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Abstract

Modeling spatial interactions that arise in spatially referenced data is commonly done by in-
corporating the spatial dependence into the covariance structure either explicitly or implicitly via
an autoregressive model. In the case of lattice (regional summary) data, two common autore-
gressive models used are the conditional autoregressive model (CAR) and the simultaneously
autoregressive model (SAR). Both of these models produce spatial dependence in the covariance
structure as a function of a neighbor matrix W and often a fixed unknown spatial correlation
parameter. This paper examines in detail the correlation structures implied by these models as
applied to an irregular lattice in an attempt to demonstrate their many counterintuitive or im-
practical results. A data example is used for illustration where US statewide average SAT verbal
scores are modeled and examined for spatial structure using different spatial models.

(© 2003 Elsevier B.V. All rights reserved.
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1. Introduction

In many settings, averages or counts over geographically defined regions are observed
and ecological regression analysis is performed. When the location of the geographic
regions are known it is common to assume that observations on regions near each other
may tend to have similar score on the omitted variables in the regression causing the
error terms to be spatially autocorrelated. Therefore some underlying spatial process is
often included in the model. Besides improving inference of regression coefficients, the
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model for the spatial process should be able to provide a clear picture of the residual
spatial pattern thus providing insight into what omitted variables there may be. This
paper examines the different spatial structures implied by using different models for the
underlying spatial process on an irregular lattice (e.g. the lattice formed by the states
of the US).

There are two fundamentally different ways to model the spatial structure underlying
lattice data (i.e. regional summary data). They are both special cases of the general
spatial process {Z(s): s€ D} and their difference lies in what is assumed about the
indexing set D. One method is to treat the lattice data as if it was observed on a
continuous indexing set (i.e. geostatistical data, Cressie, 1993) instead of a discrete
indexing set. When this method of modeling is employed, most commonly the summary
data for each region are assumed to have been observed at the center or centroid of
the region and distances between centroids are used to develop the spatial covariance
structure through a variogram function. One of the most commonly cited problems with
this technique is the arbitrariness of assigning the summary for the whole region to the
centroid. Even if some thoughtfully chosen point in the region was used as the location
(e.g. population weighted centroid), another conceptual problem with modeling lattice
data in this way is that it is really not possible for the observations being modeled
(i.e. regional averages) to occur continuously in the plane as the model would allow.
On the other hand, the good thing about modeling in this way is that the spatial
covariance function is modeled directly and thus its structure is usually straightforward
to understand.

The other way of modeling the spatial structure underlying lattice data, and the
method investigated in detail in this paper, does not ignore the discrete index nature of
lattice data. This is done by defining a neighborhood structure based on the shape of
the lattice. Thus instead of measuring distance between centroids of regions, a system
is used that defines regions to be neighbors based on, for example, whether their
borders touch or not. Once this neighborhood structure is defined, models resembling
autoregressive models in time series are considered. Two very popular such models
that incorporate this discrete neighbor information are known as the simultaneously
and conditionally autoregressive models, i.e. SAR and CAR models. The SAR and
CAR models were originally developed as models on the doubly infinite regular lattice
beginning with Whittle (1954) for the SAR model and Besag (1974) for the CAR
model. When used for modeling a doubly infinite regular lattice, these models are quite
analogous to the well understood stationary autoregressive time series model defined
on the integers. That is, the CAR is analogous in its Markov property, and the SAR
in its functional form (Cressie 1993, Sections 6.3, 6.4). But, when these models are
applied to irregular lattices, the effect that the neighborhood structure and the spatial
correlation parameter have on the implied covariance structure is not well understood
and has not been explicitly examined.

