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ABSTRACT. The dynamics of a linear (or linearized) dynamic stocleastonomic model
can be expressed in terms of matri¢ésB,C,D) that define a state space system. An
associated state space systeK,C,X) determines a vector autoregression for observ-
ables available to an econometrician. We review circuntgsuiunder which the impulse
response of the VAR resembles the impulse response asxbuidh the economic model.
We give four examples that illustrate a simple conditiondieecking whether the mapping
from VAR shocks to economic shocks is invertible. The cdodiapplies when there are
equal numbers of VAR and economic shocks.
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“(Likelihood Principle) The information brought by an olgation x about [a parameter]
6 is entirely contained in the likelihood functionThe Bayesian Choi¢doy Christian P.
Robert, p. 15

“... with a specific parameterization of preferences the theawyldvplace many restric-
tions on the behavior of endogenous variables. But thesegticets do not take the form
of locating blocks of zeros in a VAR description of these &bkes.”Money and Interest in
a Cash-in-Advance Econorrfgobert E. Lucas, Jr., and Nancy L. Stokey, p. 512.

We thank James Nason and Mark Watson for very insightfutg@ihs of an earlier draft.
1see Robert, (2001).
2See Lucas and Stokey (1987).
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I. INTRODUCTION

This paper is about inferring a set of meaningful economaxkhk from the innovations
to a VAR. Applied macroeconomists use unrestricted Vectaoragressions (VARS) to an-
swer questions about responses to economically intelpesshocks. For example: What
is the effect of a technology shock on hours worked? How dagsub respond to monetary
perturbations? What happens after a fiscal shock? VAR rdssarhope that they can coax
answers to such questions from unrestricted VARS and prdpesgeestimated impulse re-
sponses functions as objects that subsequent quantitia¢igestical models should aim to
interpret in terms of structural parameters.

To get pertinent impulse responses, a researcher needstbarm the one-step ahead
prediction errors in her VAR into shocks that impinge on aoregmic model, i.e., shocks
to preferences, technologies, agents’ information setstl@e economist’'s measurements.
Unrestricted VAR researchers hope to accomplish this exggeb by imposing weak iden-
tification restrictions directly on the unrestricted VAR. elhestrictions are called weak
because the researcher wants them to hold for a class of snodel

The preceding epigraphs frame our topic. At least up to atiapproximation, the theo-
retical vector autoregression implied by a model is a reeeiesxpression of its conditional
likelihood function, which according to the likelihood pdiple, contains all that the data
have to say about the model's parameters. Lucas and Stoksyract a theoretical model
whose equilibrium is a Markov process. They express dohlatsMarkov process implies
zero restrictions on a vector autoregression. Lucas arke$iadicate that it would be a
good idea to deduce the restrictions that theoretical nsdde theirs put on VARs. This
paper collects a set of convenient formulas that summauele sestrictions and describes
the mapping from the economic shocks to the shocks in a VAR. &/ew conditions
under which this mapping has an inverse that is one-sidedmmegative powers of the
lag operator, a prerequisite for having impulse responsetions to VAR innovations that
can potentially match impulse response functions to the@wic shocks. We then fo-
cus on circumstances when the impulse response associdted WAR mirrors the one
associated with the economic theory. In an interestingiap&stjuare case’ in which the
number of economic shocks equals the number of variable¥/ARa we provide an easy
to check necessary and sufficient condition for the exigterican identification of VAR
shocks that makes the impulse response associated with angéh the one associated
with the economic theory.

Prominent macroeconomists have expressed skepticisnt digovalue of incompletely
theoretical VAR’s as a research tool (see Chari, Kehoe, andrittdn (2005)). By de-
scribing how VAR shocks recombine current and past reaizatof the economic shocks
hitting preferences, technologies, information sets,rapdsurements, formula (25) below
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helps us to express and evaluate diverse grounds for siseptddout VARs. Formula (25)
imposes the following taxonomy of potential challengesniteiipreting VAR shocks and
the impulse responses of observables to them in terms ofcth@oenic shocks and their
impulse responses.

First, for some theories, the number of economic shockemiffrom the number of
observables and therefore the number of shocks in the VARorfSe@ven in the lucky
situation in which the number of economic shocks equals timeler of observables, the
history of economic shocks can span a bigger space than st@hof the observables,
making it impossible to match up their impulse responsetfans; here there is said to
be an invertibility problem because the economic shocks@iabe expressed as a linear
combination of current and past VAR innovations. Third,rewhen the theory and mea-
surements are such that there are equal numbers of econodA&R shocks and there is
no invertibility problem, there remains the challenge oftiianing the contemporaneous
covariation among VAR shocks in a way that captures the copbeaneous covariance of
economic shocks and measurement errors. Fourth, even Wioéthe first three problems
can be resolved, because (25) is in general an infinite ordBr (echnically, it is a finite
order VARMA system), one must either include vector movingrage terms or make sure
to include a sufficient number of AR terms, perhaps guidedrbynéormation-theoretic
(e.g., a Bayesian information criterion).

This hierarchy of problems has prompted many quantitatigeroeconomists to forgo
matching their theories to an unrestricted VAR. But becaus&#&R representation can be
regarded as an expression of a conditional likelihood fon¢ta researcher who believes
fully in her theory cannot turn her back on the implicatiofisier theory for a VAR

l.1. Related literature. The process of reverse engineering a subset of economikshoc
from the innovations to a VAR is known to be fraught with hailzar Several authors
have described the invertibility problem that we highlighthis paper. For examples, see
Hansen and Sargent (1981, 1991c), Watson (1994), ReichiirLgopi (1994), and Sims
and Zha (2004). These papers present some examples in wkiatvertibility problem is
‘fatal’, but also indicate other examples in which it is not.

1.2. Point of this paper. This paper reviews what is known about the reverse engimgeri
exercise and, for an interesting special case, describeagncheck for the presence of
an invertibility problem. We present four examples thatrespnt a variety of situations,
some in which invertibility is a problem, and others in whitks not. The models are (1)
a permanent income model in which lack of invertibility isdemic; (2) and (3) a model

3A theorist who wants to analyze the data as if her th@srgot true would not turn her back on the
likelihood function either, but this robustness businesaiother story.
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with two sources of technology change and a model with stiges, in both of which
invertibility prevails, though in model (3) there is a bemigigenvalue of unity that prevents
an infinite order VAR representation from existing ; and (4)ceme production model in
which, depending on the variables observed, invertibitigy or may not be a problem.
For each example, we form a 4-tugdl& B,C, D) for the economic model, then deduce
the 4-tuple(A K, C, X) for the associated VAR. Thus, these examples all involveiteres-
ing’ a VAR from an economic theory rather than ‘reverse eagimg’ features of the dy-
namics to economic shocks from a VAR. Our intention is thag¢iengineering’ examples
will provide insights about the pitfalls and possibilities successfully performing reverse
engineering exercises. Nevertheless, we recognize thamalgst who is confident about
his model and who knows the mapping from its deep parameidisettuple(A,B,C,D)
would not proceed by first estimating a VAR not restricted lstheory. Instead, he would
use one of the likelihood based approaches — either maxinkaithbod or a Bayesian
procedure — and directly estimate the deep parameters mdaheer recommended a quar-
ter of a century ago by Hansen and Sargent (198jactitioners who estimate relatively
unrestricted VARs are doubtful about many details of the dying, and prefer to impose
restrictions that they believe will be robust across a varié specifications. That is the
audience that should be vitally interested in our reverggneering exercise. A good way
to shed light on that endeavor is to assemble some représer@gamples of environments
((A,B,C,D)’s) where reverse engineering can be done easily and othren®\it cannot.

1.3. Organization. Section Il describes the mapping from the obje@sB,C,D) that
characterize (a linear approximation to) an economic mealelbjects(A,K,C,%) that
define an infinite order vector autoregression. This sedefimes impulse response from
economic shocks to observables and from VAR innovationsbevables, reviews the
connection between an infinite order VAR and a conditiork@lihood, and describes the
invertibility criterion in terms of the zeros of a particulaatrix characteristic polynomial.
Section 1l gives an easy to check condition for invertilyilin terms of the eigenvalues
of the matrixA — BD~1C. Sections IV, V, VI, and VII apply this check to four models:
a permanent income model, the two-shock model of Fisher3R@Be sticky price and
wage model of Erceg, Henderson, and Levin (2000), and thedimid production model
of Benhabib, Rogerson, and Wright (1991). We check the inubtyilcondition for both
calibrated and estimated versions of these models andtEnative sets of observables,
thereby illustrating an insight of Watson (1994). Sectiohl Wriefly describes findings

40f course, as we remind the reader in section 11.12, at eaghiisthe iterative calculations in his estima-
tions, he would form a restricted VAR in order to factor thadiional likelihood.
SThis is explicitly the motivation of Jonas Fisher (2003).
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of two recent papers that address related issues. Sectioariddins some concluding re-
marks. Three appendices describe the priors that we usdatamosterior distributions
of the parameters of several models; a fourth appendix grerulas that mapA, B,C,D)
into a finite order VAR.

[I. MAPPING FROM AN ECONOMIC MODEL TO AVAR

This section describes a class of economic model with shagcks preferences, tech-
nologies, agents’ information sets, and the economistasmements. For a set of ob-
servablesy, we leta;’s be innovations to a VAR. The innovatioas can be expressed as
a linear combination of the history of thvw's up tot. We state conditions on the (linear
approximation to) the economic model under whighcan be recovered from the history
of ag’'s throught.

