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Univariate Distribution Relationships

Lawrence M. LEEMIS and Jacquelyn T. MCQUESTON

Probability distributions are traditionally treated separately in
introductory mathematical statistics textbooks. A figure is pre-
sented here that shows properties that individual distributions
possess and many of the relationships between these distribu-
tions.
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1. INTRODUCTION

Introductory probability and statistics textbooks typically in-
troduce common univariate distributions individually, and sel-
dom report all of the relationships between these distributions.
This article contains an update of a figure presented by Leemis
(1986) that shows the properties of and relationships between
several common univariate distributions. More detail concern-
ing these distributions is given by Johnson, Kotz, and Balakrish-
nan (1994, 1995) and Johnson, Kemp, and Kotz (2005). More
concise treatments are given by Balakrishnan and Nevzorov
(2003), Evans, Hastings, and Peacock (2000), Ord (1972), Pa-
tel, Kapadia, and Owen (1976), Patil, Boswell, Joshi, and Rat-
naparkhi (1985), Patil, Boswell, and Ratnaparkhi (1985), and
Shapiro and Gross (1981). Figures similar to the one presented
here have appeared in Casella and Berger (2002), Marshall and
Olkin (1985), Nakagawa and Yoda (1977), Song (2005), and
Taha (1982).

Figure 1 contains 76 univariate probability distributions.
There are 19 discrete and 57 continuous models. Discrete distri-
butions are displayed in rectangular boxes; continuous distribu-
tions are displayed in rounded boxes. The discrete distributions
are at the top of the figure, with the exception of the Benford
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distribution. A distribution is described by two lines of text in
each box. The first line gives the name of the distribution and its
parameters. The second line contains the properties (described
in the next section) that the distribution assumes.

The parameterizations for the distributions are given in the
Appendix. If the distribution is known by several names (e.g.,
the normal distribution is often called the Gaussian distribu-
tion), this is indicated in the Appendix following the name of
the distribution. The parameters typically satisfy the following
conditions:

e 1, with or without subscripts, is a positive integer;
e p is a parameter satisfying 0 < p < 1;

e o and o, with or without subscripts, are positive scale pa-
rameters;

e [, y,and k are positive shape parameters;
e (i, a,and b are location parameters;
e / and J are positive parameters.

Exceptions to these rules, such as the rectangular parameter n,
are given in the Appendix after any aliases for the distribution.
Additionally, any parameters not described above are explic-
itly listed in the Appendix. Many of the distributions have sev-
eral mathematical forms, only one of which is presented here
(e.g., the extreme value and discrete Weibull distributions) for
the sake of brevity.

There are numerous distributions that have not been in-
cluded in the chart due to space limitations or that the dis-
tribution is not related to one of the distributions currently
on the chart. These include Bézier curves (Flanigan—Wagner
and Wilson 1993); the Burr distribution (Crowder et al. 1991,
p. 33 and Johnson, Kotz, and Balakrishnan 1994, pp. 15—
63); the generalized beta distribution (McDonald 1984); the
generalized exponential distribution (Gupta and Kundu 2007);
the generalized F' distribution (Prentice 1975); Johnson curves
(Johnson, Kotz, and Balakrishnan 1994, pp. 15-63); the kappa
distribution (Hosking 1994); the Kolmogorov—Smirnov one-
sample distribution (parameters estimated from data), the
Kolmogorov—Smirnov two-sample distribution (Boomsma and
Molenaar 1994); the generalized lambda distribution (Ramberg
and Schmeiser 1974); the Maxwell distribution (Balakrishnan
and Nevzorov 2003, p. 232); Pearson systems (Johnson, Kotz,
and Balakrishnan 1994, pp. 15-63); the generalized Waring dis-
tribution (Hogg, McKean, and Craig 2005, p. 195). Likewise,
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Devroye (2006) refers to Dickman’s, Kolmogorov—Smirnov,
Kummer’s, Linnik—Laha, theta, and de la Vallée—Poussin dis-
tributions in his chapter on variate generation.

