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Abstract

[PRELIMINARY DRAFT: This draft of the catalog is incomplete, with much remaining
to be filled in and/or added. We are circulating this crude draft in the hopes that readers
will know of relevant information that should be added. ]

A variety of methods of deriving noninformative priors have been developed, and applied
to a wide variety of statistical models. In this paper we provide a catalog of many of the
resulting priors, and list known properties of the priors. Emphasis is given to reference priors
and the Jeffreys prior, although other approaches are also considered.

Key words and phrases. Jeffreys prior, reference prior, maximal data informa-

tion prior.

1 Introduction

1.1 Motivation

The literature on noninformative priors has grown enormously over recent years. There
have been several excellent books or review articles that have been concerned with discussing or
comparing different approaches to developing noninformative priors (e.g., Kass and Wasserman,
1993), but there has been no systematic effort to catalog the noninformative priors that have
been developed. Since use of noninformative priors is becoming routine in Bayesian practice,

preparation of such a catalog seemed in order.
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Although general discussion is not the purpose of this catalog, it is useful to review the
numerous reasons that noninformative priors are important to Bayesian analysis:

(i) Frequently, elicitation of subjective prior distributions is impossible, because of time or
cost limitations, or resistance or lack of training of clients. Automatic or default prior distribu-
tions are then needed.

(ii) The statistical analysis is often required to appear objective. Of course, true objectivity
is virtually never attainable, and the prior distribution is usually the least of the problems in
terms of objectivity, but use of a subjectively elicited prior significantly reduces the appearance
of objectivity. Noninformative priors not only preserve this appearance, but can be argued to
result in analyses that are more objective than most classical analyses.

(iii) Subjective elicitation can easily result in poor prior distributions, because of systematic
elicitation bias and the fact that elicitation typically yields only a few features of the prior,
with the rest of the prior (e.g, its functional form) being chosen in a convenient, but possibly
inappropriate, way. It is thus good practice to compare answers from a subjective analysis with
answers from a noninformative prior analysis. If there are substantial differences, it is important
to check that the differences are due to features of the prior that are trusted, and not due to
either unelicited “convenience” features of the prior, or suspect elicitations.

(iv) In high dimensional problems, the best one can typically hope for is to develop subjective
priors for the “important” parameters, with the unimportant or “nuisance” parameters being
given noninformative priors.

(v) Good noninformative priors can be somewhat magical in multiparameter problems. As
an example, the Jeffreys prior seems to almost always yield a proper posterior distribution. This
is “magical,” in that the common constant (or uniform) prior will much more frequently fail
to yield a proper posterior. Even better, the reference prior approach has repeatedly yielded
multiparameter priors that overcome limitations of the Jeffreys prior, and yield surprisingly good
performance from almost any perspective. The point here is that, in multiparameter problems,
inappropriate aspects of priors (even proper ones) can accumulate across dimensions in very
detrimental ways; reference priors seem to “magically” avoid such inappropriate accumulation.

(vi) Bayesian analysis with noninformative priors is being increasingly recognized as a method

for classical statisticians to obtain good classical procedures. For instance, the frequentist-



matching approach to developing noninformative priors is based on ensuring that one has
Bayesian credible sets with good frequentist properties, and it turns out that this is proba-

bly the best way to find good frequentist confidence sets.

1.2 Approaches to Development of Noninformative Priors

We do not attempt a thorough discussion of the various approaches. See, e.g., Kass and
Wasserman (1993), for such discussion. We primarily will just define the various approaches,
and give relevant references.

The Uniform Prior: By this, we just mean the constant density, with the constant typically
being chosen to be 1 (unless the constant can be chosen to yield a proper density). This choice
was, of course, popularized by Laplace (1812).

The Jeffreys Prior: This is defined as 7(0) = \/det(I(0)), where I(6) is the Fisher infor-
mation matrix. This was proposed in Jeffreys (1961), as a solution to the problem that the
uniform prior does not yield an analysis invariant to choice of parameterization. Note that,
in specific situations, Jeffreys often recommended noninformative priors that differed from the
formal Jeffreys prior.

The Reference Prior: This approach was developed in Bernardo (1979), and modified for
multiparameter problems in Berger and Bernardo (1992c). The approach cannot be simply
described, but it can be roughly thought of as trying to modify the Jeffreys prior by reducing the
dependence among parameters that is frequently induced by the Jeffreys prior; there are many
well-known examples in which the Jeffreys prior yields poor performance (even inconsistency)
because of this dependence.

The Mazimal Data Information Prior (MDIP): This approach was developed in Zellner
(1971), based on an information argument. It is given by 7(0) = exp{[ p(z|0)logp(z|0)dz},

where p(x|0) is the data density function.

2 Organization and Notation

The catalog is organized around statistical models, with the models being listed in alpha-

betical order. Each model-entry is kept as self-contained as possible. Listed for each are (i) the



model density; (ii) various noninformative priors; and (iii) certain of the resulting posteriors and
their properties. Category (iii) information is often very limited.

Notation is standard. This include 7(0|D), |A| =determinant of A, 7(#) is a density w.r.t.
de.

Important Notation: Noninformative priors that are proper (i.e., integrate to 1) are given in
bold type. Others are improper. (The distinction is important for testing problems, where proper
distributions are typically needed; for estimation and prediction, improper noninformative priors

are typically fine.)
3 AR(1)
The AR(1) model, in which the data X = (X1, ..., X7) follow the model
X =pXi 1+ e,

where the ¢ are i.i.d. N(0, o2).

The expressions below are for 02 known. If o2 is unknown, multiply by %da (or ﬁd(ﬂ).

Prior 7(p) (Marginal) Posterior
Uniform 1
T 1-p?T ¢ B[X{] NEE
Jeffreys [1—;)2 + l_pr { 0,20 12 H
Reference! exp{3E log(XE, X2 )} all are proper

) 1/[2my/1 — p?] if [pl<1
1@2r|plvp>—1] if [p|>1

1. Nonasymptotic reference prior.

Reference

2. Symmetrized reference prior, recommended for typical use. See Berger and Yang (1992)

for comparison of the noninformative priors.

4 Behrens-Fisher Problem

Let x1,...,x, be ii.d. observations from N(&,0% and yi,...,y, be ii.d. observations from

N(n, 2. The parameters of interest are # = £ —n and A = £ + 1.



Liseo (1993) computed the Jeffreys prior and reference prior for this problem as

Prior 7(0,\,02,7%) | (Marginal) Posterior
Uniform 1
Jeffreys 1/(o7)? proper
Reference! 1/(o7)?