II.1. Representation of an equilibrium. We start with an equilibrium of an economic
model or an approximation to it that has a representatiohdrstate-space form

Xt+1 = Ax+Bw (1)
Yt = Cx-+Dw (2)

wherew; is a Gaussian vector white noise satisfylBgt = 0, Ewmw, = I, Eww_j =0

for j #0. Herex is ann x 1 vector of possibly unobserved state variablgss ak x 1
vector of variables observed by an economist or econonetriandw; is anmx 1 vector

of economic shocks and measurement errors impinging ortdkessand observables. The
observation vectoy; typically includes some prices, quantities, and capitatiss. Withm
shocks in the economic modelstates, an& observablesfisnx n,Bisnxm,Ciskxn,
andD is k x m. In generalk # m, although we shall soon devote some special attention to
an interesting ‘square case’ in whikhk=m.

There are two popular ways to obtain equilibrium repredenta of the form (1)-(2).
The first is to compute a linear or loglinear approximatioraaionlinear model about a
nonstochastic steady state, as exposited for example, isti@ho (1990), Uhlig (1999), or
thedynar e manual® It is straightforward to collect the linear or log linear apgimations
to the equilibrium decision rules and to arrange them inéostiate-space form (1)-(2). We
provide an extended example in section V. A second way is t@13g2) directly as a
representation of a member of a class of dynamic stochastiergl equilibrium models
with linear transition laws and quadratic preferences. Ryd Rosen (2003), Topel and
Rosen (1988), Rosen, Murphy, and Scheinkman (1994), and HamskSargent (2005)
provide many examples. We describe such an example in sdbtio

6Dynare is a suite of Matlab programs that computes linearceqapations of a big class of dynamic
stochastic general equilibrium models.
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The economic shocks, thve’s, are comprised of two kinds of shocks, the first being the
shocks to preferences, technologies, and informationvaéten an economic model, the
second being errors in measuringro distinguish these two components, we can write

Wlt]

Bw = [B1 O {WZ

Dw — [Dy Dy m;j

wherewy; represents the economic shocks andrepresents pungmeasurement error.

[1.2. Argument in a nutshell. The following simple argument isolates a main outcome
and the major themes of this pagewWhenD is square and ! exists, (2) impliess =
D~1(y; — Cx). Substituting this into (1) and rearranging gijes- (A—BD1C)L]x1 =

BD 1y, wherel is the lag operator. If the eigenvalues(8f— BD~1C) are strictly less than
one in modulus, then the inverse of the operator on the ldftisfequation gives a square
summable polynomial i, and we can solve foxi11 = 37 [/A— BD1C]/BD 1y ;.
Shifting back one period and substituting this equatioa (i) gives

Vi :CZ}[A— BD 'C)'BD 1y, j 1 +Dw. (3)
J:

Under the conditions used to derive it (i.®,is invertible and the eigenvalues oA —
BD~1C) are strictly less than one in modulus), equation (3) definesctor autoregression
for y; becauseDw; is orthogonal toy;—; for all j > 0. The impulse response function
associated with (1) describes both the VAR and the theadetiodel. Thus, wheA —
BD~IC) is a stable matrig the VAR matches up naturally with the theory. In the follogin
sections we say more about this outcome. In addition, weoexpvhy, when A—BD~1C)

is not a stable matrix, the impulse responses from a VAR dammmade to match up with
those from the economic model.

I1.3. Impulse response from economic shocks to observablesy. VAR researchers are
often interested in an impulse response function fromaifgeto they;’s,

Yt = Uy + d(L)w (4)
whereL is the lag operatod(L) = Z]?o:odj'—j’ > j-otraced;d]) < +oo, andpy is the mean
of y, which can be computed as follows. If all eigenvaluesfodre less than unity in
modulus, except for a single unit eigenvalue associatdu astonstant state variable, then
the meanuy of the stationary distribution of can be computed by appropriately scaling

The argument in this subsection is entirely due to our dismoisMark Watson.
8A square matrix is said to be stable if all its eigenvaluesstiietly less than one in modulus.
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the eigenvector of associated with the unit eigenvalug:— A) Ly = 0. After solving this
equation forpy, the meanuy of the stationary distribution of; can be computed from

Hy = Clix.
Elementary calculations with system (1)-(2) deliver

¥t = ty+[C(I — AL)"'BL+D]w, (5)
so that evidently

d = D
d = CA B j>1

To economize on notation, from now on we shall assumejthat 0. Note that (4) trans-
formsm shocksw; into k observableg: j, j > 0. Formula (5) tells us how to compute the
impulse response function directly from the state spaceesemtationA,B,C,D) of the
economic mode.

Il.4. Nonuniqueness of(A,B,C,D). It is a sensible position to regard the basic theoret-
ical object as being the impulse response function in (5)gdneral, there are multiple
four-tuples of matrice$A, B,C, D) that can be used to represent an impulse response func-
tion in (5): different(A,B,C,D)’s can deliver the samgy,d(L). For convenience, one
often selects a particular member of this class by choosmganum state realization of
uy,d(L).10 We can sometimes exploit the freedom to switch among thgsesentations

in order to get a representation that satisfies our assungpti@and 2 in section Ill.

II.5. The VAR and the associated impulse responséAn infinite order vector autoregres-
sion is defined by the projection equation

“=a+ ) Ay-j+a (6)
=1
wherea = (1 — Y51 Aj) Ly, & = Y — Elve |y 1, S 1 tracgAjA|) < +oo, and theAjs sat-
isfy the least squares orthogonality conditions
These least squares normal equations implyfzt= 0 andEaa_;= 0 fors= 0. Letting
Eaal = Q = GG, we can represer = Gg;, whereg; is a stochastic process that satisfies

9The Matlab control toolkit prograrnpul se. mcalculatesi(L) from (A,B,C,D).
10The Matlab control toolkit commanslys=ss(sys,’ m n’) replaces a four-tupleA B,C,D) with
an equivalent minimal state realization.



A,B,C'S (AND D)'S FOR UNDERSTANDING VARS 8

E& =0,E&g =1, andEgg_; = 0 for j # 0. Then write (6) as
=0+ > Ajy-j+Gs (8)
=1

whereg; = Gg. _ :
Compute the polynomial in the operatoflL) = z‘f:OCjLJ =(l- z‘leAjLJ)*lG and
use it to form the moving average representation

Yt = Hy+c(L)&. (9)

This is said to be a Wold moving average representdfiofihe shock process is said

to be ‘fundamental fow;’ because it is by construction in the space spanned by square
summable linear combinations of current and past valuebeoj;tprocess. The defining
characteristic of a Wold representation is that the astsstianovation is fundamental for

yt. An impulse response function associated with an infinileb¥/AR is by construction a
Wold representation. In particular, representation (8)p®pulation version of the impulse
response function reported by a typical VAR researcher.

[1.6. Main issue in unrestricted VAR identification. We are interested in knowing the
circumstances under which the impulse response functipmgSociated with the VAR
matches the theoretical impulse response function (4) iaheoretical model. Thus, we
want a formula like (5) that is also cast in terms(8f B,C, D), but that tells the response
of y; to current and past’s. The key to constructing this representation isitimovations
representationto which we now turn.

Il.7. The innovations representation: the(A K,C, Z) System. We seek a mapping from
the matricegA,B,C, D) for an equilibrium stochastic process fgrto the autoregression
coefficientsAj, ] = 1,... and volatility matrixG in (8) and the associated moving aver-
age coefficiend; in (9). The innovations representation is the recursiveasgntation
for y; that corresponds to a Wold representation. Associated amyhstate space system

LA VAR representation does not exist when(@¢z)) has zeros on the unit circle. See Whittle (1983) and
Hansen and Sargent (1991a).
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(A,B,C,D) of the form (1)-(2) is another state-space system calledhtih@vations repre-
sentation'?

X1 = Ak +KGg (10)
i = Ck+Ge, (11)

wherex; = E[x|y'"Y],G& = a = vt — E[y|y* 1], K is the Kalman gain from the steady
state Kalman filter equations:

S = ASA+BB - (ASC' +BD) (12)
(C=C'+DD')"}(AsC' +BD')
K = (AXC +BD)(CzC'+DD')™? (13)
whereZ = E(x — %) (% —%)’. The covariance matrix of the innovatioas= Gg; equals
Eaa = GG =C3C +DD'. (14)

With m shocks in the economic moded,states, andk observablesk is n x k andG is
k x k. The vector processeg andg; are each of dimensiokx 1, as is they process, and
the matrixG is k x k.

We use the following

Definition I.1. H(Z) is the Hilbert space consisting of all square summable liroeamn-
binations of the one-sided infinite history of random vesthr

The Kalman filter applies a Gram-Schmidt procedure to theotys! to construct a
historya! with orthogonal increments that spangy'), i.e., is such thaiti (y*) = H(a') and
for whichEaa, =0 fort #s.

The innovations representation (10)-(11) for yh@rocess resembles the original repre-
sentation (1)-(2). It differs from it in that (a) theex k matrix KG replaces th@ x mmatrix
B; (b) thek x k matrix G replaces thé& x mmatrix D; and (c) thek x 1 procesg; replaces
themx 1 processv;.

