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Abstract: In the study of geographical patterns of disease, multivariate areal
data models proposed so far in the literature (Ma and Carlin, 2007; Carlin
and Banerjee, 2003; Knorr-Held and Best, 2001) have allowed to handle sev-
eral features of a phenomenon at the same time. In this paper, we propose a
new model for areal data, the Spatial Temporal Conditional Auto-Regressive
(STCAR) model, that allows to handle the spatial dependence between sites
as well as the temporal dependence among the realizations, in the presence of
measurements recorded at each spatial location in a time interval. Inspired by
the Generalized Multivariate Conditional Auto-Regressive (GMCAR) model
published by Jin, Carlin, and Banerjee (2005), the STCAR model reduces
the unknown parameters to the single parameter of spatial association esti-
mated at every period considered. Unlike the Vector Auto-Regressive (VAR)
model proposed by Sims (1980), in addition, its space-time autoregressive
matrix takes into account the spatial localization of the realizations sampled.
Moreover, we already know that the main areas of application of these mod-
els relate to disease mapping, disease clustering, ecological analysis (Lawson,
Browne, and Vidal Rodeiro, 2003). In this work, however, the STCAR model
is applied in business, exploiting the analogy between the danger of contract-
ing a particular disease and the risk of falling into bankruptcy, in order to
“reconstruct” the spatial temporal distribution of expected bankruptcies of
small and medium enterprises of the province of Lecce (Italy).

Zusammenfassung: Für Studien von geografischen Muster von Erkrankun-
gen, erlaubten es multivariate räumliche Modelle die bis jetzt in der Lit-
eratur vorgeschlagen wurden (Ma and Carlin, 2007; Carlin and Banerjee,
2003; Knorr-Held and Best, 2001), mit verschiedenen Charakteristika eines
Phänomens zur selben Zeit umzugehen. Hiert schlagen wir ein neues Modell
für räumliche Daten vor, das Spatial Temporal Conditional Auto-Regressive
(STCAR) Modell, das es erlaubt, geografische Abhängigkeiten zwischen den
Orten als auch die zeitliche Abhängigkeit in den Realisationen zu berücksich-
tigen. Vom Generalized Multivariate Conditional Auto-Regressive (GMCAR)
Modell von Jin et al. (2005) inspiriert, reduzieren sich die unbekannten Pa-
rameter des STCAR Modells zu einen einzelnen räumlichen Assoziationspa-
rameter der in jeder betrachteten Periode geschätzt wird. Im Unterschied
zum Vector Auto-Regressive (VAR) Modell von Sims (1980), berücksichtigt
zusätzlich seine autoregressive Raum-Zeit Matrix die räumliche Lokalisa-
tion der gezogenen Realisierungen. Weiters wissen wir bereits, dass sich die
Hauptanwendungsgebiete dieser Modelle mit Erkrankungskarten, dem Clus-
tering von Krankheitsfällen, und mit Umweltanalysen (Lawson et al., 2003)
in Verbindung gebracht werden. Hier jedoch wird das STCAR Modell in der
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Wirtschaft angewandt und nutzt die Analogie zwischen der Gefahr an einer
gewissen Krankheit zu erkranken und dem Risiko bankrott zu gehen, um die
räumlich-temporale Verteilung der erwarteten Konkurse kleinerer und mit-
tlerer Betriebe in der Provinz Lecce (Italy) zu “rekonstruieren”.

Keywords: Spatial Temporal Analysis, Multivariate Areal Data, Conditional
Auto-Regressive (CAR) Model, Hierarchical Bayesian Model, Markov Chain
Monte Carlo (MCMC) Simulation.

