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1 Introduction

The package geoR provides functions for geostatistical data analysis using the software R.
This document illustrates some (but not all!) of the capabilities of the package.

The objective is to familiarise the reader with the geoR’s commands for data analysis
and show some of the graphical outputs which can be produced.

The commands used here are just illustrative, providing basic examples of the pack-
age handling. We did not attempt to perform a definitive analysis of the data-set used
throughout the exemples neither to cover all the details of the package capability.

In what follows:

� the R commands are shown in slanted typewriter fonts like this,

� the corresponding output, if any, is shown in typewriter fonts like this.

Typically, default arguments are used for the function calls and the user is encouraged
to inspect other arguments of the functions using the args and help functions. For
instance, to see all the arguments for the function variog type args(variog) and/or
help(variog).

The commands shown in this page are also available in the file http://www.est.ufpr.br/geoR/geoRdoc/geoRintro.R.
We refer to the geoR documentation (http://www.est.ufpr.br/geoR/geoR.html#help)

for more details on the functions included in the package geoR.

2 Starting a Session and Loading Data

2.1 Loading the package

After starting an R session, load geoR with the command library (or require). If the
package is loaded correctly a message will be displayed.

> library(geoR)
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If the installation directory for the package is the default location for R packages, type:

> library(geoR, lib.loc="PATH_TO_geoR")

where ‘"PATH_TO_geoR"’ is the path to the directory where geoR was installed.

2.2 Using data

Typically, data are stored as an object (a list) of the class geodata. An object of this
class contains two obligatory elements: the coordinates of data locations as first element
($coords) and the data values as second element ($data), which can be a vector or a
matrix. Objets of the class geodata may have other elements such as covariates and
coordinates of the borders of the study area.

We refer to the documentation for the functions as.geodata and read.geodata for
more information on how to import/convert data and on the definitions for the class "geo-
data". Check http://www.est.ufpr.br/geoR/importingASCII.html for information on
how to read data from an ASCII (text) file.

There a a few data-sets included in the package distribution. For the examples included
in this document we use the data set s100 included in the geoR distribution. To load this
data type:

> data(s100)

The list of all data-sets included in the package is given by data(package=’geoR’).

3 Exploratory Tools

A quick summary for the geodata object can be obtained using a method for summary

which will return a information on the coordinates and data values.

> summary(s100)

Number of data points: 100

Coordinates summary

Coord.X Coord.Y

min 0.005638006 0.01091027

max 0.983920544 0.99124979

Distance summary

min max

0.007640962 1.278175109

Data summary
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Min. 1st Qu. Median Mean 3rd Qu. Max.

-1.1680 0.2730 1.1050 0.9307 1.6100 2.8680

Other elements in the geodata object

[1] "cov.model" "nugget" "cov.pars" "kappa"

[5] "lambda"

The elements of the list $covariate, $borders and/or units.m will be also summa-
rized if present in the geodata object.

3.1 Plotting data locations and values

The function plot.geodata shows a 2 × 2 display with data locations (top plots) and
data versus coordinates (bottom plots). For an object of the class geodata the command
plot(s100) produce the output shown in Figure 3.1.
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Figure 1: Plot produced by plot.geodata.
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The function points.geodata produces a plot showing the data locations. Alterna-
tively, points indicating the data locations can be added to a current plot. There are
options to specify point sizes, patterns and colors, which can be set to be proportional to
the data values or specified quantiles. Some examples of graphical outputs are illustrated
by the commands below and corresponding plots as shown in Figure 3.1.