1. Independent of the group ordering of the parameters.

5 Beta

The Be(a, ), a >0, 8> 0, density is

r
flada, 8) = ot a1 = ) g ).
The Fisher information matrix is
PG(l,a) — PG(1l,a + B) —PG(1,a + B)
I(a, ) =
—PG(1,a+ f) PG(1,8) — PG(1,a+ B)

where PG(1,7) = >2y(z +i)~? is the PolyGamma function. The Jeffreys prior is thus the

square root of the Fisher information matrix.

6 Binomial

The B(n, p), 0 < p <1, density is

n
f(zln, p) = P (1 —p)n=.

Case 1: Priors for p, given n



Prior m(p|n) (Marginal) Posterior
Uniform 1 Be(plz+1, n—xz+1)
Jeffreys 1p=12(1—p)=2 | Be(plz + 1, n—2+ 1)
Reference
MDIP 1.6186pP (1 — p)(1—P) proper
Novick and Hall’s! p~H1—p)! Be(p|x, n —x)
1. See Novick and Hall (1965). Note this prior is uniform in 8 = logp/(1 — p).
Case 2: Priors for n
Prior m(n) (Marginal) Posterior
Uniform 1
Jeffreys n=1/2
Reference! 1/n
Universal® | 5o Tog(n) Tog 1og1(n)--- Tog log... Iog(n)
1. Discussed by Alba and Mendoza (1995).
2. Last term for which loglog...log(n) > 1. See Rissanen (1983).
7 Bivariate Binomial
fostpam = | | pa—pm | @ —ar
r s
forr=1,...,mand s =1,...,r. Polson and Wasserman (1990) compute the Fisher information

matrix of this distribution as I(p, ¢q) = mdiag({p(1 —p)}~!, p{a(l —q)}~h).

Prior 7(p, qlm) (Marginal) Posterior
Uniform 1
Jeffreys %(1 —p) 2121 — )12 proper
Reference! #p’l/Z(l —p) V2 2(1 — g) /2
Reference?® #(1 —p)~2¢712(1 — )21 = pg)~'/?
Crowder and Sweeting’s? pt1—p) g1 —¢) !

1. Parameter of interest is p or q.



2. Parameter of interest is @ = pq or ¢ = p(1 —q)/(1 — pq).
3. See Crowder and Sweeting (1989).

8 Box-Cox Power Transformed Linear Model

Given observations {yi,...,y,}, the model is
o1
L—, A#0
AN = A = i + TiBx + €i0,
Iny;, A=0

where (3 is a (k x 1) vector of regression coefficients, x; is a vector of covariates, and ¢; ~ N (0, 1)
truncated at —(uy + xB))/ox.
Jeffreys prior was obtained by Pericchi (1981),
p(Y)

W(M)n 6)\3 O\, A) (&8 k+1°
DY

where p()) is some unspecified prior for .

Box and Cox (1964) proposed the prior

(k+1)(A-1) ;=1

A0

W(M)\a /6/\3 OX\, )‘) chi

where g is the geometric mean of the y's.

Based on the so called data-translated parameterization,

A
ey 0—,\1+x§ﬁ)\+fzﬂ)\, A#0

1n0+x'§6)\+eia)\, A=0,
corresponding to uy = (0 —1)/X or In@, Wixley (1993) proposed the following two priors,
W(M)n /6/\3 O\, A) X gi(k+1)()\71)0—;1p()‘)3

where ¢ is the geometric mean of the y's and p(\) is some unspecified prior for A\. This prior is

apart from the prior of Box and Cox (1964) only by a factor p(A). It is also the prior used in



Box and Tiao (1992).

7T(,U,/\, ﬁ)\a O\, >‘) X [1+A:“‘/\]i(k+1)(171/)\)0-;1p(>‘)

x 9—(k:+1)(/\—1)0_;1p(>\)’

where ¢ is the geometric mean of the y's and p()) is some unspecified prior for X\. This prior

will give a very close resultant posterior distribution to that of Box and Cox (1964).

9 Cauchy

The C(u, o), —00 < a < 00, o > 0, density is

lo® + (z — p)?]

f(@lp, o) =

This is a location-scale parameter problem; see that section for priors. Posterior analysis

can be found in Spiegelhalter (1985) and Howlader and Weiss (1988).

10 Dirichlet

The D(«) density, where Z i =1,0<x;<1,and a = (aq,...,a)!, a; > 0 for all i, is

given by
f(z|e) =
1F ;) zl:[
where ag = Zle @,
The Fisher information matrix is
PG(I,Ozl) —PG(I,O{()) —PG(I,Oé())
I(Oél, . aak) = )
—PG(I,aO) PG(I,Oék) —PG(I,Oé())

where PG(1,z) = Y.2°,(z+i)~2 is the PolyGamma function. The Jeffreys prioris |I(cv, ..., o)|"/%.



11 Exponential Regression Model
See Ye and Berger (1991).
Yij ~ N(a+ pgp™t@e, o?),

where o, € R, 0<p<1,z>0, a >0,z and a known constants, 0 <: <k —1, 1 <j <m,
the x;’s are known nonnegative regressors with z; # z; for 7 # j and the variance 0% > 0is an

unknown constant. It is assumed that x; < z; for 7 < j.

Prior m(p, o, B, 0) (Marginal) Posterior
Uniform 1
adhoc 1/o improper

Jeffreys | |B|p** 1p1(p®)/o* | proper; 2-dimensional

numerical integration

Reference! " p(p®) /o proper; 1-dimensional
Reference? % p(p®) /o numerical integration
Reference? " p(p®) /o3

where p(p®) = p1(p*)/p2(p®), and

k—1 1 k—1 k—1 1 k—1
pi(w) = (Y w™ - E(Z w)?) (> afw* — E(Z zw®)?)
=0 1=0 =0 i—0
k—1 o 1 k—1 N k—1 N
_( T;w _Ezwllew l),
p2(w) = W — E(Z wi)?.
=0 i=0

1. Group ordering {p, o, 3, o} or {p, (o, B), o} or with all permutations of o, 3, o; this
is recommended for typical use, and appears to be approximately frequentist matching.
2. Group ordering {p, «, (8, o)} and with all permutations of «, 3, o.