I1.8. Formula for the Wold moving average representation in termsof (A ,B,C,D).
The innovations representation (10)—(11) can be rearchtmyassume the form of a Wold
moving average representation

vt = [G+C(I —AL)*KGL]g, (15)

12The conditions for the existence of this representatiostated carefully, among other places, in Ander-
son, Hansen, McGrattan, and Sargent (1996). The condiienthat thatA, B,C, D) be such that iterations
on the Riccati equation fat; = E(x — %) (% — %)’ converge, which makes the associated Kalman gain
converge tK. Sufficient conditions are th&®\',C’) is stabilizable and tha#&\', B') is detectable. See Ander-
son, Hansen, McGrattan, and Sargent (1996, page 175) foitaefs of stabilizable and detectable.
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which is a version of (9) with

C = G
¢ = CAXKG, j>1

11.9. Formula for the VAR representation in terms of (A,B,C,D). By applying a par-
titioned inverse formula to invert the operaf@-+C(l — AL)~KGL] in (15), Hansen and
Sargent (2005) show that when the eigenvalues efKC are strictly less than unity in
modulusy; has an autoregressive representation given by

Yt = C[l - (A—KC)L] Kyt 1+ Ge (16)
which is of the form (8) with

Aj =C(A-KC)I"K, j>o0. (17)

[1.10. Conditions for existence of an infinite order VAR. Remember thak depends on
(A,B,C, D) through formulas (12), (13). Equations (16) and (19) intdi¢hat the dominant
eigenvalue oA — KC controls the rate at which the autoregressive coeffici@ptonverge

to zero. If all the eigenvalues & — KC are strictly less than unity in modulus, tihg
coefficients converge to zero agdis said to have an (infinite order) vector autoregressive
representatiof® If all of the eigenvalues of— KC are less than or equal to unity, but one
or more is equal to unity in modulus, thgndoes not have an autoregressive representation.
To explain what failure of an AR representation to exist iis ttase means, consider the
nth order autoregressions

n
Ve = Hy + Z)A?yt_ j+a (18)
]:

wherepy, A7, ..., Af satisfy the population orthogonality conditioBs] = 0 andEa{a,{_j =

0, j=1,...,n. When the eigenvalue & — KC with maximum modulus is unity, the pro-
jectionsyf = uy+ Z?ZOA?yt_j still converge in mean squareyd = E[y;|y;_1,...] whereE

is the linear least squares projection oper&tdfhat an autoregressive representation fails
to exist means that the AR coefﬁcienﬁ% do not converge as— . Howevery? — ¥ in
mean square as— co.

135ee page 112 of Anderson and Moore (1979).
145ee Hansen and Sargent (1991b), chapter 2.
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I1.L11. Formula for the VARMA representation in terms of (A B,C,D). Representation
(15) is an infinite order vector moving average, and (16) i;ménite order vector autore-
gression. In the special square case thatk and thek x n matrix is of rankn, it is easy to
deduce a VARMA representation.

Premultiply both sides of (16) b@ 1, then premultiply both sides of the result fy-
(A—KC)L] and rearrange to obtain:

C 1y = [(A—KC)C 1 +K]yi_1+C'Ge — (A—KC)C1Gg_1.
Premultiply both sides of this equation Byto obtain:
Yt = C[(A—KC)C ™1 +K]yi_1 +Ge — C(A—KC)C 'Gg 1

or

vt = C[(A—KC)C 1+ K]y_1 +C[l — (A—KC)L|C 'Gg (19)

Equation (19) is a first-order VARMA (vector autoregressiveying average process) for
yt. The presence of the moving average component indicateththaure VAR represen-
tation (16) is in general of infinite order. We have more to shgut the square case= k

in section 11l

[1.12. The conditional Likelihood. A theoretical infinite order VAR or an innovations
representation implied byA,B,C,D) contains all of the implications of the economic
model for first and second moments of the procggs$. Whenw; is Gaussian, it ex-
hausts the implications of the model for the joint distribotof any sequence of’s. This
claim follows from the fact that all of the information thatiiene series of observations
{yt}{_; contains about the economic parameters underlg#ng,C, D) is contained in the
model’s likelihood function. The innovations represeiotai10)-(11) or the infinite order
vector autoregression (8) contains all of the informatieeded to construct a Gaussian
likelihood function conditional on an initial infinite histy of observations®

Denote the likelihood function of a sample of de{tﬁ}thl conditional on the infinite
historyy® by f(yr,yr_1,...,Yy1|y°). Factor this likelihood as

L= f(yr.yr-1,....yay®) = fr(yrly" ) froalyr-aly" 2 fa(yay®).  (20)

Under the assumption thak is a Gaussian process, the conditional denityt[y' 1) is
N (C%,GG)). Recalling thaty = y; —C% from (11), it follows that lodf (yr,yr_1,...,Y1|y°),

155ee Hansen and Sargent (2005), chapter 9, for how the Kalftemcfin also be used to construct an
unconditional likelihood function.
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the log of the conditional likelihood (20), equals

.
logL = —.5 Z{klogzn+ln|GG’|-l—a{(GG’)‘lat}. (21)
t=

[1.13. Comparison of impulse responsesComparing (1)-(2) with (10)-(11), notice that
the representations are equivalent wikes KG, G = D, andg = w;. Note thatB, D, and
w; are objects embedded in an economic theory, WKil&, and g are objects that are
functions of the economic-theory determined the fouraygl, B,C,D), functions pinned
down by the Kalman filter equations given above.

I1.14. The mapping from economic to VAR innovations. We can combine and rearrange
the two representations (1)-(2) and (12)-(13) to obtainféflewing system that describes
the mapping from the economic shoaksto the innovation€¢; in the innovations repre-

sentation:
Xi4+1 A 0 X B
fil = ke atvel i o) @
Ga = [C —C] m + Dw. (23)
Define
_[A 0
A= [KC A— KC} (24)
and write (22)-(23) as
Ga={p+[c —CJI-AL]" [KBD} L b, (25)

Equation (25) verifies that by constructith(e') = H(al) c H(w'). We want to know
whetherH (a!) = H(w!). If it is, we say that the mapping (25) is invertible. For theose
of directly interpreting the shockSeg; in a vector autoregression in terms of the economic

shocksw;, we would prefer thafC —C] || —A*Lr1 {KBD} = 0 so that (25) would col-
lapse to
G& = Dwt.

In the following section, we give a neat condition for checkivhetheH (al) = H(&!) in
the ‘square’ case that there are as many observables aswicasimcks.
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lll. THE SQUARE CASE

In this section, we focus on the square case with equal nisdfeshocks and observ-
ables and assume tHat! exists. This is the case that is ‘least likely’ to have an itibdity
problem. We state a necessary and sufficient condition Yeriiility directly in terms of
(A,B,C,D).

We shall make the following assumptions:

AssSUMPTION 1. The state space system (1), (2) is stable: all eigenvaluésare less
than one in modulus, except possibly one associated witimstaot.

ASsSUMPTIONZ: D is square and invertible.

lll.1. Simple check for invertibility. Assumption 2 often applies to systems with equal
numbers of economic shocks and observables (i.e., vasiabtée pertinent VAR). Under
Assumptions 1 and 2, (25) can be represented as

Ga={1+[c —c][i-AL]" [Bil] L }ow (26)

A sufficient condition forH (e') = H(w') is that the polynomial ik on the right side of

(26) has a square-summable inverse in nonnegative powérsSiich an inverse exists if
~1

and only if the zeros of d%ﬂ +[C —C] [zl —A*Tl BD }

modulus. The following theorem gives an easy way to checkghbfficient condition for
H(a) = H(w).

are all less than unity in

Theorem Ill.1. Under assumption 1, when D exists, the zeros of

detf1 +[c —C] [z1-A7 [Bil] )

equal the eigenvalues of-ABD~1C and the eigenvalues of A.

Proof. Write

+C @AY B ={i[c —c][a-AT]"" {B?(_l} ! 27)
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where
c* = [C —C]
i BD 1
B = { y } |
Now seta=I,b=C* ,c=B*,d = (zI — A") in the partitioned inverse formula
det(a) det(d + ca 1b) = det(d) deta+ bd'c) (28)
to get
_ det(zl — A* 4+ B*C*)
* A\ —1lp* —
detl +C*(zl — A")""B") delzl— A (29)
Compute
_Rrp-1 —1
zZl-A"+B'C" =zl — [A BOD < BDA C} ; (30)

an equation that shows that the zeroga#tzl — A* + B*C*) equal the eigenvalues éf—
BD~1C and the eigenvalues @ Using this result in (29) shows that the zeros of(bet
C*(zl — A*)~1B*) equal the eigenvalues #f— BD—'C and the eigenvalues & O

BD?
K
to unity in modulus, but one or more zeros equal unity in magluthen an autoregressive
representation fails to exist. Nevertheless, it is true thé') = H(w!). See Whittle (1983)

and Hansen and Sargent (2005), chapter 2.

Remark I11.2. If all zeros ofdet{l +[C —C] [zl —A*Tl { } } are less than or equal

Remark 1I1.3. Under assumptions 1 and 2, to check whethée'ii= H(w'), we can
simply inspect the eigenvalues of BD~'C. Thus, we can check whethef4) = H(w)
by knowing only the fundamental objectsBAC,D and without actually computing the
innovation representation and, K via the Kalman filter.

Another way to express this point is to note that we can coetpaindz directly without
having to solve the Riccati equation (13), as we show in tHevehg theorem.

Theorem I11.4. Suppose that D! exists and A- BD~1C is a stable matrix. Then in the
steady state Kalman filter, & BD~! andX = 0.

Proof. Notice thatt = 0 solves the steady state Riccati equation (13). Notice hgontith
> =0, equation (13) implies tha = BD~L. Furthermore, the Riccati difference equation
corresponding to the steady state equation (13) can besepes as

i1 = (A—KC)%(A—KC) +BB
+ KDD'K'—-BDK'—KDB (31)
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where
K; = (A%,C' +BD')(C%C’' +DD’)~L.
Under the conditions of the theorem,— K;C converges to a stable matrix— BD~1C

and successive iterat@s converge to zero starting from any positive semidefinitéabhi
o. O

Remark 11l.5. When D! exists and A- BDIC is a stable matrix, the implicatiof = 0
means that there are no hidden state variables. It followso= 0 that % 1 belongs to
the Hilbert space generated bY.y

Remark 111.6. Under assumption 1, when-ABD~1C is a stable matrix, all of the zeros of
det(l +-C*(zl— A*)~1B*) are cancelled by pole¥. This follows from (29) and the definition
of A*. This result reflects a situation in whicheGequals Dw; in particular, the correlation
between the wprocess and the process is entirely contemporaneous.