2. DISTRIBUTION PROPERTIES

There are several properties that apply to individual distribu-
tions listed in Figure 1.

e The linear combination property (L) indicates that lin-

e The minimum property (M) indicates that the smallest of

independent and identically distributed random variables
from a distribution comes from the same distribution fam-

ily.
Example: If X; ~ exponential(a;) fori =1,2, ..., n, and
X1, X2, ..., X, are independent, then

n
min{ Xy, X, ..., X} ~ exponential(l/Z(l/ai)).
i=1

ear combinations of independent random variables having
this particular distribution come from the same distribution
family.

Example: If X; ~ N (uj,0?) fori = 1,2,...,n;
ai,asz, ..., da, are real constants, and X, Xp, ..., X, are
independent, then

The convolution property (C) indicates that sums of inde-
pendent random variables having this particular distribu-
tion come from the same distribution family.

Example: If X; ~ Xz(n,-) fori =1, 2, ..., n, and Xy,
X2, ..., X, are independent, then

i){i ~X2(in,-).

i=1 i=l1

The scaling property (S) implies that any positive real
constant times a random variable having this distribution
comes from the same distribution family.

Example: If X ~ Weibull(a, f) and k is a positive, real

constant, then

kX ~ Weibull(ak?, B).

The product property (P) indicates that products of inde-
pendent random variables having this particular distribu-
tion come from the same distribution family.

Example: If X; ~ lognormal(u;, aiz) fori =1,2,...,n,
and X1, X», ..., X, are independent, then

n n n
HXi ~ lognormal (Z Wiy Z al-z).
i=1 i=1 i=1

The inverse property (1) indicates that the reciprocal of a
random variable of this type comes from the same distri-
bution family.

Example: If X ~ F(n1, ny), then

1
— ~ F N .
X (n2,n1)
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e The maximum property (X) indicates that the largest of
independent and identically distributed random variables
from a distribution comes from the same distribution fam-

ily.
Example: If X; ~ standard power (f;) fori = 1,2,...,n,
and X1, X», ..., X, are independent, then

n
max{Xi, Xp, ..., X,} ~ standard power(z,b’i).

i=1

e The forgetfulness property (F), more commonly known as
the memoryless property, indicates that the conditional dis-
tribution of a random variable is identical to the uncondi-
tional distribution. The geometric and exponential distri-
butions are the only two distributions with this property.
This property is a special case of the residual property.

e The residual property (R) indicates that the conditional
distribution of a random variable left-truncated at a value
in its support belongs to the same distribution family as the
unconditional distribution.

Example: If X ~ Uniform(a, b), and £ is a real constant
satisfying a < k < b, then the conditional distribution of
X given X > k belongs to the uniform family.

e The variate generation property (V) indicates that the in-
verse cumulative distribution function of a continuous ran-
dom variable can be expressed in closed form. For a dis-
crete random variable, this property indicates that a variate
can be generated in an O(1) algorithm that does not cycle
through the support values or rely on a special property.

Example: If X ~ exponential(a), then

F_l(u)z—alog(l—u), 0<u<l.

Since property L implies properties C and S, the C and S
properties are not listed on a distribution having the L property.
Similarly, property F = property R.

Some of the properties apply only in restricted cases. The
minimum property applies to the Weibull distribution, for ex-
ample, only when the shape parameter is fixed. The Weibull
distribution has My on the second line in Figure 1 to indicate
that the property is valid only in this restricted case.
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Figure 1. Univariate distribution relationships.
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3. RELATIONSHIPS AMONG THE DISTRIBUTIONS

There are three types of lines used to connect the distribu-
tions to one another. The solid line is used for special cases and
transformations. Transformations typically have an X on their
label to distinguish them from special cases. The term “transfor-
mation” is used rather loosely here, to include the distribution of
an order statistic, truncating a random variable, or taking a mix-
ture of random variables. The dashed line is used for asymp-
totic relationships, which are typically in the limit as one or
more parameters approach the boundary of the parameter space.
The dotted line is used for Bayesian relationships (e.g., Beta—
binomial, Beta—Pascal, Gamma—normal, and Gamma—Poisson).
The binomial, chi-square, exponential, gamma, normal, and
U(0, 1) distributions emerge as hubs, highlighting their central-
ity in applied statistics. Summation limits run from i = 1 to .
The notation Xy denotes the »th order statistic drawn from a
random sample of size n.