1 Introduction

The analysis of data collected in each spatial location and in a time interval, requires the
use of Conditional Auto-Regressive (CAR) model that, in addition to spatial dependence
between sites, also examines the temporal dependence between the different realizations.
In this paper, we propose a new model of space-time, called Spatial Temporal Condi-
tional Auto-Regressive (STCAR) model, which directly specifies the joint distribution of
a sequence of Markov random fields (Cressie, 1993) via conditional and marginal dis-
tributions, using information derived from temporal evolution of the phenomenon. In
particular, the STCAR model is constructed through a space-time autoregressive matrix
so as to give a temporal coefficient in the same location sampled in different instants, a
spatial coefficient in nearby locations sampled in the same instant, the product between
a temporal coefficient and a spatial coefficient in nearby locations identified in differ-
ent instants. Unlike the Generalized Multivariate Conditional Auto-Regressive (GMCAR)
model proposed in Jin et al. (2005), the STCAR model is used, not to treat more features
at the same instant, but the same feature recorded in a time interval. This peculiarity re-
duces the number of parameters of the GMCAR model to a single parameter of spatial
association estimated in the respective time: this in turn leads to a significant reduction in
the computational burden in hierarchical spatial random effect modeling. Moreover, our
space-time autoregressive matrix differs from that of the Vector Auto-Regressive (VAR)
model proposed in Sims (1980), since the coefficients of STCAR model also evaluate the
close proximity of spatial locations.

From the practical point of view, CAR models are usually used in the fields of medicine
and public health. In this document, however, the model is unusually proposed in business
in order to deal with cases of bankruptcy of small and medium enterprises in the province
of Lecce (Italy), in a time interval of four years. The commercial success of a small re-
tail enterprise, in fact, may depend on both internal factors, such as the close link between
goods and/or services offered and market trends, and external factors, such as the presence
in the immediate vicinity of big malls which create areas off limits to small neighboring
enterprises. Consequently, the variation of the risk of insolvency of an enterprise may be
analyzed through a series of thematic maps, known in literature as disease maps (Lawson
et al., 2003), in order to identify any areas with high rates of bankruptcy. The purpose
is that to submit these areas to a more detailed examination to determine if the presence
of a nearby shopping center represents, over time, the cause of a high concentration of
bankruptcies. More specifically, to construct maps of risk in the present work, first, it
was necessary to aggregate the cases of bankruptcy by the natural partition of Salento in
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97 municipalities of the province of Lecce, for each year between 2000 and 2003. Then,
the distribution of risk of bankruptcy of a local enterprise was obtained using the STCAR
model as the distribution of random effects in the mean structure in a hierarchical model
through a particular Markov Chain Monte Carlo (MCMC) method, known as the Gibbs
sampler (Böhning and Sarol, 2000a, 2000b). The parameters of spatial association were
estimated using the Maximum Likelihood technique and counted by a formal iterative
procedure, known as Newton-Raphson procedure (Ord, 1975), while those of temporal
association were estimated using the Weighted Least Squares method.

From the computational point of view, the STCAR model has been implemented in a
Bayesian framework via the WinBUGS software (Spiegelhalter, Thomas, Best, and Lunn,
2005) and, in particular, the GeoBUGS package (Thomas, Best, Lunn, Arnold, and Spiegel-
halter, 2004), while the space-time parameters have been estimated respectively via the
Scilab software (Antonelli and Chiaverini, 2009) and the R software (R Development
Core Team, 2008).

The rest of this article is organized as follows. Section 2 is devoted to providing back-
ground information on CAR model. Section 3 describes the new STCAR model for the
analysis of space-time data and Section 4 presents the estimation procedures for parame-
ters of the model proposed. The STCAR model is then illustrated in Section 5 using data
on bankruptcies in the province of Lecce from 2000 to 2003, through construction, im-
plementation and validation of a Hierarchical Bayesian model. Finally, Section 6 presents
the conclusions of this work.

2 Methodological Background: CAR Model

The Conditional Auto-Regressive (CAR) model, known in the literature as Auto-Normal
model or Gauss-Markov model (Chellappa, 1985) is used, usually, to do “local investiga-
tions”, i.e. it allows to analyze phenomena that occur in a geographical area immediately
surrounding the site analyzed. More specifically, the CAR model is a model of continu-
ous Markov random field characterized by a conditional probability density function and
particularly suited to model spatial phenomena strongly tied to a specific local context
(Besag, 1974; Cressie, 1993). Its utility is also largely attributed to the existence of a
clear link between the conditional probability distributions and the joint probability dis-
tribution (Besag, 1974; Smith, 2001).

We consider a spatial domain S = {1, . . . , n} and the neighborhood Ni of a site i,
i ∈ S, i.e.

Ni = {i∗ ∈ S : i∗ is a neighbor of i} , i ∈ S .

Assigned a random variable Xi, i ∈ S, we define the corresponding random field X,
i.e.