3. Group ordering {p, (o, B, o)} and with all permutations of o, (3, o.



The marginal posterior of p for the prior 0=*p*~p(p?) is given by

p(p®)
o) plroro(l— p*)h(p® s, y)’
where
mts—3__ P3(p)
h(p; s, y) = {lsyy, — mdi(p; y)/p3(p))""* 3m}1/2,
with
k—1
di(p; y) =Y (i — §)p™
=0
12 F Distribution
The F(a, ), >0, 8> 0, density is
T[(a+ B)/2ja/? 52 a2

f(zla, B) =

T(@/2T(3/2) (B + an)@rmz o=@
13 Gamma

The G(a, ), a >0, 8> 0, density is

flala, )= g

a—1_-—x
(a)ﬁax e /ﬂ[(o’oo)(x).

If « is known, 3 is a scale parameter. The Jeffreys, reference, and MDIP priors are all 1/,
and the posterior is therefore IG(no, 1/ Y7 x;).

The Fisher information matrix is

PG(L,a) 1/8

I(aaﬁ)::
1B o/

where PG(1,2) = >.2°,(x + 1) ? is the PolyGamma function.

10



Prior (v, B) (Marginal) Posterior
Uniform 1
Jeffreys aPG(l,a) —1/p
Reference! | /(aPG(1,a) —1)/a/B proper?
Reference? PG(1,a)/3

1. Group ordering {«a, S}.
2. Group ordering {3, a}.
3. See Liseo (1993) and Sun and Ye (1994b) for marginal posterior.

14 Generalized Linear Model

Let y1,...,y, be independent observations, with the exponential density

Filbi, ¢) = exp{a; " (¢)(yibi — b(6:)) + c(yi, 9)},

where the a;(), b() and ¢() are known functions, and a;(¢) is of the form a;(¢) = ¢/w;, where
the w;’s are known weights. The 6;’s are related to regression coefficients, 3 = (3, ..., ), by
the link function

0;=0(n;), i=1,...,n,

where n; = z!3, and z! = (2;1,... ,Tjp) is a 1 x p vector denoting the ith row of the n x p matrix
of covariates X, and # is a monotonic differentiable function.

This model includes a large class of regression models, such as normal linear regression,
logistic and probit regression, Poisson regression, gamma regression, and some proportional
hazards models.

Ibrahim and Laud (1991) studied this model, using the Jeffreys prior. They focus on the
case where ¢ is known. The Fisher information matrix they obtained for 3 is given by I(3) =
d~HX'WV(B)AZ(B)X), where W is an n x n diagonal matrix with ith diagonal element w;.
V(B) and A(f) are n xn diagonal matrices with ith diagonal elements v; = v(z!3) = d?b(0;)/d6?

11



and 0; = §(z!3) = db;/dn;, respectively. Jeffreys prior is thus given by
m(B) o [XTWV (B)A(8) X] /2.

Ibrahim and Laud (1991) show that the Jeffreys prior can lead to an improper posterior
for this model, but that the posterior is proper for most GLM’s. A sufficient condition for the
posterior to be proper is that the integral

d?b(r)
dr?

[ exp{o tulyr = NN ar

be finite, the likelihood function of 3 be bounded above, and X be of full rank. Here S denotes
the range of 0.
In addition, Ibrahim and Laud (1991) give a sufficient and necessary condition for the Jeffreys

prior to be proper, namely

d?b(r
/S( dr(2 ))I/Zdr < 0.

When ¢ is unknown, the Fisher information matrix is

Il(ﬁa QS) 0
0 1—2(63 ¢)

1(8, ¢) =

where I1 (3, ¢)¢~ (X'WV(B)A?(B)X) as above, and
L(B, ¢) = —> {2wip>(b(6:)0; — b(6:)) + E(&(yi, d))};
i=1

here b(6;) = db(6;)/db;, and ¢ = 3?c(y;, $)/d¢*. The Jeffreys prior is then the square root of the
determinant of I(3, ¢).

15 Inverse Gamma

The IG(«, (), a > 0, § > 0, density is

flalas ) =m0,

12



If v is known, 1/ is a scale parameter. The Jeffreys, reference, and MDIP prior is 1/3, and
the posterior is IG(na, 1/ 1 1/x;).
If v is unknown, the Fisher information matrix is the same as that of the Gamma distribution.

Thus the reference prior and the Jeffreys prior are the same as for the Gamma distribution.

16 Inverse Normal or Gaussian

The IN(¢, A), 1 > 0, XA > 0, density is

A

Pl ) = (o) V20 exp{— 8 (1 — 1)} gy ).

The Fisher information matrix is given by I(y, \) = diag(\/¢, 1/2A?).

Prior m(,A) | (Marginal) Posterior
Uniform 1
Jeffreys 1/
Scale /A proper?
Reference! | ¢p=1/2\~1

1. See Liseo (1993).

2. See Sun and Ye (1994b) for marginal posteriors.

Define v = n — 1, £ = (uz/v) Y2, ¢ = (€Z)', Z = ¥ x;/n. Banerjee and Bhattacharyya
(1979) show that the marginal posterior of 1) has a left-truncated t-distribution with v degrees
of freedom, location parameter 1/z, and scale parameter ¢, the point of truncation being zero.
ie.,

(61D) o (naf2) {1+ (= 1)

where u = Z, — 1/%, and Z, = 1 37(1/z;). The marginal posterior of X is the modified gamma

distribution
(nu/2)""% B((n)/2)'/?)
I'(v/2) H, ()

where ®() is the standard normal cdf, and H,() denotes the cdf of Student’s t-distribution with

m(A|D) x exp(—nu/2)\"/271,

v degrees of freedom. The posterior mean and variance are also available; see Banerjee and

Bhattacharyya (1979) for more detail.

13



Another parametrization of inverse Gaussian distribution, the IN(u,02), u > 0, 0?2 > 0,

density is
f(@ln,0%) = 2m0®) 722732 exp{—(z — 1)/ (20° ”2) (0 00) ()

The Fisher information matrix is given by I(u,0?) = diag(p30—2, (204)71).

Prior m(p,0?) | (Marginal) Posterior

Uniform 1

Jeffreys | p3/2073

Reference! | p=3/2072

1. See Datta and Ghosh (1993).

17 Linear Calibration

Consider the model

yi:a_i_/@xi"i_elia izla"'ana

ijZOé‘i‘ﬁfI;O‘i‘EQj, jzla"'aka

where 3, y;, and yo; are (p x 1) vectors, x;’s are known values of the precise measurements, the

e1; and ez; are i.i.d. N,(0,0%I,). The object is to predict zy.