Remark IIl.7. The one step ahead errors covariance matrix from the econonadel
Elyt — E[(yt W 1))] [yt — E[(ytw*1])]’ = DD’; while the one step ahead errors covariance
matrix from the VAR is Bt — E[(yt[Y' D]yt — E[(yt|y* )] = DD’ + C=C’. When the in-
vertibility condition fails, the prediction error variacmatrix for the VAR is larger.

We have the following

Corollary 111.8. Under the conditions of theorem Ill.1, Pw Gg& and the innovation
covariance matrix GG= DD’. Thus, we are free to set & D. Of course, the choice of G
is unique only up to postmultiplication by an orthogonal mat

Proof. It can be verified directly from (25) that when the conditiamigheorem Ill.1 hold
and, thereforel = BD, it follows thatGeg = Dw;. O

Remark 111.9. Under the conditions of theorem IlI.1, corollary 111.8 gsve way to find
the correct identification scheme for the VAR. If an eigamvalf A—- BD1C equalsl in
modulus, the model remains invertible (see remark Il1.2)ithacks an infinite order VAR
representation (see subsection 11.10).

The assertions in theorems Ill.1 and 111.4 can be viewed gnsions to a vector process
of the following well-known example:

Example I11.10. Take the scalar pure m.a. process
Vi =W +aW_1.

16crom (29), the zeros of d@t+C*(zI — A*)~1B*) are the zeros of détl — A* + B*C*) and the poles are
the zeros of dgrl — A").
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Let the state beyx= w;_; so that we have a state space representation with@\B = 1,
C = a, and D= 1. Evidently,

A—-BDC=—a,
which is a stable matrix if and only j&r| < 1, in which case K= B.

[11.2. A quartet of examples. In the following four sections, we present four models de-
signed to illustrate the theoretical results of sectiorail I1l. We select our four examples
to document when invertibility is a problem, when it is natdavhen we face benign bor-
derline cases in which an eigenvalue of unity in modulus igagom that an infinite order
VAR does not exist. Each model will teach us something ofrggkin a context we feel is
representative of some typical applications in macroesoos.

First, we use a permanent income model to express the pauat atvertibility made by
Hansen, Roberds, and Sargent (1991) in terms of the objettisanem II1.1. If we observe
total income and consumption, this model is always nontiitde because one eigenvalue
of A—BD~1C would be equal to the inverse of the discount factor, andsequently,
bigger than one. The origin of the non-invertibility of thisodel is the presence of two
income shocks that cannot be disentangled from observiabit@ome and consumption.

Second, we discuss the model with investment-specific tdogital shocks as described
in Fisher (2003). We show that for our choice of observatlitess model is invertible both
for a sensible calibration and for parameters estimatedjubkie Bayesian approach.

Third, we use the model with sticky prices and sticky wageErmkg, Henderson, and
Levin (2000). For a particular set of observables, this rhdavertible but does not have
a VAR representation for a reasonable choice of parameteesaThis result teaches us
about benign borderline cases that sometimes occur incapipins in macroeconomics.
We also estimate the model using the Bayesian approach andtsat for our choice of
observables, the posterior probability of the model beioig-imvertible is zero.

Finally, we study a model of household production descriwedenhabib, Rogerson,
and Wright (1991). We show that, for a sensible choice of patanvalues, the model is in-
vertible for one set of observables but non-invertible foother set. This model illustrates
how the presence or absence of invertibility depends diyaa our choice of observables
in ways that have been discussed by Hansen and Sargent (I8®Ic), Watson (1994),
and Reichlin and Lippi (1994). Finally, we estimate this moasing the Bayesian ap-
proach and show how the posterior probability of the modgldron-invertible is zero for
our first set of observables, but one for the second’set.

L7Note that our discussion of invertibility holds for linearlmearized models. If we work with non-linear
economies, different issues appear as illustrated in Gaband Engel, (2004).



A,B,C'S (AND D)'S FOR UNDERSTANDING VARS 17

I\V. A BADLY BEHAVED EXAMPLE : A PERMANENT INCOME MODEL

This section briefly reviews how the structure of the permameome models of Hansen,
Sargent, and Roberds (1991) manifests itself in ways desthly our theorem Ill.1. As-
sume that there is a representative household whose preésrever stochastic sequences
of consumptionc; and capital accumulatiok — k;_1 are representable by the following
utility function:

_5 iﬁ%(ct b+ e(k —k_1)?) (32)
t=

wheree > 0 is a very small number, makirgfk; — k._1)? a small adjustment cost that we
include to select an interesting solutith.

The representative household maximizes utility functi®®)(subject to the asset accu-
mulation equation:

ki +ct < Rk_1+ 0k

with k_; as an initial condition, and where the endowmentollows the two-component
process described by:

ok = g + O W1t +

OoW
1-pL 1ML 22

where|p;| < 1, |A1] <1, wy ~ A47(0,1), andwy ~ 47(0,1).

We follow Hall (1978) and seRB = 1 in order to deliver the outcome thistandc; are
cointegrated?® Our choice of parameter values is as follows= 1.05, p; = 0.9, A; = 0.6,
Ug =5, andb = 30.

IV.1. The A, B, C, and D matrices. Let dy = 1—5- 01w, dt = 5 GaWar, anddk =
g + di + dor. Define the state vector as= [k—1 1 dy dzdl and let the observable
variables be = [ dt]/. We can write ou&, B, C, andD matrices as follow<?

X1 — A%+Bw
Yi = Cx+Dw

18f we sete = 0, the solution of the problem s = b.

197his outcome occurs in the limit &\, 0.

20we used Hansen and Sargent’s (2005) Matlab prografinvea. mto compute(A,B,C,D) by setting
S=[sc;sd(1,:)], A=ao, B=c, C=S+xao, D=Sc.
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/. . . . . .
wherew; = [wlt wzt} is a vector of white noise with mean zero and identity contemp
raneous covariance matrix and:

1.0000 00000 06667 0888
A 0O 10000 O 0
- 0 0 09000 O
0 0 0 Q6000
T 0 0
0 0
B = los000 0
| 0 08000
c [0.0500 50000 03333 01117
~ | 0 50000 09000 06000
o _ [0.1667 00889
~ 05000 0800Q
It follows that:
1.0000 00000 06667 08889
A BD-1C— 0 1.0000 0 0

—0.2250 —20.0000 —0.1500 —0.2000]
0.2250 150000 01500 02000

This matrix has an eigenvalue of0b, which equal&. Therefore, the mapping (26) is not
invertible. It follows that the Hilbert spade(a‘) spanned by the history of VAR shocks is
smaller than the spadé(w') spanned by the space of economic shocks. Furthermore, in
general the shapes of the impulse responsesandw; differ.?!

Motivated by remark 111.7, as a measure of the informaticst ia the historyy' condi-
tioning the VAR compared to the histow} of shocks in the economic model, we computed
CsC/ - {0.0000 00000 0.0357 01544}

!/ __
0.0000 00227} andDD’ = [0.1544 08900

trices reveal that while the VAR correctly estimates the-step ahead prediction error
variance in consumption (this is after all the content ofl84L978) characterization of
the linear-quadratic permanent income model), it ovaresgts the volatility of the ag-
gregate endowment shock from the consumer’s point of viewe dverestimation of this
volatility comes hand in hand with failing to match the imgeiresponse function.

wherey; = [c; dt]/. These ma-

21Invertibility of the mapping (26) for the permanent incomedrl is obtained if the observation vector
is either [c; kt]/ or ok — kt,l]/. With either of these observation vectors, the offending z¢R flips
to become a zero & 1.
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IV.2. Historical note. Sargent (1987, chapter XIII), Hansen, Roberds, and Sar@y@atj,
and Roberds (1991) studied a version of this example in regptma question asked by
Robert E. Lucas, Jr., at a 1985 Minneapolis Fed conferendé: amtonstant interest rate,
what restrictions the hypothesis of present value buddanbea place on a vector autore-
gression for government expenditures and tax receipts?p@&hmaanent income model is
isomorphic to a stochastic version of a tax smoothing mauéhé style of Barro (1979)
with total tax collections; replacing consumption, and government expenditurgsre-
placing the endowmert;. This model imposes two restrictions on theandd; process:
(1) present value budget balance, andg2yust be a martingale. Because it implies equal
present values of the moving average coefficient§ ahdc; to either economic shoack,
present value budget balance puts a zef ioito the operator on the right side of (26) and
is therefore the source of non-invertibility.

Hansen, Roberds, and Sargent (1991) went on to answer Lupgssion by showing
that present value budget balance by itself puts no testabigctions on the infinite order
VAR of [c; d]’.

The permanent income example withandd; as the observables is one in which the
invertibility condition is bound to fail. That stands as aiaterexample to a presumption
that VAR shocks always readily match up with the economicckbey. It is thus one
important example of things that can go wrong. However,dlae other examples in
which things can go right. In the next sections, we turn tawas that are invertible.

V. A BETTER BEHAVED EXAMPLE: JONAS FISHER'S TWO TECHNOLOGY SHOCK
MODEL

The model of Fisher (2003) is a good laboratory for us becéliseisher explicitly re-
marks that invertibility is a prerequisite for his interfaons to hold water; (2) at least with
Fisher's observables, invertiblity can be established Hirect argument; and (3) Fisher’s
model directly confronts some of the issues about matcmingvations from VARS to pro-
ductivity shocks that have preoccupied critics of VARs (searCliKehoe, and McGrattan
(2005)).