X = (X1, X2, · · · , Xn)> .

Definition 2.1 (Conditional Auto-Regressive model). Let S be a spatial domain. A ran-
dom field X is called Conditional Auto-Regressive model, if it is characterized by:
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• the conditional probability density function

f(xi|xNi
) =

√
1

2πσ2
i

exp




−

[
(xi − µi)− ρ

∑
i∗∈Ni

β(ii∗)(xi∗ − µi∗)

]2

2σ2
i





, (1)

for i ∈ S, where µi ∈ R, σi ∈ R+, |ρ| < 1 and β(ii∗) ∈ R, βii = 0, β(ii∗) = β(i∗i),
with i, i∗ ∈ S;

• the joint probability density function

f(x) =
1

(2π)
n
2 det(B−1ΣD)

1
2

exp

[
−(x− µ)>Σ−1

D B(x− µ)

2

]
, (2)

where µ is a n-dimensional vector, i.e.

µ = (µ1, µ2, . . . , µn)> ,

while B is a n× n invertible matrix of the following type

B = (I− ρβ) with b(ii∗) =





1 if i = i∗,
−ρβ(ii∗) if i∗ ∈ Ni,
0 othewise,

and ΣD is a n× n diagonal matrix, i.e.

ΣD = diag
(
σ2

1, σ
2
2, . . . , σ

2
n

)
,

such that Σ−1
D B is symmetric:

β(ii∗)σ
2
i∗ = β(i∗i)σ

2
i i, i∗ ∈ S .

Thus, a Conditional Auto-Regressive model X can be expressed equivalently in terms
of:

• conditional probability density function (1), denoted as follows:

Xi|XNi
∼ N

(
µi + ρ

∑
i∗∈Ni

β(ii∗)(xi∗ − µi∗), σ
2
i

)
, i ∈ S ; (3)

• joint probability density function (2), denoted as follows:

X ∼ N
(
µ,B−1ΣD

)
. (4)

Necessary and sufficient condition so that (4) is a valid joint probability density func-
tion is that its covariance matrix is not only symmetric, but also positive definite. For this
reason, we must define:
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• a symmetric weighted adjacency matrix W, i.e.

W =
(
w(ii∗)

)
with w(ii∗) =





0 if i∗ = i,
ϕ(i, i∗) if i∗ ∈ Ni,
0 otherwise,

(5)

such that
∀i, i∗ ∈ S w(ii∗) = w(i∗i) ,

where ϕ(i, i∗) is a measure that quantifies the proximity between the sites i and i∗;

• a diagonal matrix of normalization WD of the following type

WD = diag
(
w(1+), w(2+), . . . , w(n+)

)
,

supposing that
w(i+) =

∑
i∗∈Ni

w(ii∗) , i, i∗ ∈ S .

Then, assigned the matrix of interaction β as a normalized adjacency matrix, i.e.

β = W−1
D W with β(ii∗) =

w(ii∗)

w(i+)

, i, i∗ ∈ S ,

and supposed the matrix ΣD corresponding to a constant diagonal matrix, normalized too
as the previous one, i.e.

ΣD = σ2W−1
D with σ2

i =
σ2

w(i+)

, i ∈ S , σ2 ∈ R+ ,

the model (4) can be expressed as follows

X ∼ N

(
µ,

[
1

σ2

(
WD − ρW

)]−1
)

. (6)

The constant value σ2 represents the overall variability, while the value of the param-
eter of spatial association ρ, suitably chosen (Carlin and Banerjee, 2003; Cressie, 1993;
Sun, Tsutakawa, and Speckman, 1999), represents the overall effect of spatial depen-
dence.

For the extension to space-time case, it will be useful to express the model (4) in
matrix terms, i.e.

X = µ + ρβ (X− µ) + ε , (7)

where ε is a vector, called vector of pseudo errors, defined as follows

ε = B
(
X− µ

)
, (8)

supposed B = I− ρβ.
Note that although the components of the vector of pseudo errors are not independent,

i.e.
E(ε) = 0 , var(ε) = ΣDB> ,
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the error in a given location is independent of the auto-regressive random variable in the
nearby location, since the covariance between the vector of pseudo errors and the random
field is equal to a diagonal matrix:

cov(ε,X) = ΣD .