> par(mfrow = c(2, 2))

> points(s100, xlab = "Coord X", ylab = "Coord Y")

> points(s100, xlab = "Coord X", ylab = "Coord Y",

+ pt.divide = "rank.prop")

> points(s100, xlab = "Coord X", ylab = "Coord Y",

+ cex.max = 1.7, col = gray(seq(1, 0.1, l = 100)),

+ pt.divide = "equal")

> points(s100, pt.divide = "quintile", xlab = "Coord X",

+ ylab = "Coord Y")

3.2 Empirical variograms

Empirical variograms are calculated using the function variog. There are options for the
classical or modulus estimator. Results can be returned as variogram clouds, binned or
smoothed variograms. There are methods for plot to facilitate the display of the results
as shown in Figure 3.

> cloud1 <- variog(s100, option = "cloud", max.dist = 1)

> cloud2 <- variog(s100, option = "cloud", estimator.type = "modulus",

+ max.dist = 1)

> bin1 <- variog(s100, uvec = seq(0, 1, l = 11))

> bin2 <- variog(s100, uvec = seq(0, 1, l = 11),

+ estimator.type = "modulus")

> par(mfrow = c(2, 2))

> plot(cloud1, main = "classical estimator")

> plot(cloud2, main = "modulus estimator")

> plot(bin1, main = "classical estimator")

> plot(bin2, main = "modulus estimator")

Several results are returned by the function variog. The first three are the more
important ones and contains the distances, the estimated semivariance and the number of
pairs for each bin.

> names(bin1)

[1] "u" "v"

[3] "n" "sd"

[5] "bins.lim" "ind.bin"
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Figure 2: Plot produced by points.geodata.

[7] "var.mark" "beta.ols"

[9] "output.type" "max.dist"

[11] "estimator.type" "n.data"

[13] "lambda" "trend"

[15] "pairs.min" "nugget.tolerance"

[17] "direction" "tolerance"

[19] "uvec" "call"

Furthermore, the points of the variogram clouds can be grouped into classes of distances
(”bins”) and displayed with a box-plot for each bin as shown in Figure 3.2. This can be
used as an exploratory tool to access variogram results.

> bin1 <- variog(s100, uvec = seq(0, 1, l = 11),

+ bin.cloud = T)

> bin2 <- variog(s100, uvec = seq(0, 1, l = 11),
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Figure 3: Ploting of variog results.

+ estimator.type = "modulus", bin.cloud = T)

> par(mfrow = c(1, 2))

> plot(bin1, bin.cloud = T, main = "classical estimator")

> plot(bin2, bin.cloud = T, main = "modulus estimator")

Directional variograms can also be computed by the function variog using the ar-
guments ‘direction’ and ‘tolerance’. For example, to compute a variogram for the
direction 60 degrees with the default tolerance angle (22.5 degrees) the command would
be:

> vario60 <- variog(s100, max.dist = 1, direction = pi/3)

For a quick computation in four directions we can use the function variog4 which by
default computes variogram for the direction angles 0o, 45o, 90o and 135o.

> vario.4 <- variog4(s100, max.dist = 1)

The Figure 5 show the directional variograms obtained with the commands above.
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Figure 4: Box-plots for each of the variogram bins.

> par(mfrow = c(1, 2), mar = c(3, 3, 1.5, 0.5))

> plot(vario60)

> title(main = expression(paste("directional, angle = ",

+ 60 * degree)))

> plot(vario.4, lwd = 2)
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Figure 5: Directional variograms
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4 Parameter Estimation

Theoretical and empirical variograms can be plotted and visually compared. For example,
the left panel in Figure 6 shows the theoretical variogram model used to simulate the data
s100 and two estimated variograms.