Fisher (2003) assesses the impact of technology shockssamelss cycles by imposing
long-run restrictions on an estimated non-structural VARhEr explicitly acknowledges
that a necessary condition for his procedure to be compe8iithat the mapping (26) be in-
vertible, and he assumes but does not verify invertibikitg.imposes a long-run restriction
on G that is suggested by an analysis of his exogenous growth Imaithetwo orthogonal
unit-root technology processes. In this section, we usdhmarem Ill.1 to verify that that
invertibility assumption is indeed valid at calibratedwed for the parameters in Fisher’s
model.



A,B,C'S (AND D)'S FOR UNDERSTANDING VARS 20

Recovering the theoretical impulse responses from an uintest VAR requires assign-
ing the correct identifying matrixz. In this section we also show that Fisher’s choice is
the right one. In the last part of the section we extend thelteby reporting the posterior
probability of the model being non-invertible using the Bsig@ approach.

Fisher's model features a representative household whaserpnces over stochastic
sequences of consumpti@ and leisure 1 L; are representable by the utility function:

E S ( log(1—L
ot;B(ongwog( t))

wheref € (0,1) is the discount factor anly is the conditional expectation operator. The
resource constraint is:

Ci+X% = AKILi ™,
and the law of motion for capital is:
Kiyr = (1—-90) Ki + WX,
and:
A = eV+Ca UaWatAt ,y>0
\/’[ — eU+CU(L)O-UWUt\/t_1’ U Z O
[WabWUt], ~ A(0,1)
whereC, (L) andC, (L) are square summable polynomials in the lag operatdiVe as-
sume thaC, andC,, are both the identity operator.
V.1. The A, B, C, and D matrices. Since the model is non-stationary, we define the
1 a 1
scaling variabIeZt = Aﬁ*iVH = (A1) e and the transformatlor\@‘,t and
K =
tal stock around the steady state value of the variables:

log Kt+1 —logKss= a1 <Iog K: —log Kss> + a03Wat +az0yWy t,
for hours worked:
logL; — logLss= by (Iog K; — log Kss> + DpGaWay + bzaywy t,
and for consumption:
10gC: —logCss = 1 (10gK; — 10gKss) + C20aWa + Ca0uWo,

whereay, ap, ag, b1, by, bs, ¢1, ¢ andcs are constants that depend on the structural parame-
ters of the economy. For this model, it turns out that ag, ay = 1 L, andby = 1 L
We use these loglinear decision rules and the definitionbetransformed variables to
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obtain the following state-space system in logarithms efaiginal (untransformed) vari-
ables??

1 1 0 1 0 0 W
Nki1| = |22 (y+u) a O] [Ak | + [ (B +ap0a {2 +ag0y [Wa’t} (33)
I e I [ bo0a b0y .
y+u 1
Alye —t) _ y+abyi—; a(l-by) O Ak |+ (1—abp)oa —abzoy| [Wat
It —blf_—_g by 0 b20a bsoy Wu t

lt—1
(34)
wherek; = logK;, |t = logLt, andy; = log;.

Equations (33) and (34) form a state space system of the Agri8) C, andD. We set
parameter values to bg8 = 0.99, ¢y = 2.2, a = 0.33, 6 = 0.025,y = 0.01, v = 0.001,

04 = 0.5, andg, = 0.2.

The system formed by (33) and (34) is a ‘square system’ withgtwocks and two ob-
servables. The eigenvalues Af- BD~C are all strictly less than one in absolute value,
which means that (26) is invertible. It also means that byirgetG = D, the impulse
response function tg associated with an identified VAR perfectly matches the ilsgpu
response function to the theoretical showks This impulse response function is reported
in the bottom two rows of panels of Figure 1.

Therefore, we can conclude that for this particular model tms particular set of ob-
servables, invertibility prevails so that we are assured there exists som@ satisfying
GG = DD’ that makes the impulse response for the identified VAR mdteltheoretical
impulse response to thes. However, the example also confirms the doubt expressed in
the epigraph from Lucas and Stokey at the beginning of thpepa he require must be
equal to

0.4370 —0.0252
D= {0.1908 00763] (35)

which lacks zeros, as Lucas and Stokey feared.

As mentioned before, Fisher explicitly acknowledges thatnder to recover the theo-
retical impulse response to tés using an unrestricted VAR, we need the mapping (26)
to be invertible. But it is important to note that we also needhg of discoverings while
initially being ignorant oD. Is Fisher able to do that? We analyze this question below.

22Thjs is not a minimum state space representation. With soomk,Wogl;_1 can be eliminated as a state
variable.
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FIGURE 1. Common impulse response functions for VAR and economic

structure for Fisher’'s model. For the two-observed-vdeiaodel, only the
bottom two panels are pertinent.
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V.2. Fisher’s identification procedure. Fisher fits an unrestricted VAR withlogp; as
an observable. Therefore, in order to explain his procedueeneed to define the state
space system formed by (33) and the following observer asuat

Alogp -V 0 0 1 0 —0y
Ay —10) | = |y+ab ¥ a(1-by) 0| [k |+ |(1—aby)oa —abzay {Wa,t}
l¢ —blﬁ—z b1 0 li_1 bo0oa bsoy, Wot
(36)

Before we describe Fisher’s bit of magic, we have to work adaautechnical difficulty.
When using the three variable observation vector (36), we t@gonfront the fact that now
we have a stochastically singular system. Two shocks avendgrthree observables (i.e.,
the system formed by (33) and (36) is not square). To eliraitfat stochastic singularity
problem, while staying as close as possible to Fisher’s imageadd a very small normally
distributed measurement error to lagvith mean zero and standard deviatioy) .

To identify G from a three variable system, Fisher notes thiaig p; = —AlogV; is an
exogenous white noise that equals;. Therefore, any scheme for factori@®G' that
identifies the row ofGg associated witi\log p; with wy + should work. Fisher uses the
following scheme that satisfies this condition.

Let Q = CZC' + DD’ be the covariance matrix @e¢; from the infinite order VAR (see
equation (14)). Fisher (2003), footnote 5, applies a procedf Blanchard and Quah to
identify G. First, he formse(1) = (1 — 371 A )~1. Second, he computes a lower triangular
Cholesky factox of €(1)Q¢(1)’, so thatxX = €(1)Q¢E(1)'. Third, after noting that(1)G is
a factor ofc{1)Q¢E(1)’, he compute§ = ¢(1) ~1x.

This scheme succeeds in recoverin@Ga D. The impulse response associated with
the infinite order VAR wherG = D conforms with the impulse response to the economic
shocks. The impulse responses functions are reported urd-lg The only change from
the VAR computed for our two variable system is the additibthe top panel in Figure
1.24

While these calculations confirm the validity of Fisher’'sntiication procedure for his
theoretical model, they do not really contradict the skagtn about zero restrictions on
Gor z‘f:lAij expressed in Lucas and Stokey’s epigraph. The phexrsgogenousari-
ables’ in the epigraph bears remembering. Fisher’s zetoagsn thatAlogp; is never

23Notice that system (36) is by construction triangular, wite shockwy; being revealed b log p;. By
an easy argument, it can then be shown tiagtcan be revealed fromy and either of the remaining two
observables. Therefore, the model with these observablesgartible.

24p simple alternative to Fisher's scheme would also work, elgnthoosings as a triangular Cholesky
factor of the innovation covariance mattixthat setsGiow, ¢+ = Alog p.
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influenced byw, comes from having specified the model so théig p; is econometri-
cally exogenoug?®

V.2.1. Finite order VARs for Fisher's modelJsing the projection formulas in Appendix
D, we computed population versions of finite order vectooegressions for both the two
and three variable VARs implied by the Fisher’s model. We coteg VARs with 1 and 4
lags. Both gave such close approximations to the impulsensgpfunctions reported in
Figure 1 that it was impossible to detect any difference wheplotted them on along side
those in Figure 1. Therefore, for Fisher's model, a VAR wittedag that includeAlog p,
A(y: — i), andl; as regressors would do a fabulous job in matching the theal@npulse
responses if correctly identified.

V.3. Posterior distribution for parameters of Fisher's Model. We have argued that,
when we observélogp:, A(y; —lt), andl;, Fisher's model is invertible for a sensible
choice of parameter values. In this subsection, we invagtigghether the result also holds
when we estimate the model using U.S. d&ta.

In order to do that, we employ the formulas reported in sectid2 to compute the
likelihood function of Fisher’s Model. Then, using the pador the structural parameters
reported in Appendix A, we draw from the posterior distribatof the parameters using
McMc techniques. For each draw of the posterior, we evaloiaté, B, C, andD matrices.
We find the eigenvalues associated with each draw of the eeatand compute the poste-
rior probability of the model being non-invertible. The persor mean, standard deviation,
and a plot of the posterior distribution of the structuraigmaeters are reported in Appendix
A.

We observéilog pt, A(y: —It), andly, where logp; is the log of real price of investment,
yt — It is the log of labor productivity in consumption units, dpdre logs of worked hours.
We use quarterly data, with sample period 1955:01 to 2000@&4follow Fisher and mea-
sure the real price of investment as the ratio of an investrdeftator and a deflator for
consumption derived from the National Income and Produciofiats (NIPA). In general,
investment deflators are poorly measured, so we use Fistmerdructed investment defla-
tor. Our consumption deflator corresponds to nondurabtgjces, the service flow from
durables, and government consumption. Labor productisite non-farm business la-
bor productivity series published by the Bureau of LaboriStias (BLS). Per capita hours

25Fisher presents an informative discussion of this pointisngaper and describes how the particular
zero restriction that we have imposed would not prevail withodified technology for producing investment
goods.