Furthermore, the Normal distribution on X “induces” the distribution on ε, i.e.

X ∼ N
(
µ,B−1ΣD

) ⇒ ε ∼ N(0,ΣDB>) ,

or, in more detail,

X ∼ N

(
µ,

[
1

σ2

(
WD − ρW

)]−1
)
⇒ ε ∼ N

(
0, σ2W−1

D

(
I− ρW−1

D W
)>)

,

supposed B = I− ρW−1
D W and ΣD = σ2W−1

D .

3 A new Approach: STCAR Model
The temporal analysis of spatially referenced data led to formulate a new model, called
Spatial Temporal Conditional Auto-Regressive (STCAR) model, in order to handle the
time evolution of a simple Conditional Auto-Regressive (CAR) model. Several multivari-
ate areal models have been proposed so far (Mardia, 1988; Kim, Sun, and Tsutakawa,
2001; Carlin and Banerjee, 2003). Most recently, Jin et al. (2005) introduced a new flex-
ible class of Generalized Multivariate CAR (GMCAR) models for areal data and showed
how it enriches the existing Multivariate CAR (MCAR) class (Gelfand and Vounatsou,
2003). Their method directly specifies the joint distribution for a multivariate Markov
random field through the specification of simpler conditional and marginal models, in or-
der to treat more features at the same instant. In particular, they consider modeling the
death rates from lung ad esophagus cancers in the years from 1991 to 1998 in Minnesota
counties, a setting in which association would be expected both within and across the
areal units.

In this article, we use the same procedure in order to treat the same features recorded
in a time interval. This involves the use of a space-time autoregressive matrix that allows
to handle the spatial dependence between sites as well as the temporal dependence among
the realizations. In particular, unlike the Vector Auto-Regressive (VAR) model proposed
in Sims (1980) to capture the evolution and the interdependencies between multiple time
series, this space-time autoregressive matrix also evaluate the close proximity of spatial
locations. All the variables in a VAR model are treated symmetrically by including for
each variable an equation explaining its evolution based on its own lags and the lags of all
the other variables; in our STCAR model, however, this equation will be built bearing in
mind also the neighborhood criterion applied to locations sampled.

Finally, we employ STCAR distributions as specifications for second-stage random
effects in a Bayesian framework with an application in modelling bankruptcy of small
and medium enterprises in the years from 2000 to 2003 in the province of Lecce (Italy).
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To illustrate this approach, we begin with the case of areal data collected in three
locations and in two periods. In particular, we hypothesize a spatial domain S = {1, 2, 3},
with N1 = {2}, N2 = {1, 3}, N3 = {2} and a temporal domain T = {1, 2} and we
consider the random fields Z1 and Z2 present, respectively, at periods 1 and 2, i.e.

Z1 = (Z11, Z21, Z31)
>, Z2 = (Z12, Z22, Z32)

> .

For ease of exposition, we define the random fields Z1 and Z2 as the temporal se-
quence of two CAR models of type (6) with expected value zero, i.e.

Zt ∼ N

(
0,

[
1

σ2
t

(
WD − ρtW

)]−1
)

, t = 1, 2 .

In the presence of a vector (Z1,Z2)
> of random fields which follows a multivariate

normal distribution, i.e.
(

Z1

Z2

)
∼ N

((
0
0

)
,

(
Σ11 Σ12

Σ21 Σ22

))
, (9)

where Σ21 = Σ>
12, the joint probability density function can be obtained as the product of

the conditional probability density function and the marginal probability density function,
i.e.

f(z1, z2) = f(z2|z1)f(z1) .

In other words, the evolution in the times from 1 to 2 of a phenomenon is obtained through
the information available at time 1 and the information available at time 2, known what
happened previously. Consequently, from the theory of the multivariate Normal distribu-
tion, we have that

E(Z2|Z1) = Σ21Σ
−1
11 z1 , var(Z2|Z1) = Σ22 −Σ21Σ

−1
11 Σ12︸ ︷︷ ︸

Σ22·1

.

and, supposing that C1 = Σ21Σ
−1
11 , we can write the distribution (9) as follows

(
Z1

Z2

)
∼ N

((
0
0

)
,

(
Σ11 (C1Σ11)

>

C1Σ11 Σ22·1 + C1Σ11C
>
1

))
. (10)

Our model is constructed so that the vector Z2 at time 2 depends linearly on itself,
lagged by one time, Z1, i.e.