Denote Z = Y7y zi/n, § = Sy yi/n, Jo = X1 Yoi/ky ¢ = Sy (i — )%, B = iy (2 —
Z)(y; —y)/cz, and s and s9 be the two sums of residual squared errors based on the calibration
and predication experiments, respectively. The statistics B, Y, Yo, and s = s1 + s are minimal

sufficient and mutually independent. Kubokawa and Robert (1993) then consider the reduced

model

y ~ Np(/g*aO—QIp)a
z o~ Np(xa/g*ao—QIp)a

2.2
s~ 0Xp

14



where y = ¢i/’8, 2 = (o — P~ + k)T g = (n+ k= 3)p, F = &/°B, and wj =

(20 — T)eg A (nL + k1)~L/2,

The Fisher information matrix for the reduced model is given by

0
B @
1(6%, o®, x) = 0
0 0 L2 0

woB /e 0 ||B7]]P /0

Prior w(zh, B*,02) (Marginal) Posterior

Uniform 1
Jeffreys | (1 +a5%)P=D/?||g*]|(0) =04/

Reference! (02)=P+2/2 /1 4 282 proper
1. w.r.t. the group ordering {z}, (3*,0%)}. See Kubokawa and Robert (1993).

18 Location-Scale Parameter Models

Location Parameter Models:

The LP(3), B € RP, density is

fylB) =gly — XB),

where X is a (n x p) constant matrix and g is a n-dimensional density function.

Prior 7(0) (Marginal) Posterior

Uniform! 1 proper if rank(X'X) =p

Reference? | [3/(X*X)A]~ =2 | proper if rank(X*X) =p > 2

1. Also Jeffreys and the usual reference prior.
2. Baranchik (1964) “shrinkage” prior; also, the reference prior for (||5|],0), where 5 =

O (||8l],0,...,0)t. This also arises from admissibility considerations; see Berger and Strawder-

15



man (1993).

Location-Scale Parameter Models:

The LSP(3,0), B € RP, 0 > 0 density is

F(wlB.0) = oy~ X)),

where X is a (n x p) constant matrix and g is a n-dimensional density function.

Prior (B, 0) (Marginal) Posterior
Uniform 1
Jeffreys 1/o(P+h)
Reference! /o

Reference? % [ﬂt (XtX)ﬁ] —(p—-2)

Reference® | 7(¢,0) oc 0 (c1¢? + ¢3)

1. Reference with respect to the group ordering {3, 0}; also the prior actually recommended
by Jeffreys (1961).

2. Baranchik (1964) “shrinkage” prior; also, the reference prior with respect to the parame-
ters {||5]|, 0,0} (see Location Parameter Models).

3. ¢ = (/o is parameter of interest, selecting rectangular compacts on ¢ and nuisance

parameter c1 3% + co0?. See Datta and Ghosh (1993).

Scale Parameter Models:

The SP(o1,...,0p), 0; > 0 for Vi, density is

P
. 1 1 1
= Y gy, — Yoy, —
f(y|0‘1’___,o'p) _(ggz )9(01&/170292, agp?ip),
where y; are (n; x 1) vectors, i = 1,...,p, g is a ny + - - - + ny,-dimensional density function.

16



Prior m(o1,...,0p) | (Marginal) Posterior
Uniform 1
Jeffreys
Reference b ot
MDIP

19 Logit Model

Poirier (1992) analyzes the Jeffreys prior for the conditional logit model as follows. An
experiment consists of N trials. On trial n exactly one of J, discrete alternatives is observed.
Let yy; be a binary variable which equals unity iff alternative j is observed on trial n; otherwise
Ynj equals zero. Let z, = [zfll,...,zfljn]t, with each z,; being a K x 1 vector. v isa K x 1
vector of unknown parameters. The probability of alternative j on trial n is specified to be
eXP(Zfzﬂ)

pnj(7) = Prob(yn; = 1|zn, v) = 55—
>/ exp(2,)

When J, = J and z,j = e; ® ¥, where ¢; is a (J —1) x 1 vector with all elements equal to zero
except the jth which equals unity and x,, is a M X 1 vector of observable characteristics of trial
n, this is the multinomial logit model.

Poirier (1992) gives the Jeffreys prior for this model as

N Jn 1/2

m(y) o< |3 pni(Mzng — Za(M]l2ng — 2 (NI

n=1j=1

where Z,(y) = Z{Ql Pni(7)zni- The following special cases are also given therein.

Multinomial Logit Without Covariates:
Suppose K = .J — 1 and z,; = ej; then the Jeffreys prior reduces to the proper density

J
7() = ) [Tipus (01>

j=1

17



where p,; = py; for any n. The density for p, = (p«1,...,pss—1) is the Dirichlet density

(J/2) <& _
w(p.) = I 7"

J=1

In the binomial case,

exp(v/2)

w(7) = 7 Hpa (ML —pa(N}? = p T p—"—_E

and

T(ps) = W_I[P*l(l —p*1)]_1/2.

The other competing noninformative prior are: the uniform prior on ~; the uniform prior on

p«1; and the MDIP prior for p,;. See Geisser (1984) for discussion.

Logistic Regression:

Suppose y;|3 ~ i.i.d. Bernouli (7;), with

t
evif

e 1+ e%if

1=1,...,n.
Then the likelihood function is

n
Fwld) = 2t T+ ),
i=1
and the Fisher Information matrix is
mt=m) xa
I(B) = (x1,...,2p)

(1 —7y) x

The Jeffreys prior is the square root of the determinant of above matrix.

For more special cases of the logit model, see Poirier (1992).

18



20 Mixed Model

Consider mixed model
Yijk = Bijkab + Wijkaw +T; + Cj + €ijks 1=1,..,1, j=1,.., J, k=1, ...,tij,

assuming €;;x ~ N(0,0?), and independently, C; ~ N (0, 02), with ay, ay, T}, 0%, and o2 the
parameters of interest.
Box and Tiao (1992) used the following prior in the balanced mixed model case, with t;; =
n, Vij,
1
02(0? + no?)’

m(0?,0%)

Chaloner (1987) used three priors for this model, (02 +02)~!, 072(0? +02)~!, and 0~2(0? +

2)-3/2,

Oc

Yang and Pyne (1996) derived the Jeffreys prior,

J £ t 1/
2t 2 2\2 2t 2 2)2
7r(a§,02) x |Det E (tjo+a?) (tjoe+a?) ,

1 — U4 N S
)= 2(tjo2+02)2 20% 2(tjo2+02)?

where ¢; = EZ'I:1 t;j, and reference prior,

J 2
i

1
2 2
e WﬁJZW-

j=1
21 Mixture Model
For arbitrary density functions py(z) and pa(z), consider the model

p(z[A) = Api(z) + (1 = N)p2(2).