> bin1 <- variog(s100, uvec = seq(0, 1, l = 11))

> plot(bin1)

> lines.variomodel(cov.model = "exp", cov.pars = c(1,

+ 0.3), nugget = 0, max.dist = 1, lwd = 3)

> smooth <- variog(s100, option = "smooth", max.dist = 1,

+ n.points = 100, kernel = "normal", band = 0.2)

> lines(smooth, type = "l", lty = 2)

> legend(0.4, 0.3, c("empirical", "exponential model",

+ "smoothed"), lty = c(1, 1, 2), lwd = c(1,

+ 3, 1))

In practice we usually don’t know the true parameters which have top be estimated by
some method. In the package geoR the model parameters can be estimated:

1. “by eye”: trying different models over empirical variograms (using the function
lines.variomodel),

2. by least squares fit of empirical variograms : with options for ordinary (OLS) and
weighted (WLS) least squares (using the function variofit),

3. by likelihood based methods : with options for maximum likelihood (ML) and re-
stricted maximum likelihood (REML) (using the function likfit),

4. Bayesian methods : are also implemented and will be presented in Section 5 (using
the function krige.bayes).

Fitting “by eye” consists of drawing curves of theoretical variogram functions over an
empirical variogram, changing the variogram model and/or its parameters and, at last,
choosing one of them. The following commands show how to add a line with a variogram
model to a variogram plot. Three different variogram models are used.

> plot(variog(s100, max.dist = 1))

> lines.variomodel(cov.model = "exp", cov.pars = c(1,

+ 0.3), nug = 0, max.dist = 1)

> lines.variomodel(cov.model = "mat", cov.pars = c(0.85,

+ 0.2), nug = 0.1, kappa = 1, max.dist = 1,

+ lty = 2)

> lines.variomodel(cov.model = "sph", cov.pars = c(0.8,

+ 0.8), nug = 0.1, max.dist = 1, lwd = 2)
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Figure 6: Theoretical variogram curves added to empirical variograms.

When using the parameter estimation functions variofit and likfit the nugget effect
parameter can either be estimated or set to a fixed value. The same applies for smoothness,
anisotropy and transformation parameters. Options for taking trends into account are also
included. Trends can be specified as polynomial functions of the coordinates and/or linear
functions of given covariates.

An example call to likfit is given below. Methods for print() and summary() have
been written to summarize the resulting objects.

> ml <- likfit(s100, ini = c(1, 0.5))

---------------------------------------------------------------

likfit: likelihood maximisation using the function optim.

likfit: Use control() to pass additional

arguments for the maximisation function.

For further details see documentation for optim.

likfit: It is highly advisable to run this function several

times with different initial values for the parameters.

likfit: WARNING: This step can be time demanding!

---------------------------------------------------------------

likfit: end of numerical maximisation.

> ml

likfit: estimated model parameters:

beta tausq sigmasq phi

"0.7766" "0.0000" "0.7517" "0.1827"

likfit: maximised log-likelihood = -83.57
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> summary(ml)

Summary of the parameter estimation

-----------------------------------

Estimation method: maximum likelihood

Parameters of the mean component (trend):

beta

0.7766

Parameters of the spatial component:

correlation function: exponential

(estimated) variance parameter sigmasq (partial sill) = 0.7517

(estimated) cor. fct. parameter phi (range parameter) = 0.1827

anisotropy parameters:

(fixed) anisotropy angle = 0 ( 0 degrees )

(fixed) anisotropy ratio = 1

Parameter of the error component:

(estimated) nugget = 0

Transformation parameter:

(fixed) Box-Cox parameter = 1 (no transformation)

Maximised Likelihood:

log.L n.params AIC BIC

"-83.57" "4" "175.1" "185.6"

non spatial model:

log.L n.params AIC BIC

"-125.8" "2" "255.6" "260.8"

Call:

likfit(geodata = s100, ini.cov.pars = c(1, 0.5))

The commands below shows how to fit models by using different methods, with options
for fixed or estimated nugget parameter. Notice there are other features not illustrated
here such as estimation of trends, anisotropy, smoothness and Box-Cox transformation
parameter. Notice in the call above that the functions show some messages while they
are running — and we don’t want to see them in the following calls. To prevent this we
can set the argument messages = FALSE at each function call or, to set it globally for all
functions use options() as follows.

