg − (TG)0g. Figure 1 shows estimated profiles for select genes.

With these estimates and accompanying confidence intervals, we proceed with a

modified version of the Chu et al. clustering method. We created model profiles based

on the same representative genes identified by Chu et al. (Figure 2) [16]. As our filter, we

exclude any gene that does not satisfy the following criteria: for at least one timepoint

k not zero, (T̂G)kg − (T̂G)0g > 0 and the 99% confidence interval for (TG)kg − (TG)0g

does not contain 0. Thus we attempt to mimic the filter used by Chu et al. but with a

statistically based criterion. Our filter is not as stringent as that in [2] and passes almost

twice as many genes, close to 2000. For each gene g passing our filter we calculate the

correlation coefficient rgp for that gene and the p = 1, . . . , 7 profiles. Gene g is assigned

to profile p if rgp > 0.9 and rgp is larger than rgq for the remaining 6 profiles q. From

columns (a) and (b) in Table 2, we see that the number of genes clustering to each

profile is somewhat larger here than for Chu et al., except for profile 2 (Early I). We
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Clustering Method

(a) Chu et al. (b) Nominal (c) 95% Stable (d) 80% Stable

Profile 1 52 65 3 8

Profile 2 61 51 7 11

Profile 3 45 74 3 11

Profile 4 95 151 12 27

Profile 5 158 241 86 120

Profile 6 61 145 17 36

Profile 7 5 15 2 6

Table 2: Number of genes matching to each profile for (a) Chu et al. clustering method,

(b) modified clustering method with no reliability measure, (c) modified clustering method

requiring 95% stability, (d) modified clustering method requiring 80% stability. Column (d)

is included because our choice of 95% for stability is somewhat arbitrary.

suppose the difference is due to the greater number of genes passing our filter.

The next step is to assess the reliability of the clusters. We do this with a second

application of the bootstrap. We create 499 bootstrap data sets y∗ijkg, as described

above. For each simulated data set, we construct a bootstrap temporal pattern based

on the estimates (T̂G)∗kg− (T̂G)∗0g for each gene, and repeat the filtering and clustering

steps with these bootstrap estimates. The result is 500 clusterings, 1 based on the

actual data and 499 bootstrap simulated clusterings. The match of a gene to a profile

is declared “significant” if it occurs in the analysis of the actual data and in at least 95%
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of the bootstrap clusterings. Column (c) of Table 2 shows the much smaller numbers

of genes that prove to be reliable matches to the clusters at the 95% level. We refer

to these as stable genes. Figure 3 plots the profiles of these genes. For the most part,

the stable genes are a subset of the Chu et al. genes [17]. The greatest difference in

the clustering methodologies is the exclusion of genes that do not prove to be reliable

matches.

This method of clustering is based on correlations. When profiles are themselves

highly correlated, one can expect that genes with high correlation to one profile will also

have high correlation to the other. Table 3 gives the correlations between the seven

model profiles. We see that profiles 4 and 5 have correlation 0.95. This leads us to

suspect that in the bootstrap, if the magnitude of error is large enough some genes will

sometimes match to profile 4 and sometimes to profile 5 and thus, in the end, fail to be

a reliable match to either. Figure 4 shows this to be the case. Consider the genes that

initially match to profile 4. Figure 4(a) shows the percentage of bootstraps in which

these genes match to profile 5. All genes to the right of the dotted line fail to match

to profile 4 at the 95% confidence level simply because of the presence of profiles 5.

The story is similar for genes initially matching to profile 5, as seen in Figure 4(b).

Given the level of noise in the data, these two profiles are too similar to be readily

distinguished.

The importance of replication in microarray experiments has been noted in several

recent publications [9, 18, 19]. Replication is a fundamental principle of good exper-

imental design and serves two purposes. First, replication increases the precision of

estimated quantities. Second, and perhaps most important, it provides information
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Profile

2 3 4 5 6 7

1 .65 .19 .03 -.14 -.39 -.41

2 .73 .77 .60 .40 .11

3 .84 .78 .46 .01

4 .95 .84 .44

5 .83 .36

6 .75

Table 3: Pairwise correlations among the seven profiles.

about the uncertainty of estimates [20]. Only with an appropriately designed exper-

iment that includes replication can statistically valid conclusions be drawn. In the

yeast sporulation experiment that is re-analyzed here, a kind of replication is achieved

by making a self-comparison of the time 0 sample. Although this is adequate for ob-

taining a variance estimate and providing residuals for bootstrap analysis, it is not

an ideal situation. All of the non-zero residuals from the ANOVA analysis come from

the self-comparison array — all other data points are fit exactly because they are not

replicated. If the self-comparison array is not typical of the experiment as a whole, one

can be misled in imputing the same level of variation to the other arrays.