Bernardo and Girén (1988) discussed the reference prior for this model. They found that the

reference prior is always proper.

19



22 Multinomial

The M(n, p) density, where Ek 1 z; = n and each z; is an integer between 0 and n,

p=(p1,...,pps1)", with Zfﬂl p;=1and 0 < p; <1 for all 7, is given by

k+1
f(zlp) = k+1 H i
T2 ()
Prior 7(p) (Marginal) Posterior
Uniform 1
Jeffreys ¢TI ) - 0012
Reference' all are proper
Reference’ ) e (s
Reference® (I, Ch. )(Hk 1D; 1/2)( - (1 — 5Ni)*”i+1/2)(1 — (5Nm)*1/2
k .
MDIP Pl (1 =k, pi)l—zizlpl
Novick and Hall’s* ko D; !

Here 6; = Y0, pi, Coyy = @t/(1 = 1)!, and Cy = (2m)!/[(20 — 1)(2 — 3)--- (1)], for all
positive integers [. See Berger and Bernardo (1992b). See also Zellner (1993).

1. One-group reference prior.

2. k-group reference prior.

3. m-group reference prior. The posterior for the m-group reference prior, which includes

2

the posteriors for Reference! and Reference? as special cases, is

m—1

(p|D) Hp’”” T (1 = 6n,) 40 /2)(1 = b, )" "3,

=1

4. See Novick and Hall (1965).
Sono (1983) also derived a noninformative prior for this model, using the assumption of
prior independence of transformed parameters and an approximate data-translated likelihood

function.
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23 Negative Binomial
The NB(a, p), a >0, 0 < p <1, density is

['a+x)

=———> p%1—p)~
f(zle, p) Fla+ Dh@)” (1-p)
a is given:
Prior m(p) (Marginal) Posterior
Uniform 1 Be(pla+1, r —a+1)
Jeffreys | 1/[p/T—p] | Be(pla, x —a+1/2)
Reference

24 Neyman and Scott Example

This model consists of 2n independent observations,

Xij ~ N(piy, 02), i=1,...,n, j=1,2.

Prior (o, 1, .-y pin) | (Marginal) Posterior
Uniform 1
Jeffreys o~ (n+1)
Reference! o ! proper
Reference? o™
1. Group ordering {o, (p1,...,p5)} or {o, p1,..., pnp}. Yields a sensible posterior. The

posterior mean of 02 is $?/(n — 2), with $? = 1, Z?ZI(XZ-]- - X;)%, X; = (Xi1 + Xi2)/2. See
Berger and Bernardo (1992c) for discussion.
2. Group ordering {1, (p2,...,pn,0)}. Strong inconsistency occurs for this prior, along

with the Jeffreys prior. The posterior mean of o2 for the Jeffreys prior is $?/(2n — 2).
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25 Nonlinear Regression Model
Eaves (1983) considered the following nonlinear regression model
y =g(0) + oe,

where the n X 1 vector-valued design function g of a d-dimensional vector parameter € is no
longer assumed linear as compared with linear regression, although it remains 1-1 and smooth.

The noninformative prior proposed therein is
w(60,0) o |19)[' /o,
where

10) = EDlly ~ 9(0)I10)

= dgg(0)'dgg(0)

is the regression information matrix. Here Dy is the d X d matrix-valued second-order partial
operator: dyg(6) is the n x d Jacobian of g. Note this prior is also the reference prior provided

that # and o are in separate group.

26 Normal

Univariate Normal:

The N(u, 0?), —0o < p < 00, 02 > 0, density is

1 2792
2\ —(x— 20
f(zlp, o°) = 7(27“72)1/26 (z—n)?/20%

Prior | m(u) | (Marginal) Posterior
All 1 | 7(u|D) = N(z, 0%/n)
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= _ 1 n .
Here z = > ;" ;.

u Known:

Prior 7(0?) (Marginal) Posterior
Uniform 1 | m(0?|D) ~ IG((n —2)/2, 2/5?)
Jeffreys

Reference | 1/0? m(0?|D) ~ IG(n/2, 2/5?)

MDIP
Here z = %2721 7, and 2 =30, (z; — 7).
1 and o? Both Unknown:
Prior m(u,o?) (Marginal) Posterior
Uniform 1 m(u|D) ~T(n -3, z, S?/n(n —3))
7(0?|D) ~ IG((n — 3)/2, 2/5?)
Jeffreys 1/o* m(uD) ~T(n+1, z, S?/n(n+1))
7(0?|D) ~ IG((n +1)/2, 2/5?)
Reference! | (¢, o) o (2 + ¢?)~ /20!
Reference? 1/0? 7(u|D) ~T(n—1, z, S?/n(n—1))
MDIP m(0?|D) ~ IG((n —1)/2, 2/5?)
Here = 157 | 2, and S? = Y0 (z; — 7)%

1. ¢ = p/o is parameter of interest, parameter ordering {¢,c}. See Bernardo and Smith
(1994).

2. If ;1 and o2 are in separate groups.

p-Variate Normal:

The Np,(u, X) density, where o = (p1,...,4p) € RP and ¥ is a positive definite matrix, is

given by

! e~(@='= a2
(27)P/2(det X)1/2

fxlp, 3) =

Y Known:
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Prior () (Marginal) Posterior
Uniform

Jeffreys 1 m(p|D) ~ Np(z, X/n)
Reference
Shrinkage! | (u!X~1p)~(?—2)

= 1 n .
Here T = = > /" 2.

1. See Baranchik (1964) and Berger and Strawderman (1993).

@ Known:
Prior () (Marginal) Posterior
Uniform 1 (S YD) ~Wyn—p—1, S71/n)
Jeffreys 1/|3|p+1)/2 (YD) ~ Wy(n, S~1/n)
Reference! /|ET]i<;(di — dj) proper
Reference? | 1/|%|(logd; — logd,)®~2) [Li<;(di — dj)
Reference? 1/R(1 — R?)* m(R|D) ~ (R?)~Y2(1 — R)"M271 ,Fy (3,
5275 (RR)?)/ 3 Fa(%, 3, 5; P75 5 R)”
MDIP 1/|2]
Here S = 15" | (2, — p)((z; — p)t, di < da < -+ < d, are the eigenvalues of ¥, and R and

R are population and sample multiple correlation coefficients, respectively. If we write

s_| on Ufl) §_go o11 &fl)
o1y X2 51y Sa

then, R = \/Ufl)zilo(l)/au, and R = \/6'51)53521&(1)/&11.
1. Group ordering lists the ordered eigenvalues of X first, and is recommended for typical

use. See Yang and Berger (1992).
2. Group ordering lists the eigenvalues of X first, with {d;, d,} proceeding the other ordered

eigenvalues. See Yang and Berger (1992).
3. Population multiple correlation coefficient is parameter of interest, and uses sample mul-

tiple correlation coefficient as data. Prior and posterior are w.r.t. dR. »F; and 3F, are the
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hypergeometric function. See Tiwari, Chib and Jammalamadaka (1989). Also see Muirhead

(1982).