For the finite regular lattice, several authors have pointed out that the covariance
structure implied by the SAR and CAR models yield non constant variances at each site
as well as unequal covariances between regions that are the same number of neighbors
apart, see, e.g. Haining (1990), Besag and Kooperberg (1995). In this paper we give
more detailed description of the implied structure of these models and in particular
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look at their structure on an irregular lattice. In Section 2 the SAR and CAR models
are defined and their standard use discussed. Section 3 presents a spatial regression
example on the irregular lattice of the United States where the spatial structure is
compared using the SAR and CAR models as well as an exponential variogram and an
i.i.d. model. The example demonstrates the difference in predictions obtained by these
models and the differing correlations between 1st order neighbors that occur when using
the SAR or CAR models. Section 4 looks at the SAR and CAR correlation structures
for the U.S. lattice in general as a function of the “spatial dependence” parameter.
Conclusions and discussion are in Section 5.

2. The SAR and CAR models

Let {Z(4;): A;€(4;...4,)} be a Gaussian random process where {4, ...4,} forms
a lattice of D. We say the regions {4;...4,} form a lattice of D if {4;...4,} is a
simple partition of D, i.e. 4y UA,U---UA4, =D and 4,NA4; =0 for all i # .

One way to model this process is by the simultaneous autoregressive model (SAR)

Z(Ai)zlli+Zbij(Z(Aj)—Hj)+8i ()
=1

where = (¢1,...,&,) ~ N(0,4) with A diagonal, E(Z(4;)) = w;, and b;; are known or
unknown constants and b; =0, i = 1...n. This model is called simultaneous because
in general the error terms & will be correlated with {Z(4;): j # i}. If n is finite,
we can take B = (b;;) to be a matrix containing the b;;. The joint distribution of
Z = (Z(A41),Z(A3),...,Z(4,)) is then

Z ~N(u,(1, — B)~'A1, — B)™"). (2)

where p = (py, U, ..., 1y) and I, is the n dimensional identity matrix.
Another way to model {Z(4;): 4; € (4, ...4,)} is with the conditional autoregressive
model (CAR)

Z(ANNZ(A-iy) ~ N | i+ Y e Z(A)) = ). (3)
j=1
where Z(A(_i)={Z(4;): j # i}, E(Z(4;))=, 7} is the conditional variance, and c;;
are known or unknown constants, in particular ¢; =0, i=1...n. If n is finite, we form
the matrices C = (¢;;) and T = diag{7?,73,...,72} and by the factorization theorem
(see, e.g., Besag, 1974)

Z ~N(pd,—C)'T). 4)

The structure of B and C is usually mostly specified by the shape of the lattice.
One common way to construct B or C is with a single parameter that scales a user
defined neighborhood matrix W that indicates whether the regions are neighbors or not.
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One common way to do this is to define W = (w;;) as

1 if region A; shares a common edge or border with region 4,
0 otherwise

Thus, for the SAR model B=p,W and for the CAR model C=p W where p; and p,
are often referred to as “spatial correlation or spatial dependence” parameters and are
left to be estimated. There are other ways to define the neighborhood structure W, e.g.
restricting rows of W to sum to 1 or creating more elaborate weights as functions of
the length of borders. Clayton and Bernardinelli (1992) point out that the specification
of W as above simply with 0 and 1’s is not internally consistent in the case in which
the number of neighbors varies (which is the case with most irregular lattices). They
recommend a weighting scheme W =(wj;) such that wj; =w;;/w;; so that the expected
conditional means form an average rather than a sum. Note, for the CAR model, it is
necessary that W and T satisfies the symmetry condition: wijrjz»:wjirf. So if W=(w};)
is used, the conditional variances t; should be proportional to 1/w;,.

The SAR and CAR models specified in this way with a single parameter times
some weight matrix have been used extensively for modeling irregular lattices in the
applied literature (in econometrics: e.g. Anselin and Florax (1995) and Kelejian and
Prucha (1999); and in disease mapping: e.g. Clayton and Kaldor (1987), Mollie and
Richardson (1991), Bell and Broemeling (2000), and Stern and Cressie (2000), and
incorporated into software: e.g. S-Plus Spatial Stat and BUGS).

Besag et al. (1991) introduced the intrinsic conditional autoregressive model (ICAR)
(extending Kunsch’s (1987) terminology to irregular domains) which is also popular in
disease mapping and image restoration literature. This model which can be considered
a limiting case for the CAR yields an improper joint distribution for the Z. Correlations
do not exist for the ICAR process and it will not be considered here. The ICAR has
been studied widely elsewhere, for example see Yasui et al. (2000) and references
therein.