There are certain special cases where distributions overlap
for just a single setting of their parameters. Examples include
(a) the exponential distribution with a mean of two and the chi-
square distribution with two degrees of freedom, (b) the chi-
square distribution with an even number of degrees of freedom
and the Erlang distribution with scale parameter two, and (c) the
Kolmogorov—Smirnov distribution (all parameters known case)
for a sample of size n = 1 and the U(1/2, 1) distribution. Each
of these cases is indicated by a double-headed arrow.

The probability integral transformation allows a line to
be drawn, in theory, between the standard uniform and all
others since F(X) ~ U(0, 1). Similarly, a line could be drawn
between the unit exponential distribution and all others since
H(X) ~ exponential(1), where H(x) = ffoo f@)/(1=F(¢))dt
is the cumulative hazard function.

All random variables that can be expressed as sums (e.g., the
Erlang as the sum of independent and identically distributed ex-
ponential random variables) converge asymptotically in a pa-
rameter to the normal distribution by the central limit theo-
rem. These distributions include the binomial, chi-square, Er-
lang, gamma, hypoexponential, and Pascal distributions. Fur-
thermore, all distributions have an asymptotic relationship with
the normal distribution (by the central limit theorem if sums of
random variables are considered).

Many of the transformations can be inverted, and this is indi-
cated on the chart by a double-headed arrow between two dis-
tributions. Consider the relationship between the normal distri-
bution and the standard normal distribution. If X ~ N(u, o?),
then X—;E ~ N(O, 1) as indicated on the chart. Conversely, if
X ~ N(0,1), then u + 0 X ~ N(u,o?). The first direction
of the transformation is useful for standardizing random vari-
ables to be used for table lookup, while the second direction
is useful for variate generation. In most cases, though, an in-
verse transformation is implicit and is not listed on the chart for
brevity (e.g., extreme value random variable as the logarithm of
a Weibull random variable and Weibull random variable as the
exponential of an extreme value random variable).

Several of these relationships hint at further distributions that
have not yet been developed. First, the extreme value and log
gamma distributions indicate that the logarithm of any survival
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distribution results in a distribution with support over the en-
tire real axis. Second, the inverted gamma distribution indicates
that the reciprocal of any survival distribution results in another
survival distribution. Third, switching the roles of F(x) and
F~1(u) for a random variable with support on (0, 1) results in
a complementary distribution (e.g., Jones 2002).

Additionally, the transformations in Figure 1 can be used to
give intuition to some random variate generation routines. The
Box—Muller algorithm, for example, converts a U(0, 1) to an
exponential to a chi-square to a standard normal to a normal
random variable.

Redundant arrows have typically not been drawn. An arrow
between the minimax distribution and the standard uniform dis-
tribution has not been drawn because of the two arrows connect-
ing the minimax distribution to the standard power distribution
and the standard power distribution to the standard uniform dis-
tribution. Likewise, although the exponential distribution is a
special case of the gamma distribution when the shape parame-
ter equals 1, this is not explicitly indicated because of the special
case involving the Erlang distribution.