26ps noticed before, the system (33) and (36) is not square.rderdo square the system we add a
normally distributed measurement error to the observedeehours,ps, with mean zero and standard
deviationoy, .
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are the BLS hours worked divided by population 16 and 65 ydarsrder to express la-
bor productivity in consumption units per hour, we use thestonption deflator reported
above?’

The results are that, given our priors, the posterior pritibhabf the model being non-
invertible is zero. This is not only true for the set of obsdates we report above, but it is
also true for the case where, instead of log hours, we obseevdifference of log hours,
Al;.

VI. ANOTHER WELL BEHAVED EXAMPLE: THE EHL MODEL

Many sticky price models imply a reduction in hours worketeat positive produc-
tivity shock hits the economy (see Gali, (1999)). This tetioal finding has motivated
some empirical work trying to identify a productivity shoald its consequences for hours
worked.

We analyze Erceg, Henderson, and Levin’s (2000) model viithysprices and sticky
wages. We use our theorem l111.1 to verify that invertibilggsumption is indeed valid at
calibrated values. Since this model is well known in theditare, we will only present the
equations describing the log deviation from steady-stabees of the variables.

First, we have the Euler equation that relates output grewittinthe real rate of interest:

Yt =EYir1—0(r —EAp11+EGir1—0)

wherey; denotes output; is the nominal interest ratg; is the preference shifter shog,
is the price level, and is the elasticity of intertemporal substitution.
The production function and the real marginal cost of préidacare:

Vi=a+(1-9)n

mG =w — P+ — W%

whereg; is a technology shocky is the amount of hours workethg is the real marginal
cost,w; is the nominal wage, andlis the capital share of output.
The marginal rate of substitutiomrs, between consumption and hours is:

1
mrS:gt+EYt+Vnt

wherey is the inverse elasticity of labor supply with respect tol igages. Hence, the
preference shifter shock affects both the consumptionriegjeation and the marginal rate
of substitution.

2N\we thank Jonas Fisher for these data.
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The pricing decision of the firm under a Calvo timing restdotdelivers the following
forward looking equation for price inflatiodp:

Apy = BEAP+1 + Kp(MG + Ay)

wherekp = (1_33812‘(’51(11);9") ande = AL_l is the steady state value of the elasticity of
substitution between types of goods.is the price markup shoclé, is the probability of
keeping prices fixed during the period, gids the discount factor.

Staggered wage setting delivers the following forward Inglequation for wage infla-

tion Aw;:

AW = BEAW 1 + Kw(Mrs — (W — pt))

whereky, = %, 6, is the probability of keeping wages fixed in a given period,

andg is the elasticity of substitution between different vaastof labor in the production
function. With staggered wage setting, it is no longer trhugt tvorkers remain on their
labor supply schedule. Hence, the driving force of curremiimal wage growth is expected
nominal wage growth, as well as the distance between theimahrgte of substitution and
the real wage.

We use the following specification for the Taylor rule:

e =prre—1+(1—pr) [VrApe + Wyt +ms

wherey; andy; are the long run responses of the monetary authority to tiengof infla-
tion and output from their steady state values, mngds the monetary shock. We include an
interest rate smoothing parametgy, following recent empirical work (see Clarida, Gali,
and Gertler, (2000)).

To complete the model, we need the identity that links regengrowth, nominal wage
growth and price inflation:

W — Pt =We—1 — Pr—1+Aw — Ap.
Finally, we specify the shocks to follow:
& = Pad-1+W
O = PGt 1+W
mg = w"
A = w

where each innovatiow{ is distributed as/” (O, aiz) distribution, fori = a,g,m,A. The
innovations are uncorrelated with each other.
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VI.1. The A, B, C, and D matrices. With the model in this loglinear form, we find that
the coefficients of the policy function of the form:

ki = Pk-1+ Qz, (37)
and

Lt = RK_1+ Sz, (38)

whereke=[wi—pr rr Apr Awe Yy [, Li=[m mg mrs ¢ |,andz=[a o ms A |-
A more convenient way of writing (37) and (38) is

LRI A T P e

and
L=[R SNJ[K_, 4 ;] +Sw,
wherew; = [ W@ w™ w} wf .
Let us consider the observablés= [ Apr Any y¢ W —p; |’. Then, we obtain the
following state-space system in log deviations from stestdie:

(K z m]'=A[K, Z; mnq] +Bw, (39)
Y%=C[K , Z, M 1] +Dw, (40)
where
P QN O
A= N 0 0
| Q
As.
C_ A6,.—[0000000001]/
As. ’
Ag.
and
Bs.
| Be,
D= Bs..
By,

whereA, . stands for theth row of matrixAandx = [ K _; Z ; n_1]"
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VI.2. An empirical analysis of EHL's model. Equations (39) and (40) form a state space
system with matrices, B, C, andD. Since the system is ‘square’, with four shocks and four
observables, we can check its non-invertibility empificalMe do so from two empirical
strategies.

First, we follow the literature and chose our parameteraglo be:B = 0.9, € = 6,
0=04,0=05,6,=6,=09,y=2,90=06,% =0.125,y7y=15,0r = pa=pg=0.9,
andg; = 0.05 fori =a, m, A, andg.

Second, we estimate the model and compute the posterioalpititp of the system (39)
and (40) being non-invertible as we did for the Fisher’s nodlke prior distributions, the
posterior mean, standard deviation, and a plot of the postistribution of the structural
parameters are reported in Appendix’B.

For both empirical strategies, the eigenvalues efBD1C are all strictly less than one
in absolute value except one that is exactly equal to onesolate value. Therefore (26)
is invertible. The unit eigenvalue means that the model dmtshave an infinite order
VAR representation, but the fact that invertibility predganeans that to an arbitrarily good
approximation the economic shocks can be expressed as tiogdinations innovations
in a sufficiently long finite order VARSs.

VII. AN INTERMEDIATE EXAMPLE: THE HOUSEHOLD PRODUCTION MODEL

Benhabib, Rogerson, and Wright, (1991) and Greenwood and wi#rc@1991)intro-
duced a household sector into a standard business cycld.nidekr motivation was that
the household sector is large both in terms of inputs (timekaa and capital used) and
in terms of output and that including this section improvesquantitative performance of
the model along several dimensions. We use a model of holasgtamluction to show how
the invertibility or lack of invertibility of a model depesdn the choice of observables.

We describe the Benhabib, Rogerson, and Wright (BRW) model ofukiméss cycle as
postulated in their 1991 paper. To show that the issues weareerned with appear in
the work of applied researchers, we calibrate the model autictly the same parameter
values than BRW did. Then we propose two simple VARs and we dssits invertibility
conditions.

28ve observeAp, Any, yi, andw; — pr, whereAp; is the log of inflation,n; is log of the share of per
capita worked hoursy; is the log of per capita output, ang — p; is the real wage. We use quarterly data
for the sample period 1960:01 to 2001:04. Our measure ofimfias the nonfarm business sector deflator.
Per capita hours are the BLS hours worked divided by the wgrke population. As the per capita output
measure, we use the nonfarm business sector divided by ttkéngg@ge population. Finally, we take hourly
compensation for the nonfarm business sector as nominasvaffe demean inflation and linearly detrend
hours, output, and real wage.
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The economy is populated by a representative householdentreserences are given
by:

maxEo %Bt {Iog (ac,ﬁ’qtjL (1— a)cﬁt) ® 4+ log(1—lm— Iht)}
t=

wherecn is the consumption of the market good at tilpe; is the consumption of the
household goody is labor in the market sectdy is labor in the household sectd is
the expectation operator, afide (0,1) is the discount factor.

The technology to produce the market goad and the household goag; is a Cobb-
Douglas function of the fornym = embkZ 1% andyy = entbKl "7 wherekn is the
capital used in the market sectky; is the capital used in the household sedbaneasures
the productivity level, andzyt,z} are shocks to the productivity levels, which follow an
AR(1) process:

Zmt = PmZmt—1-+ Emt
Znt = PnZht—1+1 Ent

(ar)~((5))

andz = < 3"‘ g ) Finally, define( Wt ) = 2—1/2( Emt ) such that:
h

where

Wht Ent

(o )~ ((0)4):

The output of the market sector can be used for consumptitor orwvestment while the
output of the household sector can only be used for consompti

Capital evolves according t@.1 = (1— 0) ki + it whered is the depreciation factor and
it is investment. Since capital can be moved across sectonsutitost, the aggregate
resource constraints of the economy are:

Cmt + it = €MDK 5 @
Cht = e%blﬂtlrln_n
ki = Kmt + Knt

A competitive equilibrium for this economy can be definedhea standard way. Follow-
ing BRW, we set the discount factor fo= 0.99 to match the interest rate, the participation
of capital in each sectar = 0.33 andn = 0.08, the depreciatiod = 0.025, and the pref-
erence parameté = 0.8 as in the related literature. We normalize the productimection
settingb = 1 . The utility function parametes= 0.34 andy = 0.59 are set to generate
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a fraction of market work of 0.33 and of household work of 0.Z8e stochastic process
parametergm = pn, = 0.95, oy, = 0, = 0.07, andy = 2/3. Note, however, that since we
solve the model by linearization, the results of our disimrsbelow are independent of the
values ofoy, on,, andy because the coefficients of the policy functions are inddgenof
them, the covariances do not affect the eigenvaluds-oBD1C.