3. An example

To provide an example of this type of ecological spatial regression using these
models we consider state level summary data related to the SAT college entrance exam
for the year 1999. These data were recorded from an article written in the Minneapolis
Star Tribune on Wednesday September 1, 1999 which gave the College Board as its
source. The data include statewide average verbal scores on the SAT as well as the
percent of eligible students taking exam in the particular state. Fig. 1 shows a histogram
of the verbal scores and a scatter plot of the verbal scores by the percent of eligible
students taking the exam. Fig. 2 shows a choropleth map (by quartiles) of the scores
by state. The map shows an indication that states in the Midwest have higher averages
on the SAT verbal and the scatterplot shows a clear indication that a strong inverse
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Fig. 1. Left: histogram of 48 contiguous state average SAT verbal scores for 1999, Right: scatterplot of state
average SAT verbal scores against percent of students eligible who actually took the exam.

Fig. 2. Choropleth map of 48 contiguous state average SAT verbal scores for 1999.
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Table 1
Results for fitting model 5 using 4 different models for u

SAR CAR Exponential variogram 11D
Bo (se.) 583.79 (4.89) 584.63 (4.860) 583.64 (6.49) 590.26 (3.93)
f1 (s.e.) —2.42 (0.32) —2.48 (0.32) —2.19 (0.31) —2.88 (0.30)
fa (s.e.) 0.0183 (0.004) 0.0189 (0.004) 0.0146 (0.004) 0.0233 (0.004)
Spatial parameters ps = 0.60 pe=0.83 range = 490 N/A
Variance parameters o2 = 409.2 o2 =408.5 ap =114, o}, =148 o’ =1244
Log likelihood —179.9 —180.1 —177.2 —183.9

relationship exists between the average verbal score and the percent of students who
took the exam.

Let Z(A4;) represent the average SAT verbal score in state 4; and X(4;) the percent
of eligible students who actually took the exam in state 4;,, i =1...48. We consider
the model

Z(4;) = Bo + BiX(4;) + Bo(X(4:))* + u(A;), (5)

where u# = (u(A1),u(A4z),...,u(Asg)" is assumed to be normally distributed with mean
zero. We consider four different covariance structures for u. First we consider the SAR
and CAR spatial structure using the W =(w};)=(w;;/w:+) neighbor structure defined in
Section 2 that takes all states touching each other with an edge to be nonzero. Specifics
for the neighborhood structure of the US lattice are given in Appendix A. For the CAR
model we take T =02 diag(1/w;;) and for the SAR model we take 4= o2 diag(1/w; ).
While the non-constant specification for T is necessary for the CAR to satisfy the
symmetry condition, the reason for choosing similar A4 in the SAR model is only
for comparison, i.e. it is not necessary. We then consider an isotropic exponential
variogram structure for the u where the centroid of each state is used to calculate
distances between states (i.e. |d;;| is the distance between the centroids of state 4; and
4;) and covariances are defined by Cov(u(4;),u(4;)) = 651 + 052 % exp(—|d;;|/range).
Finally we consider i.i.d. structure for # where Var(u) = 6l43. The results are shown
in Table 1.

As can be seen from Table 1, the estimated Sy, fi, and f, are similar in all four
cases—95% confidence intervals around them would all overlap. Notice that as might
be expected, the i.i.d. model yields the smallest standard errors because it is assuming
that there are 48 independent observations. Using Moran’s I we test for the existence
of spatial structure in the residuals from the i.i.d. model and find a significant p-value
indicating that there is spatial correlation missed by simply fitting the large scale trend.
The SAR and CAR models yield spatial parameters of p;=0.60 and p.=0.83 and the
range parameter for the exponential variogram is 490 miles. The variance parameters in
the different models are not directly comparable, but it is possible to make some con-
clusions. Recall that T = ¢? diag(1/w;, ) and A = ¢? diag(1/w;, ) for the CAR and SAR
models and note that the average number of neighbors the states have is approximately
4.45. So roughly, the average variance in T or A is 62/4.45=91.80 or ¢2/4.45=91.96
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Fig. 3. Top: Predicted small-scale spatial structure using the SAR and exponential variogram, Bottom: (Left)
histogram of the Ist order neighbor correlations implied by the SAR model, (right) correlation structure
implied by the exponential variogram model, fitted variogram overlayed empirical variogram.