Although perhaps counterintuitive, it is possible to replicate all samples without

using additional arrays. For example, samples could be arranged in a loop as shown in

Figure 5, so that samples from each timepoint appear on two arrays. Fitting model (1)

with this design, residuals are obtained from every array. In addition to the built-in
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replication, the timepoint (T ) factor is balanced with respect to the dye (D) factor. This

balance has certain advantages for the data analysis [19], although there is additional

cost associated with the number of labeling reactions required. With the loop design,

estimates of (TG)k+1,g− (TG)kg for adjacent timepoint have variance 85.7% as large as

estimates of (TG)kg − (TG)0g with the design used by Chu et al. [21]. This increased

precision, balance among design factors, and the fact that residuals are obtained from

every array make this design one alternative worthy of consideration.

In scientific experimentation, results depend on experimental designs that yield

precise estimates of quantities of interest as well as estimates of the precision achieved.

Furthermore, the design should allow for the assumptions of analysis to be verified.

Microarray experiments are no exception. It is certainly an interesting exercise to run

a clustering algorithm on gene expression data. However, without an assessment of the

reliability of the clusters one cannot make valid inferences about co-regulated genes.

Whatever clustering algorithm is chosen, it is imperative to assess whether the results

are statistically reliable relative to the level of noise in the data. Bootstrapping is a

straightforward way to do this.
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Figure 1. Temporal profiles for select genes. The solid line gives the temporal pro-

file estimated using model (1). Around each line are error bars according to bootstrap-

estimated 99% confidence intervals. For comparison, the dotted line gives the temporal

profile estimated with ratios, re-scaled to have the same standard deviation as the solid

line.

Figure 2. The seven model profiles used for clustering. The profiles are re-scaled

to have standard deviation 1. This adjustment does not affect the clustering results

because clustering is based on correlations.

Figure 3. Stable genes for the seven model profiles based on 500 bootstrap clus-

terings. The plotted profiles have been re-scaled to have standard deviation 1.

Figure 4. Bootstrap behavior of genes with nominal match to profile 4 or 5.

Genes with high correlation to profile 4 tend to have high correlation with profile 5 and

vice versa. There were 151 genes that initially match to profile 4. In 500 bootstrap

clusterings, each gene matched to profile 5 in some percentage of the clusterings. Figure

(a) shows the distribution of those percentages for the 151 genes. Figure (b) shows the

percentages of bootstraps in which genes that initially matched to profile 5 matched to

profile 4. The histograms show that many genes fail to be stable matches to profile 4

because of the presence of profile 5, and vice versa.

Figure 5. An alternative experimental design for the sporulation experiment. Here

the experimental layout is represented as a directed graph. The boxes represent the

mRNA samples and the arrows represent microarrays. The tail of an arrow is, say,

the “red” dye and the head of an arrow is the “green” dye. Thus the arrow from the

time 0 sample to the half-hour sample means to probe an array with red-labeled time
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0 mRNA and green-labeled mRNA from the half-hour sample. Such a design may not

be possible if too little mRNA is available from some samples for two arrays. On the

other hand, such a design has advantages over the plan used by Chu et al. in balance,

precision of estimates, and distribution of residuals.

15



0

2

ACS1

0

2

SPS100

0.5 2 5 7 9 12

0

2

SPS2

   
   

   
   

   
   

   
   

   
E

st
im

at
ed

 V
G

kg
 −

 V
G

0g

0.5 2 5 7 9 12

0

2

YPL280W

   Figure 1 



0     2  5  7  9  12 
0

1

2

3

1.Metabolic

2.Early I

3.Early II

4.Early−Mid

0     2  5  7  9  12 

0

1

2

6.Mid−Late

5.Middle

7.Late

     Figure 2 



0     2  5  7  9  12 

0

Profile #1,3 95% Stable Genes

0     2  5  7  9  12 
0

Profile #2,7 95% Stable Genes

0     2  5  7  9  12 

0

Profile #3,3 95% Stable Genes

0     2  5  7  9  12 
0

Profile #4,12 95% Stable Genes

0     2  5  7  9  12 

0

Profile #5,86 95% Stable Genes

0     2  5  7  9  12 

0

Profile #6,17 95% Stable Genes

0     2  5  7  9  12 

0

Profile #7,2 95% Stable Genes

Figure 3 



0 0.1 0.2 0.3 0.4 0.5
0

5

10

15

20

25

30

35

Genes with nominal match to Profile 4 −− 
Percent of bootstrap matches to Profile 5

(a)

0 0.1 0.2 0.3 0.4 0.5
0

50

100

150

Genes with nominal match to Profile 5 −− 
Percent of bootstrap matches to Profile 4

(b)

Figure 4 



Figure 5

Time 0

1/2 hour

2 hours

5 hours7 hours

9 hours

12 hours