In order to preserve a planar graph, several relationships are
not included, such as those that would not fit on the chart or
involved distributions that were too far apart. Examples include:

e A geometric random variable is the floor of an exponential
random variable.

e A rectangular random variable is the floor of a uniform
random variable.

e An exponential random variable is a special case of a
Makeham random variable with 6 = 0.

e A standard power random variable is a special case of a
beta random variable with § = 1.

e If X has the F' distribution with parameters n| and n,, then
m has the beta distribution (Hogg, McKean, and
Craig 2005, p. 189).

e The doubly noncentral F distribution with n1, n, degrees
of freedom and noncentrality parameters J, y is defined as
the distribution of

(X1 (5)) (sz)‘l
ni ny ’

where X7(J), X2(y) are noncentral chi-square random
variables with ny,ny degrees of freedom, respectively,
(Johnson, Kotz, and Balakrishnan 1995, p. 480).

e A normal and uniform random variable are special and lim-
iting cases of an error random variable (Evans, Hastings,
and Peacock 2000, p. 76).

e A binomial random variable is a special case of a power se-
ries random variable (Evans, Hastings, and Peacock 2000,
p. 166).

e The limit of a von Mises random variable is a normal ran-
dom variable as k — oo (Evans, Hastings, and Peacock
2000, p. 191).



e The half-normal, Rayleigh, and Maxwell-Boltzmann dis-
tributions are special cases of the chi distribution with
n = 1,2, and 3 degrees of freedom (Johnson, Balakrish-
nan, and Kotz 1994, p. 417).

e A function of the ratio of two independent generalized
gamma random variables has the beta distribution (Stacy
1962).

Additionally, there are transformations where two distribu-
tions are combined to obtain a third, which were also omitted to
maintain a planar graph. Two such examples are:

e The ¢ distribution with n degrees of freedom is defined as

the distribution of P

Vi’

where Z is a standard normal random variable and y?(n)
is a chi-square random variable with » degrees of freedom,
independent of Z (Evans, Hastings, and Peacock 2000, p.
180).

e The noncentral beta distribution with noncentrality param-
eter ¢ is defined as the distribution of

X
X+Y

where X is a noncentral chi-square random variable with
parameters (f,0) and Y is a central chi-square random
variable with y degrees of freedom (Evans, Hastings, and
Peacock 2000, p. 42).

References for distributions not typically covered in introduc-
tory probability and statistics textbooks include:

e arctan distribution: Glen and Leemis (1997)

e Benford distribution: Benford (1938)

e exponential power distribution: Smith and Bain (1975)

e extreme value distribution: de Haan and Ferreira (2006)

e generalized gamma distribution: Stacy (1962)

e generalized Pareto distribution: Davis and Feldstein (1979)
e Gompertz distribution: Jordan (1967)

e hyperexponential and hypoexponential distributions: Ross
(2007)

e IDB distribution: Hjorth (1980)

e inverse Gaussian distribution: Chhikara and Folks (1989),
Seshadri (1993)

e inverted gamma distribution: Casella and Berger (2002)
e logarithm distribution: Johnson, Kemp, and Kotz (2005)
e logistic—exponential distribution: Lan and Leemis (2007)

e Makeham distribution: Jordan (1967)

Muth’s distribution: Muth (1977)

negative hypergeometric distribution: Balakrishnan and
Nevzorov (2003), Miller and Fridell (2007)

power distribution: Balakrishnan and Nevzorov (2003)

e TSP distribution: Kotz and van Dorp (2004)

Zipf distribution: Ross (2006).

A. APPENDIX: PARAMETERIZATIONS

A.1 Discrete Distributions

Benford:

1
f(X)=10g10(1+—), x=1,2,...,9
X

Bernoulli:

fy=pad-p'*, x=0,1

Beta—binomial:

Fr'x+a)l(n—x+b)T(a+b)I'(n+2)
m+DT@+b+mT(@IB)T(x+DHI'(r—x+1)

Jx) = ,

x=0,1,...,n

Beta—Pascal (factorial):

_(n—1+x\B(n+a,b+x) .
f(x)—( . )—B(a’b) ,  x=0,1,...