respectively. The nugget effect, aél, representing the non-spatial random error in the
exponential covariogram model is much smaller than the similar variances 7 and A
in the CAR and SAR models implying that the exponential variogram model will fit
the data more closely than CAR or SAR. Finally, we present the log-likelihood values
for each model but note these should be compared with caution. None of the models
are nested within any of the other models. Note the i.i.d. model fit here is not nested
within the SAR and CAR models because a constant variance ¢°I is assumed for the
i.i.d. model and even when p; =0 or p. =0, the SAR and CAR models still have non
constant variance because of the specification for A and 7.

Now we focus attention on the prediction of the small-scale spatial structure, i.e., the
predicted values for the # under the SAR, CAR, and exponential variogram model. We
want to examine the spatial structure remaining after taking out the large scale trend
due to the effect of the percent of students taking the exam. We find that the CAR and
SAR models give very similar predicted value for # with a correlation between them
of 0.998 but the CAR predictions have larger variability than the SAR predictions (Top
left, Fig. 4). The predicted values for # using the exponential variogram are different
and have correlation 0.612 with the SAR and CAR values. In the top of Fig. 3 we
present choropleth maps of the predicted small-scale spatial structure using the SAR
and exponential variogram (CAR is not shown because it is nearly identical to SAR).
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Fig. 4. Top: Comparison of SAR and CAR results for predicted spatial # (top left) and first order correlations
(top right); Bottom: Stratified by the number of first order neighbors, correlation (bottom left) and variances
(bottom right) are given for the SAR model.

The graduated color has been meaningfully separated at zero since zero represents
the value where the predicted verbal score is exactly given by the large scale model
Bo + P1X(4;) + P2(X(4;))?. Values greater than zero imply that the small-scale spatial
structure model predicts the state average to be higher than what would have been
predicted by the large scale model alone, and visa versa for negative values.

The SAR model results in a “smoother” picture than the exponential variogram
which perhaps is part of the reason for its popularity in practice. But what does the
SAR model say about the spatial correlation? The bottom left plot in Fig. 3 shows
a histogram of all the first order neighbor correlations implied by the SAR model.
The smallest correlation is 0.24 which occurs between Missouri and Tennessee and
the largest correlation, equal to 0.64, occurs between Maine and New Hampshire. For
these extreme cases we note that Maine is the only state with just one neighbor (i.e.
New Hampshire) and that Tennessee and Missouri are the only two states with eight
neighbors (the largest number of neighbors) and they are neighbors of each other.
So it seems that the implied correlation might simply be related to the number of
neighbors each region has. To the contrary, the bottom left plot of Fig. 4 shows this
relationship is not simple. We further emphasize the point in Table 2, showing that
both Tennessee and Missouri have eight different correlations for each of their eight
different first order neighbors. The structure of the neighbor matrix in the SAR model
implies that Tennessee is more correlated with Alabama than it is with Mississippi and
that Missouri is more like Kansas than lowa. Is this reasonable? Because there is no
systematic structure to the SAR (or CAR) covariance model, there is not a good way
to examine whether it is a reasonable model for describing the spatial structure of the
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Table 2
Implied correlation between Tennessee and its first order neighbors and between Missouri and its first order
neighbors for the SAR and CAR Models (numbers in parenthesis are labels from Fig. 6)

Tennessee (40) Missouri (23)

1st order neighbors SAR CAR Ist order neighbors SAR CAR
Alabama (1) 0.371 0.324 Arkansas (3) 0.272 0.238
Arkansas (3) 0.291 0.257 Illinois (11) 0.291 0.247
Georgia (9) 0.365 0.327 Towa (13) 0.282 0.244
Kentucky (15) 0.256 0.229 Kansas (14) 0.319 0.263
Mississippi (22) 0.349 0.300 Kentucky (15) 0.255 0.223
Missouri (23) 0.241 0.216 Nebraska (25) 0.291 0.248
North Carolina (31) 0.358 0.312 Oklahoma (34) 0.293 0.251
Virginia (44) 0.306 0.265 Tennessee (40) 0.241 0.216

data. On the other hand, for the exponential variogram (because we can completely
and succinctly describe the implied covariance structure) we at least have a way to
check if its fit to the residual spatial structure is reasonable by examining the fitted
model through the empirical variogram, bottom right of Fig. 3.