> options(geoR.messages = FALSE)
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� Fitting models with nugget fixed to zero

> ml <- likfit(s100, ini = c(1, 0.5), fix.nugget = T)

> reml <- likfit(s100, ini = c(1, 0.5), fix.nugget = T,

+ method = "RML")

> ols <- variofit(bin1, ini = c(1, 0.5), fix.nugget = T,

+ weights = "equal")

> wls <- variofit(bin1, ini = c(1, 0.5), fix.nugget = T)

� Fitting models with a fixed value for the nugget

> ml.fn <- likfit(s100, ini = c(1, 0.5), fix.nugget = T,

+ nugget = 0.15)

> reml.fn <- likfit(s100, ini = c(1, 0.5), fix.nugget = T,

+ nugget = 0.15, method = "RML")

> ols.fn <- variofit(bin1, ini = c(1, 0.5), fix.nugget = T,

+ nugget = 0.15, weights = "equal")

> wls.fn <- variofit(bin1, ini = c(1, 0.5), fix.nugget = T,

+ nugget = 0.15)

� Fitting models estimated nugget

> ml.n <- likfit(s100, ini = c(1, 0.5), nug = 0.5)

> reml.n <- likfit(s100, ini = c(1, 0.5), nug = 0.5,

+ method = "RML")

> ols.n <- variofit(bin1, ini = c(1, 0.5), nugget = 0.5,

+ weights = "equal")

> wls.n <- variofit(bin1, ini = c(1, 0.5), nugget = 0.5)

Now, the comands for plotting fitted models against empirical variogram as show in
Figure 4 are:

> par(mfrow = c(1, 3))

> plot(bin1, main = expression(paste("fixed ", tau^2 ==

+ 0)))

> lines(ml, max.dist = 1)

> lines(reml, lwd = 2, max.dist = 1)

> lines(ols, lty = 2, max.dist = 1)

> lines(wls, lty = 2, lwd = 2, max.dist = 1)

> legend(0.5, 0.3, legend = c("ML", "REML", "OLS",

+ "WLS"), lty = c(1, 1, 2, 2), lwd = c(1, 2,

+ 1, 2), cex = 0.7)

> plot(bin1, main = expression(paste("fixed ", tau^2 ==

+ 0.15)))

> lines(ml.fn, max.dist = 1)
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Figure 7: Empirical variogram and models fitted by different methods.

> lines(reml.fn, lwd = 2, max.dist = 1)

> lines(ols.fn, lty = 2, max.dist = 1)

> lines(wls.fn, lty = 2, lwd = 2, max.dist = 1)

> legend(0.5, 0.3, legend = c("ML", "REML", "OLS",

+ "WLS"), lty = c(1, 1, 2, 2), lwd = c(1, 2,

+ 1, 2), cex = 0.7)

> plot(bin1, main = expression(paste("estimated ",

+ tau^2)))

> lines(ml.n, max.dist = 1)

> lines(reml.n, lwd = 2, max.dist = 1)

> lines(ols.n, lty = 2, max.dist = 1)

> lines(wls.n, lty = 2, lwd = 2, max.dist = 1)

> legend(0.5, 0.3, legend = c("ML", "REML", "OLS",

+ "WLS"), lty = c(1, 1, 2, 2), lwd = c(1, 2,

+ 1, 2), cex = 0.7)

Two kinds of variogram envelopes computed by simulation are illustrated in the figure
below.

The plot on the left-hand side shows an envelope based on permutations of the data
values across the locations, i.e. envelopes built under the assumption of no spatial cor-
relation. The envelopes shown on the right-hand side are based on simulations from a
given set of model parameters, in this example the parameter estimates from the WLS
variogram fit. This envelope shows the variability of the empirical variogram.