Binomial:
n
o= (")pra-pr r=o
X

Discrete uniform:

1
= — = 1,...,b
SO =g x=aatl,
Discrete Weibull:
@ =0=-p =1 =p& =01,
Gamma-—Poisson:
I'(x + pa*
= , =0,1,...
f(x) T T P al x
Geometric:
f@)=p(1 - p), x=0,1,...
Hypergeometric:
ni\ (n3 —n n3
o= ()20 /G
X ny —Xx no
x = max(0,n| +ny —n3), ..., min(ny, ny)

The American Statistician, February 2008, Vol. 62, No. 1 49



Logarithm (logarithmic series, 0 < ¢ < 1):

- -0
- xloge

S(x) , x=1,2,...

Negative hypergeometric:

ni+x—1\(ny—ny+n—x—1
o= ()T
ny+ny—1
ny ’
x = max(0,n) +ny —n3),...,n

Pascal (negative binomial):

-1
f(x):(n x+x)p”(1—p)x, x=0,1,...

Poisson (u > 0):

fo =0 vz
x!
Polya:
n x—1 n—x—1 n—1
fx) = (x) [Te+p ] a —p+kﬁ)/H(1 +ip),
Jj=0 k=0 i=0
x=0,1,...,n

Power series (¢ > 0; A(c) = > axc®):

axc*

fx)= , x=0,1,...
@)
Rectangular (discrete uniform, n =0, 1,...):
fo)=—— x=0,1
X =TT x=0,1,...,n
Zeta: 1
= =1,2,...
S(x) S (10"
Zipf (a > 0):
S ) 1 1,2
X)= —F—7—7/]7 X = ... n
xa zln:](l/z)“’ 5~ )
A.2 Continuous Distributions
Arcsin: 1
=— 0 1
fx) T <x <
Arctangent (—o0 < ¢ < 00):
A
fx) = , x>0
|:arctan(/1¢) + %:| |:1 +A%(x — ¢)2:|
Beta:
IF'(g+y) -1 -1
(x =[— A =x)7", 0<x <1
TO=rgra) )
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Cauchy (Lorentz, Breit-Wigner, —0o < a < 00):

1

S(x)= ax[l+ (o —a)/a)]’ —00 <X <00
Chi: | X
fx) = mxn_le_x 2 x>0
Chi-square:
f(x) n2=1e=x2 x50

= 22T (n)2)
Doubly noncentral F':

) J k
) ][ ()

T k!

S =>>

=0 k=0

M1V 2/ D 1201

x(n2+n1x) ;(1 2=/
B —1 + 7 —1 +k 1 0
X n ) ) X >
2 1+J 2

Doubly noncentral ¢:

See Johnson, Kotz, and Balakrishnan (1995, p. 533)

Erlang:

1
f) = e

a(n —1)! x>0

Error (exponential power, general error; —co < a < 00,b >
0,c > 0):

_ exp[—(lx —al/)¥</2]
SO = (o)

-0 <X <0

Exponential (negative exponential):

f&) = (1 /a)e™/",

x>0

Exponential power:

fx) = (el_em e dex*1, x>0

Extreme value (Gumbel):

&) = (Blaye?=<" 12,

—0 <X <X

F (variance ratio, Fisher—Snedecor):

L((n1 + n2)/2)(n1 /ny)"/2xm/2=1

T (1 /2)T (12/2)[(n1 /ma)x + 1m0/ > 7 0

fx) =

f=lo=x/a x>0

fx) =

aPT ()



Gamma-normal: Log logistic:

See Evans, Hastings, and Peacock (2000, p. 103) A (Ax)e]

fx) = T+ G P

Log normal (—oo < a < 00):

x>0
Generalized gamma:

-V Bl —G/e)
fx) = aVﬂF(ﬂ)x e , x>0 | X
f(x) = —=—exp [——(log(X/a)/ﬁ) } x>0
Generalized Pareto: V2m px 2
x Logistic:
fx) = (y +—) (1+4+x/0)"% e, x>0
x+0 1) Afre’
X)= —, —00 <X < 00
Gompertz (x > 1): [1+ (Ze¥)<]?