Z2 = C1Z1 + δ2 , (11)

where

• C1 is a (3 × 3)-matrix, called space-time autoregressive matrix, built from a time
component r1 and a space component B−1

2 B1, i.e.

C1 = r1B
−1
2 B1
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• δ2 is the vector of pseudo errors structured with a space component B−1
2 , i.e.

δ2 = B−1
2 ε2 with ε2 ∼ N

(
0, σ2

2W
−1
D

(
I− ρ2W

−1
D W

)>)
.

In other words, the model (11) can be expressed as

B2Z2 = r1B1Z1 + ε2 , (12)

or, in more details,



1 −ρ2β(12) 0
−ρ2β(21) 1 −ρ2β(23)

0 −ρ2β(32) 1






Z12

Z22

Z32


 = r1




1 −ρ1β(12) 0
−ρ1β(21) 1 −ρ1β(23)

0 −ρ1β(32) 1






Z11

Z21

Z31


+




ε12

ε22

ε32


 .

So, to treat the same features recorded in a time interval, the space-time autoregressive
matrix gives a temporal coefficient in the same location sampled in different instants,
a spatial coefficient in nearby locations sampled in the same instant, the product of a
temporal coefficient and a spatial coefficient in nearby locations identified in different
instants. It follows that

• excluding the temporal dependence, i.e. r1 = 0, the model (12) is reduced to a CAR
model,

B2Z2 = ε2 with ε2 ∼ N
(
0, σ2

2W
−1
D

(
I− ρ2W

−1
D W

)>)
;

• excluding the spatial dependence, i.e. ρ1 = 0 and ρ2 = 0, the model (12) is reduced
to a linear regression model,

Z2 = r1Z1 + ε2 with ε2 ∼ N
(
0, σ2

2W
−1
D

)
.

Note that, in the analysis of more features at the same instant conducted in Jin et al.
(2005) and in Ma and Carlin (2007), the autoregressive matrix and the vector of pseudo
errors differ from those proposed in the model (11). Indeed, the matrix C1 of the GMCAR
model is a matrix of the following type

C1 = η0I + η1W with c1(ii∗) =





η0 if i∗ = i,
η1 if i∗ ∈ Ni,
0 otherwise,

where η0 and η1 are the “bridging” parameters; in particular, η0 associates pairs of areal
random effects defined on the same area unit, while η1 associates areal random effects
among neighboring units. The vector δ2, however, is reduced to the vector of pseudo
errors ε2 of a CAR model.

At this point, the generalization of the model (12) is straightforward. The model
proposed and expressed in a completely original definition, allows to handle the spatial
dependence between sites as well as the temporal dependence among the realizations,
respectively through a CAR model and a linear regression model.
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Definition 3.1 (Spatial Temporal Conditional Auto-Regressive model). Suppose that S ⊆
Rd, d ∈ N+ and T ⊆ R are, respectively, a spatial domain and a temporal domain.
Assigned a random variable Zit, i ∈ S, t ∈ T , we consider the temporal sequence of
Conditional Auto-Regressive models with expected value zero, i.e.

Zt ∼ N

(
0,

[
1

σ2
t

(
WD − ρtW

)]−1
)

, t ∈ T .

A vector of random fields Zt, t ∈ T is called Spatial Temporal Conditional Auto-Regressive
model of order p (STCAR(p)) if for every t,

BtZt = r1B(t−1)Z(t−1) + r2B(t−2)Z(t−2) + · · ·+ rpB(t−p)Z(t−p) + εt , (13)

where εt is the vectors of pseudo errors, i.e.

εt ∼ N
(
0, σ2

t W
−1
D

(
I− ρtW

−1
D W

)>)
, (14)

supposed Bt = I− ρtW
−1
D W.

We consider a spatial domain S = {1, . . . , n} and a temporal domain T = {1, . . . , m}
and we define the random fields Z1,Z2, . . . ,Zm present, respectively, at times 1, 2, . . . , m,
i.e.