> env.mc <- variog.mc.env(s100, obj.var = bin1)

> env.model <- variog.model.env(s100, obj.var = bin1,

+ model = wls)

Profile likelihoods (1-D and 2-D) are computed by the function proflik. Here we show
the profile likelihoods for the covariance parameters of the model without nugget effect
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> par(mfrow = c(1, 2))

> plot(bin1, envelope = env.mc)

> plot(bin1, envelope = env.model)
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Figure 8: Variogram envelopes.

previously fitted by likfit.
WARNING: RUNNING THE NEXT COMMAND CAN BE TIME-CONSUMING

5 Cross-Validation

The function xvalid performs cross-validation either using the leaving-one-out strat-
egy or using a different set of locations provided by the user through the argument
‘location.xvalid’.

For the first strategy, data points are removed one by one and predicted by kriging
using the remaining data. The commands below illustrates cross-validation for the models
fitted by maximum likelihood and weighted least squares. In the following two calls the
model parameters remains the same for the prediction at each location.

> xv.ml <- xvalid(s100, model = ml)

> xv.wls <- xvalid(s100, model = wls)

Graphical results are shown for the cross-validation results where the leaving-one-out
strategy combined with the wls estimates for the parameters was used. Cross-validation
residuals are obtained subtracting the observed data minus the predicted value. Standard-
ised residuals are obtained dividing by the square root of the prediction variance (‘kriging
variance’). By default the 10 plots shown in the Figure 10 are produced but the user can
restrict the choice using the function arguments.
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> prof <- proflik(ml, geodata = s100, sill.val = seq(0.48,

+ 2, l = 11), range.val = seq(0.1, 0.52, l = 11),

+ uni.only = FALSE)

> par(mfrow = c(1, 3))

> plot(prof, nlevels = 16)
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Figure 9: Profile likelihoods for the model parameters

> par(mfcol = c(5, 2), mar = c(3, 3, 1, 0.5), mgp = c(1.5,

+ 0.7, 0))

> plot(xv.wls)

A variation of this method is illustrated by the next two calls where the model param-
eters are re-estimated each time a point is removed from the data-set.
WARNING: RUNNING THE NEXT COMMAND CAN BE TIME-CONSUMING

> xvR.ml <- xvalid(s100, model = ml, reest = TRUE)

> xvR.wls <- xvalid(s100, model = wls, reest = TRUE,

+ variog.obj = bin1)

6 Spatial Interpolation

Conventional geostatistical spatial interpolation (kriging) can be performed with options
for:

1. Simple kriging

2. Ordinary kriging

3. Trend (universal) kriging

4. External trend kriging
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Figure 10: Cross-validations results

There are additional options for Box-Cox transformation (and back transformation of
the results) and anisotropic models. Simulations can be drawn from the resulting predictive
distributions if requested.

As a first example consider the prediction at four locations labeled 1, 2, 3, 4 and
indicated in the figure below.

The command to perform ordinary kriging using the parameters estimated by weighted
least squares with nugget fixed to zero would be:

> kc4 <- krige.conv(s100, locations = loci, krige = krige.control(obj.m = wls))

The output is a list including the predicted values (kc4$predict) and the kriging
variances (kc4$krige.var).

Consider now a second example. The goal is to perform prediction on a grid covering the
area and to display the results. Again, we use ordinary kriging. The commands commands
below defines a grid of locations and performs the prediction at those locations.
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> plot(s100$coords, xlim = c(0, 1.2), ylim = c(0,

+ 1.2), xlab = "Coord X", ylab = "Coord Y")

> loci <- matrix(c(0.2, 0.6, 0.2, 1.1, 0.2, 0.3,

+ 1, 1.1), ncol = 2)

> text(loci, as.character(1:4), col = "red")

> polygon(x = c(0, 1, 1, 0), y = c(0, 0, 1, 1),

+ lty = 2)
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Figure 11: Data locations and points to be predicted

> pred.grid <- expand.grid(seq(0, 1, l = 51), seq(0,

+ 1, l = 51))

> kc <- krige.conv(s100, loc = pred.grid, krige = krige.control(obj.m = ml))

A method for the function image can be used for displaying predicted values as shown in
the next Figure, as well as other prediction results returned by krige.conv.