4. Relation between p; and p. and the implied spatial correlation

In this section we examine the correlation structure for the SAR and CAR models
in general as a function of their “spatial dependence” parameters p; and p.. Note
that when the SAR and CAR covariance matrices, (I, — p,W)~' A, — p,W)~!" and
(I, — pcW)~'T where A = ¢?diag(1/w;,) and T = o2 diag(1/w;, ) are standardized to
be correlation matrices, they are functions of only W and p, or p.. For demonstration
we consider the US lattice neighbor matrix W = (w;;) and focus on how the model
correlations behave as functions of the true parameters p; and p. (i.e. irrespective of
data).

The usual restrictions on the parameter spaces of p; and p,. are given as {p,: p;m; <1}
and {p.: p.w; <1} for i =1...n (see, e.g. Haining 1990, p. 82) where w; are the
eigenvalues of W. For the CAR model where the covariance is (I, — p.W)™'T, the
restriction on p. is a necessary condition to ensure positive definiteness. For the SAR
model the condition for p; is too strong (Kelejian and Robinson, 1995) since it is only
necessary that (I, — psW) is nonsingular. This is satisfied by requiring p, such that
ps # 1jw; for i =1...n. Whether this much broader parameter space is of any use is
questionable because the interpretation of p; becomes extremely difficult or impossible
when it is outside of the commonly considered region {p;: p,w; < 1} for all i=1...n.
Based on the ecigenvalues of W for the US lattice, a restriction for the parameter space
of p. and py is (—1.392,1). (The upper limit of 1 is a result of the fact that the rows
of W were taken to sum to one.)

Here we consider how the implied correlations between all the first order neighbors
based on these two models change as a function of p; or p.. On the US lattice there
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Fig. 5. Lines in both plots represent the implied model correlations between first order neighbors in the US
lattice based on the SAR model (left) and CAR model (right) as functions of the respective parameters ps
and pc.

are 107 pairs of states that are considered first order neighbors, that is, their borders
touch. Fig. 5 shows the implied correlations between these neighbors as a function
of py and p.. Immediately we see in Fig. 5 that for any given p, or p., there is
variability in the correlations among all the first order neighbors. This variability in
the correlations changes as a function of p; and p., for example, correlations range
from 0.03 to 0.19 when p, =0.1 while the range is much larger for p; =0.6 where the
correlations range from 0.24 to 0.64. It is also clear from Fig. 5 that the first order
neighbor correlations increase at a slower rate as a function of p. in the CAR model
than for p; in the SAR model. A few things about Fig. 5 are intuitively pleasing. As
the “spatial correlation” parameter (p; or p.) increases from zero to the upper end of
the parameter space, the implied correlations between all sites monotonically increase.
This matches our intuition from autoregressive models in time series that says: as the
autoregressive parameter increases from zero, the correlation between times increases.
Another is that as the “spatial correlation” parameter (p; or p.) reaches the endpoints
of the parameter space, the implied correlations between all the pairs of sites tend
toward 1 or —1. (Although it is difficult to see in Fig. 5, as p; and p, reach the lower
end of interval —1.392, all of the correlations do approach 1 or —1).