(Z11, Z21, . . . , Zn1)
>

︸ ︷︷ ︸
Z1

, (Z12, Z22, . . . , Zn2)
>

︸ ︷︷ ︸
Z2

, . . . , (Z1m, Z2m, . . . , Znm)>︸ ︷︷ ︸
Zm

.

The joint probability density function of a STCAR model of order m can be obtained
as follows:

f(z1, z2, . . . , zm) = f(zm|z1, z2, . . . , z(m−1)) · · · f(z3|z1, z2)f(z2|z1)f(z1) ,

where

• the conditional distribution of Zm|(Z1,Z2, . . . ,Z(m−1))
> is the following type

Zm|(Z1, . . . ,Z(m−1))
> ∼ N

(
m∑

k=1

rkB
−1
m B(m−k)z(m−k),

[
1

σ2
m

(WD − ρmW)

]−1
)

,

(15)

• the marginal distribution of Z1 is the following type

Z1 ∼ N

(
0,

[
1

σ2
1

(WD − ρ1W)

]−1
)

. (16)

Note that, an element of absolute novelty with respect to the GMCAR model is the
specification of its conditional expected value. In particular, since the model (13) is a
space-time model, its expected value takes into account both the parameters of temporal
association r1, r2, . . . , rp and the parameters of spatial association ρt, ρ(t−1), . . . , ρ(t−p).
Moreover, the last are the only spatial unknowns of the STCAR model, since we will show
that the parameters of overall variability σ2

t , σ
2
(t−1), . . . , σ

2
(t−p) are linked to the parameters

of spatial association.
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4 Estimation of Space-Time Parameters
The STCAR model is constructed through a space-time autoregressive matrix so as to
give a temporal coefficient in the same location sampled in different instants, a spatial
coefficient in nearby locations sampled in the same instant, the product between a tem-
poral coefficient and a spatial coefficient in nearby locations identified in different in-
stants. Therefore, to estimate these unknown parameters, first we exclude the time depen-
dence and we estimate the space parameters through the Maximum Likelihood technique;
then we exclude the space dependence and we estimate the time parameters through the
Weighted Least Squares method.

Assuming temporal independence, i.e. r1 = r2 = · · · = rp = 0, the model (13) is
reduced to a CAR model:

BtZt = εt , t ∈ T , with εt ∼ N
(
0, σ2

t W
−1
D

(
I− ρtW

−1
D W

)>)
.

In this case, the log-likelihood function for ρt and σ2
t , supposed that Zt = zt, is thus

the following

l(zt; ρt, σ
2
t ) = −n

2
log(2πσ2

t ) + log det(Bt)− z>t B>
t Btzt

2σ2
t

, t ∈ T . (17)

Consequently, we obtain the maximum likelihood estimators:

• the estimator σ̂2
t of the variance, i.e.

σ̂2
t = n−1z>t B>

t Btzt , t ∈ T ; (18)

• the estimator ρ̂t of the parameter of spatial association, i.e. that value which maxi-
mizes the following function

l(zt; ρt, σ̂
2
t ) = −n

2
(log 2π + 1)− n

2
log(σ̂2

t det(Bt)
− 2

n ) , t ∈ T .

It seems evident that the estimator σ̂2
t depends on the estimator ρ̂t; moreover, the

calculation of this last focuses on assessment of the determinant of Bt, i.e.

det(Bt) = det(I− ρtβ) , t ∈ T .

In particular, if β has eigenvalues λ1, λ2, . . . , λn, it is well known that

det(Bt) =
n∏

i=1

(1− ρtλi) , t ∈ T .

The eigenvalues λ1, λ2, . . . , λn can be determined once and for all, so that ρ̂t is the
value of ρt that minimizes the following function:

l̃(zt; ρt, σ̂
2
t ) = log

1

n
− 2

n

n∑
i=1

log(1−ρtλi)+log(z>t zt−2ρtz
>
t βzt+ρ2

tz
>
t β>βzt) , t ∈ T ,

(19)



L. Mariella, M. Tarantino 233

supposing that l̃(zt; ρt, σ̂
2
t ) = log(σ̂2

t det(Bt)
−2/n).

For the determination of ρ̂t, we use a formal iterative procedure as Newton Raphson
procedure (Ord, 1975).