¢ and ¥ Both Unknown:

Prior m(p,0) (Marginal) Posterior
Uniform 1
Jeffreys 1/|§]|(p+2)/2
Reference! L/|IE| 1T« (di — dj)
Reference? | 1/|%|(log dy — logd,)®2) [Li<;(di — dj)
MDIP 1/|2]
Here S = 1 5% (z; — p)((z; — p)', and dy < dp < - -+ < dj, are the eigenvalues of .

1. Group ordering lists the ordered eigenvalues of X first. p and X are in separate groups.
It is recommended for typical use. See Yang and Berger (1992).
2. Group ordering lists the eigenvalues of ¥ first, with {d;,d,} proceeding the other ordered

eigenvalues. p and ¥ are in separate groups. See Yang and Berger (1992).

Bivariate Normal:
The Na(p, T) density, where, u = (1, u2) € R? and £ = (0y;) is a 2 x 2 positive definite

matrix, is given by

1 (o) S (@) /2

Tele 2) = 55 e sy

i and ¥ Both Unknown:

Prior (p, ) (Marginal) Posterior
_ _ 1—p2 (n—=3)/2
Reference! (1= p*) " Hon109) 7/ WWF(% 3on— 3,52
Reference? 01{2/(011022 — 0%,)?

Reference® | /011090 + 0%2/(011022 — 0%2)2

MDIP* 1/\/o11095(1 — p?)

1. The correlation coefficient, p, is parameter of interest. Parameters ordered as {p, i1, pi2, 011,022}.
r is the sample correlation coefficient. Prior and posterior are w.r.t. dpduidusdoiidogs. F is

the hypergeometric function. See Bayarri (1981).
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2. o011 is parameter of interest. Parameters ordered as {011, (012,092, 1, p42)}. Limiting
sequence of compact sets is {02, /090 € (o111 1,011 (1 —171), 092 € (I71,1)}.

3. o012 is parameter of interest. Parameters ordered as {019, (011,092, 1, p42)}. Limiting
sequence of compact sets is {o11092 € (035(1 + 1/1),0%1), 11 € (I74,1)}.

4. Prior and posterior are w.r.t. dpdudusdoiidoss.

27 Pareto
The Pa(zg, «) density, where, 0 < xy < 0o, @ > 0, is given by

fxlzo, @) =

rog T

fI; «
=20 00 ().

If gy is known, this is a scale density, and the Jeffreys prior and reference prior is 1/c.

28 Poisson

The P(\), A > 0, density is

-\
e A
Flaly) =
Prior () (Marginal) Posterior
Uniform 1 Gz +1, 1/n)
Jeffreys | A~12 | G(X0 i +1/2, 1/n)
Reference
Possion Process:
For a Poisson process X1, Xo,... with unknown parameter A, Jeffreys (1961), Novick and

Hall (1965), and Villegas (1977) proposed ignorance prior w(A) = A~!, also called a logarithmic

uniform prior because it implies a uniform distribution for log .
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29 Product of Normal Means

Consider the Np,(p, X) density, where p = (p1,...,4p), and the parameter of interest is

i1 Hi-
pP=2, X = Is:
Prior (1, p2) (Marginal) Posterior
Uniform 1 proper
Reference! | (u? + p3)'/?

1. See Berger and Bernardo (1989).

p=n, X=1,,n>2:

Prior (1, .-y pon) (Marginal) Posterior
Uniform 1 proper
Reference! | T2y /X0, 2

1. See Sun and Ye (1995).

p=n, ¥ = diag(c?,..

02),and pu; >0 fori=1,...,n

Prior T(p1y ey fin) (Marginal) Posterior
Uniform 1
Jeffreys! i
Reference? | (LL#n)? 11g1 fllsedten \/EZ Ln? proper
Reference? % 1 noi?

1. Proposed by Jeffreys (1961).

2. See Sun and Ye (1994a), where g;() is any positive real function and n; is the number of
observations from ith population.

3. Also see Sun and Ye (1994a), where n; is the number of observations from ith population.

This prior is also the Tibshirani’s matching prior.
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30 Random Effects Models

One-Way Model (balanced):
See Berger and Bernardo (1992a).

Xij=p+a;+e€;, t=1,...,pandj=1,...,n,

where the o; are i.i.d. N(0, 72) and, independently, the ¢;; are i.i.d. N(0, 02). The parameters

(1, 72, 02) are unknown. The reference priors for this model are,

Ordered Grouping Reference Prior posterior
{(p, 02,74} o 2(nr? + 02)73/2

{(n,0?),72} o %2(nr? 4 02)~1

(1, 7).0% 102272 o)

{02, (11,72)} o~ (nr? + 02)3/2

{72, (u,0%)} 7 o7 2(n7? + 02)"1/24p(72/02) | proper
{u, (0,7} {(0?,7%), 1}

(4,02, 72} o=2(n7? + 0%)~!

{0, 1,72}, {o® 7%, 1}

(0%, (o o?), (ot} | o (e o?)

Here Cp, = {1 —vn — L(v/n 4+ Vn — 1)73}, (72 /0?) = [(n — 1) + (1 + nr?/o?) 2]\ /2.
The posterior computation involves only one dimensional numerical integration. For details
see Berger and Bernardo (1992a).

Suppose ¢ = n72/0? is the parameter of interest (see, Ye, 1991).

Prior (¢, p, 0?) (Marginal) Posterior

Uniform 1

Jeffreys | o 3(1 + ¢)3/2

Reference! | 0=2(1 4 ¢)=3/2 proper?
Reference? | o 2(1 +¢) !
Reference® | o 3(1 +¢) !

1. Group ordering {(¢, u), o?}.
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2. Group ordering {¢, i, o%},{¢, 02, u},{(¢, 0?), u}, recommended for typical use.
3. Group ordering {¢, (u, 02)}.