7 Bayesian Analysis

Bayesian analysis for Gaussian models is implemented by the function krige.bayes. It
can be performed for different ”degrees of uncertainty”, meaning that model parameters
can be treated as fixed or random.

As an example consider a model without nugget and including uncertainty in the mean,
sill and range parameters. Prediction at the four locations indicated above is performed
by typing a command like:

WARNING: RUNNING THE NEXT COMMAND CAN BE TIME-CONSUMING
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> image(kc, loc = pred.grid, col = gray(seq(1, 0.1,

+ l = 30)), xlab = "Coord X", ylab = "Coord Y")
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Figure 12: Map of the kriging estimates

> bsp4 <- krige.bayes(s100, loc = loci, prior = prior.control(phi.discrete = seq(0,

+ 5, l = 101), phi.prior = "rec"), output = output.control(n.post = 5000))

Histograms showing posterior distribution for the model parameters can be plotted by
typing: Using summaries of these posterior distributions (means, medians or modes) we
can check the ”estimated Bayesian variograms” against the empirical variogram, as shown
in the next figure. Notice that it is also possible to compare these estimates with other
fitted variograms such as the ones computed in Section 3.

The next figure shows predictive distributions at the four selected locations. Dashed
lines show Gaussian distributions with mean and variance given by results of ordinary
kriging obtained in Section 4. The full lines correspond to the Bayesian prediction. The
plot shows results of density estimation using samples from the predictive distributions.

> par(mfrow = c(2, 2))

> for (i in 1:4) {

+ kpx <- seq(kc4$pred[i] - 3 * sqrt(kc4$krige.var[i]),

+ kc4$pred[i] + 3 * sqrt(kc4$krige.var[i]),

+ l = 100)

+ kpy <- dnorm(kpx, mean = kc4$pred[i], sd = sqrt(kc4$krige.var[i]))

+ bp <- density(bsp4$predic$simul[i, ])

+ rx <- range(c(kpx, bp$x))

+ ry <- range(c(kpy, bp$y))

17



> par(mfrow = c(1, 3), mar = c(3, 3, 1, 0.5), mgp = c(2,

+ 1, 0))

> hist(bsp4$posterior$sample$beta, main = "", xlab = expression(beta),

+ prob = T)

> hist(bsp4$posterior$sample$sigmasq, main = "",

+ xlab = expression(sigma^2), prob = T)

> hist(bsp4$posterior$sample$phi, main = "", xlab = expression(phi),

+ prob = T)
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Figure 13: Histograms of samples from posterior distribution

+ plot(cbind(rx, ry), type = "n", xlab = paste("Location",

+ i), ylab = "density", xlim = c(-4, 4),

+ ylim = c(0, 1.1))

+ lines(kpx, kpy, lty = 2)

+ lines(bp)

+ }

Consider now, under the same model assumptions, obtaining simulations from the
predictive distributions on a grid of points covering the area. The commands to define the
grid and perform Bayesian prediction are:

> pred.grid <- expand.grid(seq(0, 1, l = 31), seq(0,

+ 1, l = 31))

> bsp <- krige.bayes(s100, loc = pred.grid, prior = prior.control(phi.discrete = seq(0,

+ 5, l = 51)), output = output.control(n.predictive = 2))

Maps with the summaries and simulations of the predictive distribution can be plotted
as follows.