We solve the model by loglinearizing its equilibrium comaliis around the steady state.
Then, we get a policy function for capital (where we &ge- logx — logXss to denote a
variable value as a percentage deviations with respecetstédady state):

Ker1 = Ykt + YnPmZmt—1 4 YhOhZnt—1 + YmEmt + Yhent

that, together with the law of motion for the technologidabsks generate the transition
equation:

(e W YmPm Won O] | ke Y h
Zmt O pPm O Of [zZna 1 0fs1p2 [Wmtl

_ + > 41
Zpt 0 O Pn 0| [Zn—1 0 1 Wht *1)
1 0 0 0 1 1 0 O

VII.1. Case I: things go well. Now we illustrate how the concrete choice of observed
variables renders the model invertible or not. First we assthat we observe market
output and market hours. The policy functions for markepatts given by:

Ymt = Nkt + NmPmZmt—1 + NhPhZnt—1 + NmEme + Nhént
or, in observed logs:

l0gymt = 10gYmss-+ Mkt + MmPmZmt—1 + MhOnZnt—1 + Mmémt + Mnént
The policy functions for hours:

It = @k + GnOmZmt—1 + GhonZni—1 + BnEmt + Phén
or in observed logs:

loglimt = 10gImss+ @ik + @ndmZmt—1 + GhOnZnt—1 + Pt + Ghéhnt
Then, the measurement equation is:

~

ke
{Iogymt} _ {nk MmPm  MhPh |09ymss} Zmt-1 +[nm nh} 51/2 {Wmt} 42)
loglmt & @nPm @hPn 109lmss| | Zne—1 ¢t ¢h Wht

1

For our calibration, the biggest eigenvalue Aof BDIC is 0.910 and the model is
invertible.
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VII.2. Case II: things go badly. Now let us suppose that we change our observables and
that we build a measurement equation with market consumptibose policy function is:

logCmt = 109 Cmss+ LI’kEt + UmPmZmt—1 + UnhPnZht—1 + YmEmt + Ynént

and labor. Then, we will have:

~

ke
[logcmt] _ {Wk YmPm  YhPn |090mss] Zmt—1 n {Wm wh} 51/2 [Wmt} 43)
loglmt & @GnPm  ®pPn 10glmss| | Zne—1 B Wht

1

Now the biggest eigenvalue 8f— BD~1C is 1.096 and the model is non-invertible.

VII.3. Posterior for parameters of household production model.We have seen that,
for a sensible calibration, the household production maleivertible if we observem,
andly, while non-invertible if we observe, andly,. In this subsection we go further and
compute the posterior probability of the systems (41) ar) éhd (41) and (43) being
non-invertible.

Our priors for the structural parameters are reported inefx C, as are the posterior
mean, standard deviation, and a plot of the posterior Higion of the structural parame-
ters.

In the first system, we observe lag: and lodm:, where log/: is the log of the per
capita market output and ldg; is log of the share of market worked hours. We define mar-
ket output as the sum of real consumption, real private invest, and real government
expenditures (all from BEA). To obtain output per capita, wed# output by civilian non-
institutional population between 16 and 65 years (BLS). Ttare of market worked hours
is calculated as follows. We calculate per capita workedadividing hours worked in
the nonfarm sector (BLS) by civilian noninstitutional pogiibn between 16 and 65 years
(BLS). Then we divide per capita worked hours by 4880n the second system, we ob-
serve logmnt and lodmt, where logyt is the log of the per capita market real consumption.
We define market real consumption as the sum of real consompfinondurables, real
consumption of services, and real government expendifaesrom BEA). In order to
obtain per capita market real consumption, we divide reasamption by civilian nonin-
stitutional population between 16 and 65 years (from BLS)aHy, since our model does
not have a balance growth path, we linearly detrend both g@itac market output and per
capita market real consumption. We use quarterly data ansitimple period is 1964:01 to
2004:04.

29Implicitly we are assuming that the maximum number of hohat & person can work is 4000.
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We find the following results. If we obseryg, andl, the posterior probability of the
model being non-invertible is zero. If we obseoggandl, the posterior probability of the
model being non-invertible is one. These results confirmcalibration results.

VII.4. Discussion. Why do things go wrong in the second case and not in the first8dfat
(1994) suggests that a researcher is most vulnerable tonmertibility when her VAR
excludes measures of important endogenous variablesepand on streams of expected
future values of other variables. This is precisely theadian in our example. Models with
household production limit the econometrician in terms bicl activities of the household
she observes. In general, the researcher can only meastketpaces and quantities.

Furthermore the set of observables that generate the mertibilities is not obvious
ex-ante. A researcher interested in the study of the inierabetween consumption and
hours can reasonably think about estimating a VAR with thesevariables. How could
she know, before computing the model, that this specifinaimon-invertible but one with
market output and hours is?

VIIl. RELATION WITH THE LITERATURE

There is a substantial critical literature evaluating thiit of VARs to document em-
pirical phenomena. We do not attempt here to review thisalitee except two recent
papers: Chari, Kehoe, and McGrattan (2005), or CKM, and ErGaggrrieri, and Gust
(2004), or EGG. These two papers discuss issues related fpomis and have received
wide attention. Consequently, it is important to comparé timedings with ours.

VIII.1. Do technology shocks lead to a fall in hoursZCKM and EGG are motivated by
the observation that Structural Vector AutoregressioNAE have become popular as a
procedure to isolate economic shocks. One of the most r@lexamples is the discussion
concerning the relation between hours and productivityckbio A SVAR with the first
differences of labor productivityand first differences of hours, DSVAR from now on, and
identified as proposed by Gali (1999), delivers that hodlsfer a productivity shock. If,
instead of the first difference of hours, we estimate a SVAR Wwours in levels, LSVAR
from now on, the evidence is ambiguous.

Both CKM and EGG specify simple business cycle models with lshoa technology,
taxes, and, in the case of EGG, preferences and governmestoption. They select
parameters for their models (by ML estimation in CKM and byilation in EGG) and
use them as data generation processes for which they compn8&AR an LSVAR.

The results in CKM and EGG are similar. For example, if we comagaures 4, 6A,
and 11A in CKM and figure 5A, panel 2 in EGG, we see that in botlepap

30All variables are expressed in logs
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e The DSVAR gets the impulse response function wrong: theareker that uses a
DSVAR will find that hours respond negatively to a technolstpck even when
the true impulse response function is positive.

e The LSVAR estimates a impulse response function with th& smg but the wrong
size. In addition, confidence bands are so big that the r@seacannot distinguish
among competing models.

Moreover both papers document that the presence of capitaprobable cause of the
bad behavior of SVARs. CKM also show that the eigenvalue of ndaded by the use of
hours in first differences in the DSVAR is empirically of lgtrelevance for their finding.
As the number of lags grow to a number too large for empiriggdliaations, they can
recover the right impulse response function.

However, CKM and EGG diverge dramatically in their readinghase findings. CKM
conclude that SVARs are not a reliable technique to learntaibeudata. EGG are more
sanguine. They recognize the limitations of SVARSs, but tHeg amphasize that several
remedies are available to avoid most the pitfalls of the &mal that, with the help of models
serving as guideposts, SVARs are a fruitful approach to [éam the data.

VIII.2. Comparison of CKM and EGG with our paper. >From the previous discussion,
we can see how the focus of our paper is different from both CKll BGG. Our paper
is center on the ability of the researcher to recover econsimcks to the economy from
the innovations of an unrestricted VAR of infinite order. CKNOsEGG concentrate on the
study of finite order SVARSs.

CKM and EGG claim that non-invertibility is not a problem irethmodels. We find
that, for the parameters they use, this is indeed the case ydeconsider a model without
measurement errors. We also checked that when you use regesurerrors, as CKM
suggest when they estimate the model using a state spacetf@model might be non-
invertibility. CKM also argue that the presence of an eigémaqual to one induced by
the first difference of hours is not important empiricallye\dbrroborate their finding since
in our theorems we document how eigenvalues of one do noedaak of invertibility,
for which we need eigenvalues strictly bigger than one. @natiher hand, we show that
eigenvalues of one imply that the model lacks of VAR res@gon (see subsection 11.10),
and that we can not be sure tlat= D is the correct identification scheme (see remark
111.9). 31

Slyve also agree with CKM disregard of the criticisms that sihoars are bounded they cannot literally
have a unit root.
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IX. CONCLUDING REMARKS

We hesitate to draw sweeping conclusions about VARs fronmetegsrcises that apply
our simple check for invertibility. For somé, B,C, D)’s invertibility is a problem, and for
others it is not. Some applications of VARs are informativewtlthe shapes of impulse
responses to some economic shocks that theories shouttpatte match, others are not.

It is easy to reiterate the recommendatfdo estimate the deep parameters of a com-
plete and fully trusted model likelihood based methods.olf yully trust your model, that
recommendation is incontrovertible. However, the entsepof identifying shocks and re-
sponses to them by identifying SVARs aims to coax interegietterns from the data that
will prevail across aetof incompletely specified and not fully trusted models. [€esinot
dogmatic in favor of a particular fully specified model, ieigsy to be sympathetic with the
SVAR enterprise, despite its potential pitfalls.

320ffered for example by Hansen and Sargent (1981, 1991c).
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Mean | St. Deviation
B | 0.9996 0.0002
Y | 5.3455 0.0156
a | 0.4457 0.0164
o)
y
U

0.0005| 0.0005
0.0002| 0.0002
0.0108| 0.0005
o, | 0.0124] 0.0007
o, | 0.0083] 0.0804
oy, | 0.0261| 0.0014
TABLE 1. Posterior mean and standard deviation for the strugbaraime-
ters of Fisher’'s model

APPENDIXA. PRIORS AND POSTERIOR ESTIMATES FORISHER'S MODEL

In this section we describe the priors of the structural petars of Fisher's model used
in section and the posterior distributions that we obtain.