4. The marginal posterior for ¢, corresponding to the prior 0=¢(1 + ¢)~? is given by

(1+ @)t W

~(9ID) = 1+

= )—(p+q)
WaB, ,(W/(1+W))

)

where By g(z) = [} t* (1 — t)’~'dt is the incomplete Beta function, p = (p + 2b — 3)/2,
qg=[pn—1)+a—2b/2, W = S,/S1, S| = X0 X1 (Y -Y)?2 Y =1 N Y, Sy =

nZ?:l(Yi —Y)? and Y = an =1 Z?:l Yij.

One-Way Model (unbalanced):
See Ye (1990).

Xij = p+ o + €4, 1=1,....,kand 7 =1,...,n;,

where the «; are i.i.d. N (0, 72) and, independently, the ¢;; are i.i.d. N(0, 02). The parameters
(1, 72, %) are unknown.

The reference priors for this model are,

Prior (w02, 72) (Marginal) Posterior

Uniform 1

Jeffreys | 07%[s1.1(72/02)(nsa(72)0?) — 51,1 (7%)0?)?)]/?

Reference! 027720 i (12 J0?) /2 proper

Reference? 07482,2(72/02)1/2

Here the limiting sequence of compact sets for reference prior is chosen to be ©; = [a;, b;] x

[Cladl] X [elafl]a for (:U'70-277—2)7 and

k P
n.
Sp,q(x) = 2; (14_77;‘21‘)(]’ for paq:071727'--
1=

b 1
r) = n—k+ E R —

n;x)2’

vn—k __ valyn—vn -k
Viy+vVn—k  2(yny+vn—k)?’
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log d;

v = lim

=00 log cl_l ’

1. Group ordering {u, 7%, 0%}, {72, u, 0%}, and {72,02, u}.
2. Group ordering {1, 0%, 7%}, {0%, u, 7%}, {0, 7%, u}, {, (0, 7%)}, and {(0*,7°), u}.

Suppose v = 72/0? is the parameter of interest.

Prior (v, pu,0?) (Marginal) Posterior

Uniform 1

Jeffreys 0*3[31,1(0)(7182,2(?)) - 31,1(“)2)]1/2

Reference! o 2[nsg2(v) — s1.1(v)?]"/? proper

Reference? 0 259.9(v)/?

1. Group ordering {u,v, 02}, {v,pu, 0%}, and {v,0?, u}.
2. Group ordering {/‘1'70-27/0}7 {U2aﬂav}7 {0-277)7#}7 {:ua (Uzav)}a and {(0-271))7:“'}'

Random Coefficient Regression Model:
yi = XifB; + €,

where y; is a (t; X 1) vector of observations, X; is a (f; x p) constant design matrix, (3; is
a (p x 1) vector of random coefficients for the ith experimental subject and ¢; is a vector of
errors for 7 = 1,...,n. Furthermore, we assume that (3;,€;,i = 1,...,n) are independent, and
Bi ~ MVN(B,X) and € ~ MV N(0,02L;), where 3 is the (p x 1) mean of the 3; and I; is the
(t; x t;) identity matrix.

Defining A = ¥/02, the Jeffreys prior is

T
G (Bi® B;) — n G| JoP P2,
=1 ti

1
|? ‘ 3 vee(SI, Bi)(vee(S, By))
=1

The reference prior w.r.t the Group Ordering {@,02, A}, {02, B,A} or {02 A, B} is

n
Tr(B, A, 0?) o |G S (B; @ B;)G|7 Jo?.
=1
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The reference prior w.r.t the Group Ordering {3, A, o2}, {A,/g’,oQ} or {A,O‘Q,@} is

vec(Yioy Bi)(vee(iz, Bi))*

1
T 6" /o,
=1 "1

7TR(§,A,U2) o |G[2n:(Bz ® B;) —

=1

where B; def XHX;AX!+ I)71X;, and G denotes a (p(p+1)/2) x p? constant matrix d(vecV')/
O(vecpV'), where V' is a p X p symmetric matrix.
The posteriors corresponding to the priors above are proper, provided we have at least 2p+1

full rank design matrices. Computation is discussed in Yang and Chen (1993).

Random Effects Model:

X ={xy;5=1,...,n51 = 1,...,k} arises from k populations my,..., 7, m ~ Np(pi, X)
and p; ~ Np(§, T). Fatti (1982) considers the usual diffuse prior distribution for ¥, ¢ and T,
and Box and Tiao’s noninformative prior distribution. Specifically, Fatti (1982) consider the

following type of diffuse joint prior density
m(S, & T) o [S[2 T2,

This prior has been used by Geisser (1964) and Geisser and Cornfield (1963), for v; = vy = p+1.

Fatti (1982) also studies the predictive density of a new observation z, under the hypothesis
x € mp. Fatti found that vo must be less than 2 for the predictive density to exist. So, T cannot
have the usual diffuse prior distribution with vo = p + 1. If we assign the values v1 = p + 1 and

Vo = 1,
f(@lX, m,) oc | A5 "N T2 G By (p/2, (N —p— 1)/2; (k = 1)/2; A5 A}),  for k> p,

where AT = n* T (0 — o) (2 — %)t A5 = X5, S0 (g — 2%y — 2*)', Flar, azibi;w)

is the hypergeometric function, and

. n; PET

n-+1 i=n,

* ok s ok 1 n* . * 1 k * _ k *
where we assume n} = n*, Vi, xj = ;2 >0 wij, 7 = £ Yo @, and N = Y0 nf.
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Box and Tiao (1992) propose the following noninformative joint prior,
(S, & T) o< [ PHV/2|5 4 )~ 0FD/2,
This prior distribution gives the predictive density as,

F(@lX, ) oc A5 By ((p1) /2, (N = 1)/2; (k+p) /2 A5 A7), for N> pand k> p.

31 Ratio of Exponential Means

Let X; ind Exponential(u;), i = 1,2. The parameter of interest is ¢; = po/u1. With nuisance
parameter ¢o = 112, Datta and Ghosh (1993) get the reference prior as 7(¢1.¢2) = (d12) L.

32 Ratio of Normal Means

Suppose X = {Xi,...,X,} and Y = {Y1,...,Y,,} are available from two independent
normal populations with unknown means y, 7 and unknown common variance o?. The problem
is to make inferences about the value of 1) = u /7, the ratio of the means.