We now point out probably the most displeasing result of these models. That is, the
ranking of the implied correlations from largest to smallest is not consistent as p, and
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p. change. In other words, there are lines in Fig. 5 that cross each other. For example,
when p.=0.49 the Corr(Alabama, Florida) =0.20 while the Corr(Alabama, Georgia) =
0.16. But, when p.=0.975 the correlation between Alabama and Georgia is greater than
the correlation between Alabama and Florida, i.e. Corr(Alabama, Florida) = 0.65 while
the Corr(Alabama, Georgia) = 0.67. Thus the already difficult to interpret correlations
become even more difficult to understand when we realize their relation to one another
can change depending on the “spatial correlation” parameter.

Further non-intuitive behavior is seen in Fig. 5 when p; or p. is negative. The
implied correlation between some first order neighbors can be positive but that depends
on what value of p; or p. is being considered. These particular first order neighbor
correlations are negative when p; or p,. is slightly negative but as p, or p. become more
negative, the implied correlations become positive. For example, when py=—0.716 the
Corr(Maryland, Penn.)=—0.18 and Corr(Vermont, Mass)=—0.15 but when rho=—1.32,
Corr(Maryland, Penn.) = 0.085 and Corr(Vermont, Mass) = 0.94. Out of 107 first order
neighbor pairs in the US lattice, 34 end up having positive correlations when p, or
p. is negative. Note the pairs are the same for both the SAR and CAR models. It is
unclear what distinguishes these pairs of sites from the others. We have tried looking
for similarities among the neighbor patterns of these state pairs but found nothing. For
example, they do not all have even or odd numbers of neighbors and they are not
located in any particular region of the graph.

5. Summary

It has been demonstrated that the implied spatial correlation between the different
states using the SAR and CAR models does not seem to follow an intuitive or prac-
tical scheme. For instance, there does not appear to be any reason in general why a
researcher would want to fit a spatial model that insists on Missouri and Tennessee
being the least spatially correlated states in the land. And why should Missouri be
more correlated with Kansas than with lowa? This is what the SAR and CAR models
with the W = (w};) neighbor matrix imply. It is also noted that similar nonintuitive
spatial structure occurs when the weight matrix is simply taken to be the 0,1 matrix,
ie. W= (W,‘j).

Cressie (1993) refers to B and C in (2) and (4) as the “spatial-dependence matrix”
in the model, and, Ord (1975) says that the (, j)th element of these matrices “represents
the degree of possible interaction of location j on location i”. These descriptions are
misleading because they seem to imply that one can examine the structure of B and
C directly to understand the spatial correlation being modeled for {Z(4;): i=1...n}.
This is not the case, since it is the inverses (I, — B)~! and (I, — C)~!, respectively,
that actually explain the spatial structure. And as we have seen in this paper, although
these covariances are clearly just functions of B or C, in general there is no obvious
intuitive connection between them and the resulting spatial correlations.

From this discussion it seems that other ways of modeling lattice data which directly
model the covariance structure such as geostatistical models should be considered es-
pecially when there is interest in understanding the spatial structure. In an attempt to
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alleviate the undesirable properties implied by the CAR model, Besag and Kooperberg
(1995) considered a method which is a “partial synthesis of standard geostatistical and
Gaussian Markov random field formulations”.

Despite their popularity, these SAR and CAR models have been fit over and over
again without much emphasis placed on trying to decipher what they mean. This may
be due to the fact that often the primary interest in analyses that incorporate them is
determining significant predictors in a regression rather than understanding the spatial
structure itself. However, if there is any chance of determining whether the SAR or
CAR model provide a good fit for the data, it seems prudent to first understand the
SAR and CAR models. The focus of this paper has been to make transparent and point
out possible problems with the way these models incorporate the geographic structure
of the lattice into the spatial covariance structure. The hope is that clarification of these
problems may lead to advances in their solution.

Appendix A

The matrix W contains many zeros and a simple description of the neighborhood
structure is given below. This method lists row-by-row each of the 48 states followed
by that state’s neighbors. The function read.neighbor in the S+Spatial Stat package
reads this neighborhood structure and by default creates a (0,1) W matrix which can
then be scales so that the non-zero elements equal 1/(w;; ).

The list below indicates the neighborhood structure for the 48 contiguous states.
Note they are numbered in alphabetical order (the numbers correspond to the map in
Fig. 6).

26

Fig. 6. US map with states numbered.
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