Let us first describe the priors. Since we are mostly intecksh how the likelihood
function characterizes the posterior probability of thedeldoeing non-invertible, we use
uniform priors for all the structural parameters. Therefave use the following prior dis-
tributionsf3 ~ U (0.90,1.01), ¢ ~U(0,10), a ~U(0,1), 5 ~U(0.0,0.1), y~U(0.0,0.1),
v~U(0.0,0.1), 05 ~U(0.0,0.2), o, ~U(0.0,0.2), anday, ~U(0.0,0.2), whereU (a,b)
stands for the uniform distribution betweamndb.

The above described prior distribution, the likelihood dtion of the model, and the
Metropolis-Hastings algorithm are used to get ®00 draws from the posterior distribu-
tion of the structural parameters. We obtain an acceptaticebretween 25 and 30 percent.
The posterior mean and standard deviations of the parasraatereported in table 1, while
the posterior distributions are drawn in figure 2.
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FIGURE 2. Posterior distribution for the structural parameterkisher’s model.

36



A,B,C'S (AND D)'S FOR UNDERSTANDING VARS 37
APPENDIXB. PRIORS AND POSTERIOR ESTIMATES FOEHL’'S MODEL

In this section we describe the priors of the structural petars of EHL's model used
in section and the posterior distributions that we obtain.

We use the following prior distributions. The inverse of #lasticity of intertemporal
substitution follows a gamma distributiod; ! ~ Gammad2,1.25). This assumption im-
plies a positive support for. We assume a gamma distribution for the average duration
of prices, ¥(1— 6p) — 1~ Gamma4,1). Thus, the average duration of prices has a prior
mean of 3 and a prior standard deviation of 2. We also assunagnang distribution for
the average duration of wages,(1— 6,) — 1 ~ Gamma&3,1). Hence, the average dura-
tion of prices has a prior mean of 2 and a prior standard dewiatf 1.74. We assume
a normal distribution for the inverse of the elasticity oé tlabor supplyy ~ .47(1,0.5).
We choose prior uniform distributions between 0 and 1 forahehe autorregresive pa-
rametersor ~ U(0,1), pa ~ U(0,1), andpy ~ U(0,1). Regarding the Taylor rule coef-
ficients, because we do not impose nonnegativity restnstiove assume normal distri-
butions,y, ~ .47(1/8,1/50) and y ~ .4#7(1.5,1/10). Therefore, the prior means match
Taylor’s original guest. Finally, we choose prior unifornstdibutions between 0 and 1 for
all standard deviationsz, ~ U (0,1), oms~ U (0,1), 0y ~U(0,1), andog ~U(0,1). We
impose dogmatic priors over the paramet@r, ¢, ande. The reasons are as follows:
First, because we do not consider capital, we have diffi@gtimatingB andd. Second,
there is an identification problem between the probabilitthe Calvo lottery,8,, and the
mean of the price markug,3® Therefore, it is impossible to identif§, ande at the same
time. Similarly, this problem emerges betweg&pand . The values we usg3(= 0.99,

0 = 0,36, = 6, andp = 6) are quite conventional in the literature.

The above described prior distributions, the likelihooddiion of the model, and the
Metropolis-Hastings algorithm are used to get 00 draws from the posterior distribu-
tion of the structural parameters. We obtain an acceptaticelretween 25 and 30 percent.
The posterior mean and standard deviations of the parasratereported in table 2, while
the posterior distributions are drawn in figure 3.

33The slope of the Phillips curvey, is the only equation containing, ande.
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Mean | St. Deviation
o |0.5502 0.0755
6p | 0.9203 0.0023
6y | 0.7479 0.0149
y | 1.7096 0.3268
pr | 0.9700 0.0089
% | 0.0887 0.0184
vr | 1.5498 0.1005
pPa | 0.6710 0.0156
pg | 0.1024 0.1428
o5 | 0.3855 0.0201

Oms | 0.0094 0.0027
o, | 0.6841 0.0343

oy | 0.4599 0.0477
TABLE 2. Posterior mean and standard Deviation for the strucparame-

ters of EHL's model
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APPENDIXC. PRIORS AND POSTERIOR ESTIMATES FOR HOUSEHOLD PRODUCTION
MODEL

In this section we describe the priors of the structuralpetars of household production
model used in section and the posterior distributions tleabltain.

We want to minimize the effects of the priors on the resukgrefore we use uni-
form priors for all the structural parameters. Hence, wetlsat3 ~ U (0.905Q 0.9950),
a~U(0,1), 6 ~U(0,1), n ~U(0,1), d ~U(0.0,0.1), pm ~ U(0,1), pn ~U(0,1),
om~U(0.0,0.01), o, ~U(0.0,0.01), b~ U(—2.46414.4641), andy ~U(0,1). We have
to impose dogmatic priors over the parametgrs: 0.58756 anda = 0.33707. This two
parameters fix the amount of leisure time allocated into etaakd household production.
We find that there is not enough information in the data toveste them (i.e., the likelihood
function was almost flat in those dimensions). Hence, asesigd by Benhabib, Roger-
son, and Wright (1991), we calibrate them to get 33 perceninté tdevoted to market
production activities and 28 percent of time devoted to bbokl production activities.

These prior distributions, the likelihood function of theodel, and the Metropolis-
Hastings algorithm are used to get S0@0 draws from the posterior distribution of the
structural parameters. We obtain an acceptance ratio bat@®and 30 percent. Note that
we estimate two models. In the first model, we obsetyandly. In the second model,
we observec, andlyy,. For the first of the models, the posterior mean and standana-d
tions of the parameters are reported in table 3, while théepos distributions are drawn
in figure 4. For the second of the models, the posterior medst@mdard deviations of the
parameters are reported in table 4, while the posterionligtons are drawn in figure 5.
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Mean | St. Deviation
B |0.9390| 22310
a | 0.4815 8.0410°7
0 | 0.9391] 1.1310°
n
o)

0.0132| 4.5910°8
0.0318| 8.9310°
Pm | 0.6886 0.1899
pn | 0.8940 0.0076
Om | 0.0056 0.0029
on | 0.0050 0.0029
y | 0.4457 0.2899
b | 0.8907| 2.8010°8
TABLE 3. Posterior mean and standard Deviation for the strucpar@me-
ters of household production model when we obsgryandl|p,.

Mean | St. Deviation
B |0.9390| 20110
a | 0.4815 4.4510°7
0 | 0.9391| 6.3910°
n
o)

0.0132| 290108
0.0318| 1.1310°8
Pm | 0.6601 0.1755
Pn | 0.9220 0.0030
Om | 0.0050 0.0029
on | 0.0050 0.0029
y | 0.4668 0.3141
b |0.8907| 3.8810°%
TABLE 4. Posterior mean and standard Deviation for the strucpaname-
ters of household production model when we obsepyand|p,.
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APPENDIXD. FINITE ORDER AUTOREGRESSIONS
This appendix describes formulas for taking/AB,C, D and forming the associateth
order vector autoregressich.

D.1. Moment formulas. Take an economic model in the state-space form (1)-(2). Assu
that all of the eigenvalues & are less than unity in modulus, except possibly for a unit
eigenvalue that is affiliated with the constant. If prestr,unit eigenvalue determines the
unconditional mean vectqry of X via

(I —A)uy = 0. (A1)

The stationary covariance matrix »fs cx(0) = E(x— py)(Xx— k)" and can be computed
by solving the discrete Sylvester equation

cx(0) = Ac(0)A' + BB, (A2)

which can be solved by Hansen and Sargent’s matlab prodoarbl ej . (The indigenous
matlab prograndl yap. mworks only when there are no unit eigenvaluesAof The
autocovariance of is ¢x(j) = E(x — tx) (%—j — Ux)" and can be computed from

ox(j) =Ale(0), j>1. (A3)

Let py = Cpy be the mean of andcy(j) = E(yt — ty) (yt—j — Hy)'. Elementary calculations
establish:

¢y(0) = Cc(0)C'+ DD’ (A4)
¢,(j) = CA(0)C'+CAIBD, j>1 (A5)
o(—i) = o), =L (AB)

D.2. Projection formulas. We want to calculate theth order vector autoregressions
- A (n)
e—Hy= > A7 (-j— Hy) + & (A7)
=1

wherest(”) satisfies the orthogonality conditions

E[E'[(n) (yt—j - Uy)l] = Oa J - 17 e N (A8)

34Riccardo Colacito has written a Matlab progragsvar . mthat by implementing these formulas ac-
cepts an(A,B,C,D) and a positive integem and yields all of the objects defining ath order VAR. His
programvar ss. mtakes amth order VAR and forms a state space sys#,C, D, a useful tool for using
Matlab to compute impulse response functions for estimeltdels.
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The orthogonality conditions, also known as the normal #gng, can be written

n
cy(k):ZlAgn)cy(k—j)’, k=1,....n. (A9)
=
Writing out (A9) and solving fo{A(ln) A(2“> A,(]”)} gives:
-1
oW @ o) - -1
2) cy(—1 0 <o cy(n—2
CY(: ) Y(: ) CY< ) Y( : ) _ |:Ag-n) Aén) . A|('1n)] (A]_O)
o] [o-n) ¢@2-n - (0
The covariance matrig™ = E¢™ &’ of the innovations is
WaK (n)/
Ay / cy(0) cy(1) - c(n=1) A(l ,
n 1 0 - cn—2 n
0 g 2| | ¥V SO amAIAT
AV le(l-n) &(2-n) - &0 | (Al
Please note that theth order autoregression can also be expressed as
n
y=aW+ 5 Ay j+g" (A12)
=1
where
- A
a = (- S A Hy. (A13)

=1
Herepy is a properly scaled eigenvectorpj’l)l associated with the unit eigenvalue, where
the proper scaling assures that the mean of the constant DigrMatlab progranssvar
takes an(A,B,C, D), with the understanding that the constant 1 is the first statable,
and computes anth order VAR. Our programvar ss takes amth order VAR and forms
the pertinentA,B,C,D).
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