The Fisher information matrix is (see Bernardo, 1977),

, n”  yYn 0
I(%, n, U):g yn 1492 0
0 0 4

It follows that the reference prior is
(i, n, o) o (L+4%)7 207!
or, in terms of the original parameterization

m(u, m, o) o (u® +n?) " 207
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The reference posterior is

2\—1/2 2 1202, UE =0 o1y
T($D) o (1+47) 2 (m + ¢?n) 1/2{S +W} (rtm-1)/2,
where z = 3" z;/n, y =" yi/m, and S2 =" (z; — )2 + 7 (yi — 9)%
Note for this problem, the usual noninformative prior 1/0 entails Fieller-Creasy problem.
Kappenman, Geisser and Antle (1970) showed that 1/0 can lead to a confidence interval of v

consisting the whole real line.

33 Ratio of Poisson Means

Let X and Y be independent Poisson random variables with means A\ and A. The parameter
of interest is 6.

Liseo (1993) computed the Jeffreys prior and reference prior for this problem as

Prior (0, \) (Marginal) Posterior
Uniform 1
Jeffreys g—1/2 proper
Reference | 1/\/A0(1 + 0)

Here the Jeffreys prior and reference prior give the same marginal posterior for 6,

gr—1/2

34 Sequential Analysis

Suppose X1, Xs,..., is an i.i.d. sample with common density function f(x;|¢) which satisfies
the regular continuous condition. Here X; and 0 are k x 1 and p x 1 vectors, respectively. Let
N be the stopping time.

JFrom Ye (1993), if 0 < Ey(N) < oo, the Jeffreys prior is

m5(0) o< (Eg[N))P/?\/det(1(6)),

where I(0) is the Fisher information matrix of Xj.
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Suppose 6 = (0(1),0(2),.--,0,)) is an m-ordered group. Furthermore, assume Ej(N) o

Ey,,(N) depends only on 6(;) and 0 < Ep(N) < co. Then the reference prior is (see Ye, 1993)
TR0y, - 00my) o< (Bo[NDP 2R (O1)s - - - » Oumy)s

where p; is the dimension of 6y and mg(61),...,0(y)) is the reference prior of ¢ for X;, using

the same group order and compact subsets.

35 Stress-Strength System

Suppose Xi, ..., X, arei.i.d. Weibull(n;, #) random variables, and independently, Y7,...,Y,,

are i.i.d. Weibull(72, #) random variables. Parameter of interest is
wi = P(X1 <) =15/ (n] + ).

When § = 1, this is the simple stress-strength system under exponential distribution, with
parameter 7 as scale parameter. Thompson and Basu (1993) computed the reference prior and
showed that the reference prior for (11, 72), when wy is the parameter of interest and wy = 171 412
is the nuisance parameter, coincide with the Jeffreys prior. With reparameterization of w; and
wy = 7]5 / (nf + 7]5 ), Basu and Sun (1994) computed the following reference priors and gave a

necessary and sufficient condition for the existence of a proper posterior,

Prior (w1, ws, B) (Marginal) Posterior
Uniform 1
Jeffreys' [w1(1 = wi)we 3] 7!
Reference? | gy (wy,ws)/[wi(1 — w)wa /3]

Reference® | go(wi,ws)/[wi(1 — wi)wa /3]
Reference® | g3(wi,ws)/[wi (1 — wi)ws/f3]
Where

gwiw) = 1/4/v +a(l - a){log[(1 — w))/wn]}?,

g2(w1,ws) = \/a(l —w1)?2 4 (1 — a)w?,
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gs(wi,wa) = gl(wlawz)/\/Y* +a{y +log[(1 — wi)wo]}? + (1 — a){7y + log(wiws)}?,

and

v = 1+/ (log z)e™*dz,
0

v o= / (log z)%e~*dz — {/ (log z)e*dz}?,
0 0

a = m/(m+n).

1. Also the reference for the group ordering {(wi,w2, 8)}, {8,w1,ws2}, and {3, (wi,w2)}.
Group ordering {wi, (w2, 5)} and {w1, B, wa}.
Group ordering { (w2, 3),w1 }.

- N

Group ordering {w,ws, 3}.

36 Sum of Squares of Normal Means

Consider the N,(u, I,) density, where p = (p1,...,4p), and the parameter of interest is

p 2

Prior m(p1, ..., pp | (Marginal) Posterior

Uniform 1 proper

Reference! | |[|u||~®V

1. See Datta and Ghosh (1993). This is also the prior obtained by Stein (1985) and Tibshirani

i i . . 1 j.i.d. T
(1989). It can be viewed as a hierachical prior with (i) 1, ..., uple "< N(0,e71), (ii) € has the

improper gamma, density function f(e) oc—3/2.

37 T Distribution

The T(a, p, o) density, where o > 0, —0co < 1 < 00, and o2 > 0, is given by

T +1)/2 w— )2\ T2
felo p, o) = U(cwz[fr)l;gF)(iy/]Q) ' (1 + %) '

This is a location-scale parameter problem; see that section for priors.
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38 Weibull
The Weibull density, with shape parameter ¢ > 0 and quasi-scale parameter a > 0, is

1

f(z]e, ¢) = cazx® " exp(—azx®), z>0.

w = log x has the extreme value density
f(wla, ¢) = caexp(cw)exp(—aexp(cw)), —oo < w < 0.

As indicated in Evans and Nigm (1980), setting ¢ = 0! and « = exp(—u/0), the density of w

becomes

fwlu, 0) = o~  exp{(w — u)/o} explexp{(w — u)/o}],

in which g and o are seen to be location-scale parameters. Therefor, 7(u,0) = 1/0o. Prior
transformed back to the original parameterization is 7(a, ¢) = 1/(ac?). Analysis using the usual
noninformative prior is discussed by Evans and Nigm (1980).

Sun (1991) computed the following reference prior

Prior 7(a, c) (Marginal) Posterior

Reference! 1/(car) proper?

Reference? | (cay/1+ v* — 27 —2(1 — ) log a + (loga)?) !

Here v is Euler’s constant, i.e., v = — [;°(log z)e *dz and 7* = [;°(log 2)%e *dz.
1. Group ordering {(a,c)} and {c,a} (also Jeffreys prior).

2. Group ordering {«, c}.

3. Provided n > 1 and not all observations are equal.

This density can also be written in the form

51

1o, ) = 2o esp (- (217},

Under this form, Sun (1991) computed the reference prior as
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Prior (0, 3) | (Marginal) Posterior

Reference! o1 proper?

Reference? | (03)7!

1. Group ordering {(0,3)} (also Jeffreys prior).
2. Group ordering {6, 3} and {3, 6}.

3. Provided n > 1 and not all observations are equal.
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