Note: Further examples for the function krige.bayes are given in the file http://www.est.ufpr.br/geoR/geoRdoc/examples.krige.bayes.R"
.
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> plot(bin1, ylim = c(0, 1.5))

> lines(bsp4, max.dist = 1.2, summ = mean)

> lines(bsp4, max.dist = 1.2, summ = median, lty = 2)

> lines(bsp4, max.dist = 1.2, summ = "mode", post = "par",

+ lwd = 2, lty = 2)

> legend(0.25, 0.4, legend = c("variogram posterior mean",

+ "variogram posterior median", "parameters posterior mode"),

+ lty = c(1, 2, 2), lwd = c(1, 1, 2), cex = 0.8)
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Figure 14: Variogram models based on the posterior distributions

8 Simulation of Gaussian Random Fields

The function grf generates simulations of Gaussian random fields on regular or irregular
sets of locations. It relies on the decomposition of the covariance matrix and therfore
won’t work for large number of locations in which case we suggest the usage of the package
RandomFields. Some of its functionality is illustrated by the next commands.

NOTE: we recommend the package RandomFields (http://cran.r-project.org/src/contrib/PACKAGES.html#RandomFields)
for a more comprehensive implementation for simulation of Gaussian Random Fields.

9 Citing geoR

The function cite.geoR shows information on how to cite geoR in publications, and we
remember the function citation shows how to cite R.

> cite.geoR()

To cite geoR in publications, use
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Figure 15: Predictive distributions at the four selected locations

RIBEIRO Jr., P.J. & DIGGLE, P.J. (2001) geoR: A

package for geostatistical analysis. R-NEWS, Vol 1,

No 2, 15-18. ISSN 1609-3631.

Please cite geoR when using it for data analysis!

A BibTeX entry for LaTeX users is

@Article{,

title = {{geoR}: a package for geostatistical analysis},

author = {Ribeiro Jr., P.J. and Diggle, P.J.},

journal = {R-NEWS},

year = {2001},

volume = {1},
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number = {2},

pages = {15--18},

issn = {1609-3631},

url = {http://cran.R-project.org/doc/Rnews}

}

> citation()

To cite R in publications use:

R Development Core Team (2006). R: A language and

environment for statistical computing. R Foundation

for Statistical Computing, Vienna, Austria. ISBN

3-900051-07-0, URL http://www.R-project.org.

A BibTeX entry for LaTeX users is

@Manual{,

title = {R: A Language and Environment for Statistical Computing},

author = {{R Development Core Team}},

organization = {R Foundation for Statistical Computing},

address = {Vienna, Austria},

year = {2006},

note = {{ISBN} 3-900051-07-0},

url = {http://www.R-project.org},

}

We have invested a lot of time and effort in creating

R, please cite it when using it for data analysis.

See also 'citation("pkgname")' for citing R packages.
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> par(mfrow = c(2, 2), mar = c(3, 3, 1, 0.5), mgp = c(1.5,

+ 0.7, 0))

> image(bsp, loc = pred.grid, main = "predicted",

+ col = gray(seq(1, 0.1, l = 30)))

> image(bsp, val = "variance", loc = pred.grid,

+ main = "prediction variance", col = gray(seq(1,

+ 0.1, l = 30)))

> image(bsp, val = "simulation", number.col = 1,

+ loc = pred.grid, main = "a simulation from\nthe predictive distribution",

+ col = gray(seq(1, 0.1, l = 30)))

> image(bsp, val = "simulation", number.col = 2,

+ loc = pred.grid, main = "another simulation from \n the predictive distribution",

+ col = gray(seq(1, 0.1, l = 30)))
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Figure 16: Maps obtained from the predictive distribution
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> par(mfrow = c(1, 2))

> sim1 <- grf(100, cov.pars = c(1, 0.25))

> points.geodata(sim1, main = "simulated locations and values")

> plot(sim1, max.dist = 1, main = "true and empirical variograms")
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Figure 17: Simulation results produced with the function grf.
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> par(mfrow = c(1, 2))

> sim2 <- grf(441, grid = "reg", cov.pars = c(1,

+ 0.25))

> image(sim2, main = "a small-ish simulation", col = gray(seq(1,

+ 0.1, l = 30)))
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Figure 18: Simulations with different resolutions
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