fx) = Syt =06 =1) flogr] < Logistic—exponential:

aﬂ(eax _ l)ﬁ—leax

Hyperbolic-secant: fx) = I+ @ =1 x>0
f(x) = sech(zx), —0 <X <X Lomax: ,
K
Hyperexponential (p; > 0, >/, pi = 1): S&x) = —(1 )T x>0
no Makeham (x > 1):
f(x):Z&e_x/“[, x>0 o
N a; . _yx_a(x —1)
i=1 fx)=(@ +oxb)e Togre | x>0
Hypoexponential (a; # a; fori # j): Minimax:
- - - f@) = pyxPta—xPyr=1, 0<x <1
= Wape ™ | ] —2—). x>0
i=1 el T4 Muth:
IDB (y > 0): SE) = (@ =)l # L s
1 ) Noncentral beta:
f = G R s |
(1 + xx) o) ir(i+ﬁ+y) 2\ (6
x) = =
Inverse Gaussian (Wald; u > 0): — ro)ra+p i! 2
S(x) = —A e_ﬁ(x_”)z x>0 xx! TP 11 —x)~ 1, 0<x<1
2mx3 ’
Noncentral chi-square:
Inverted beta (f > 1,y > 1):
X exp(=2)()  exp(=%)x"F !
Sx)= N+ 0 x>0 Sy = Z : kzl)(2) ' p"(+2k2) 2%y x>0
- BBy =0 - 27T ()
Inverted gamma: Noncentral F:

2 2i+ny)/2 . _ s i
1) = [/ T@p ", x>0 fragtnz ) (71) x@nD/2,7002 (4)

o I
2
f=>" ( -
. n 1n . n
Kolmogorov—Smirnov: =0 rF)r ( ) 1)’! (1 +inp
x>0

)(2i+n1+n2)/2 ’

See Drew, Glen, and Leemis (2000)

. Noncentral £ (—o0 < d < o0):
Laplace (double exponential):

n"/% exp(—6%/2)

x/a) (x) =
fx) = [ 8%21 igi;gi_m’z i j 8 S&) JaT(n/2)(n + x2)(n+D/2 |
L : Xir[(n—l—i—l—l)ﬂ] xov2 Y
0g gamma: < A el
f@) =[1/aPT(B)lefe™/*, —o0 <x <0 —00 < X < 00
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Normal (Gaussian):

1 1
1) = exp| =3 (= pja | =00 <x <o
Pareto: 4
K

S(x)= prasg x> A

Power:
p—1
f(x):ﬁxﬂ , 0<x<a
o
Rayleigh:
fx) = (2x/a)e_x2/“, x>0
Standard Cauchy:
1
f(x):—n(1+x2)’ —00 <X <00
Standard normal:
e—x2/2
x) = R —00 <X <0
Standard power:
fx)y=px""1,  0<x<1

Standard triangular:

_fx+1, -1 <x<0

SO=1_ 0<x<1

Standard uniform:

fx)y=1, 0<x<l1

t (Student’s 7):
1) = [((n+1)/2)
*) = (nm)12T(n/2)[x2/n + 1](n+D/2°

Triangular (@ < m < b):

-0 <X <0

Gt E,
fo =100 o
b-—ayb—m’ =TT

TSP (two-sided power):

n x—a\"!
, a<x<m
b—a\m—a

n h—x\"""
b—a\b—m ’ msx<b

Uniform (continuous rectangular; —co < a < b < oo):

fx) =

fx)y=1/(b—-a), a<x<b
von Mises (0 < p < 2x):
ok cos(x—41)

f(x)=27r1—0(1c)’ 0<x <2r
Wald (Standard Wald):

) = \/;e-zi(x-”z, x>0
Weibull:

flx) = w/a)xﬁ_lexp [—(l/a)xﬂ], x>0
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A.3 Functions

Gamma function:
o
I'(c) = / e xldx
0

Beta function:
1
B(a, b) :/ x4 N1 = x)b T ax
0

Modified Bessel function of the first kind of order O:

0 2i

K
Iy = 212

i=0

[Received October 2007. Revised December 2007.]
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