Assuming spatial independence, i.e. ρt = ρ(t−1) = · · · = ρ(t−p) = 0, the model (13) is
reduced to a linear regression model:

Zt = r1Z(t−1) + r2Z(t−2) + · · ·+ rpZ(t−p) + εt with εt ∼ N
(
0, σ2

t W
−1
D

)
.

Note that, the n-dimensional vectors εt are spatially homoscedastic, but temporally
heteroscedastic, since the variance matrix depends on time t. To solve the problem of
heteroscedasticity, we consider the relation (18) and assume that the variance matrix is a
function of the regressor zt, i.e.

σ2
t W

−1
D = σ2z>t ztW

−1
D . (20)

Therefore, it is easy to see that:

E
(
εt|zt|−1

∣∣zt

)
= 0 , var

(
εt|zt|−1

∣∣zt

)
= σ2W−1

D .

The model thus transformed satisfies all the assumptions of a classical linear regres-
sion model and Least Squares Estimators are both correct and efficient. The estimate is
an estimate of the Weighted Least Squares, since every t-th element is weighed with the
factor |zt|−1.

5 Case Study
The unit of survey adopted by the Chamber of Commerce, Industry, Agriculture and
Handicraft (or C.C.I.A.A.) of Lecce corresponds to a bankrupt local enterprise, i.e. a in-
solvent legal and economic unit, or part of it, located in one of the 97 municipalities of
Salento, in a span between the years 2000 and 2003. Thus, the population is made up of
local units which have exercised one or more economic activities and were significantly
related to their territory. To identify these activities, we referred to a list of 1991, known
as the classification of Economic Activities (or, more simply, the ATECO classification),
produced by the National Institute of Statistics (ISTAT) and structured according to a
number of levels (Vicari, Ferillo, and Valeri, 2009). In particular, in order to satisfy the
condition of strong territorial connotation, we examined the bankruptcies of enterprises
operating in 11 business sectors that depend on the resident population (Table 1).

Spatial analysis of these data was handled through Hierarchical Bayesian modeling
(Besag, York, and Molliè, 1991), where there are a data distribution (or likelihood) at the
first level and a explanatory distribution (or prior distribution), i.e. the STCAR model, at
the second and last level. After estimating unknown parameters of our model, the Gibbs
sampler generated the probability distribution desired (or posterior distribution) and the
resulting maps of risk.

Note finally that, for a correct interpretation of data collected and results obtained in
a multi-span, we created thematic maps that depict the percentiles of the distributions
considered, so as to make them immediately comparable.
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Table 1: ATECO classification.
Code Business SectorATECO
G.52.1 Retail sale in non-specialized stores
G.52.2 Retail sale of food, beverages and tobacco

in specialized stores
G.52.3 Retail sale of pharmaceutical and medical goods,

cosmetic and toilet articles
G.52.4 Retail sale of other products (except second-hand articles)

in specialized stores
G.52.5 Retail sale of second-hand articles
G.52.6 Retail sale outside stores
G.52.7 Repair of personal consumer goods and household goods
H.55.3 Restaurants
H.55.4 Bar
H.55.5 Canteens and catering
O.93 Other service activities

5.1 Construction of the Model

The closing of an enterprise that pursued a business closely linked to the territory repre-
sents a “rare event” since, in a four-year time frame, a residential complex does not vary
significantly. In each municipality, in addition, bankruptcies are not apparently influenced
by those of other municipalities in the province (Figure 1).

For this reason, the cases of bankruptcy yit, reported in any single municipality i in
the province of Lecce and for each year t considered can be interpreted as realizations of
(97 · 4) independent Generalized Poisson likelihoods (Consul, 1989; Consul and Famoye,
1992) with two parameters λit and θt denoted by GP (λit, θt), i.e.

Yit
ind∼ GP (λit, θt) , i = 1, . . . , 97 , t = 1, . . . , 4 . (21)

In particular, a random variable Yit is said to have a Generalized Poisson distribution
if its probability distribution is given by

p(yit; λit, θt) =





exp[−(λit + θtyit)]
λit(λit + θtyit)

yit−1

yit!
yit = 0, 1, 2, . . .

0 yit > mit when θt < 0
(22)

and its real-valued parameters λit and θt satisfy the following constraints:

• λit > 0;

• max(−1,−λit/mit) ≤ θt ≤ 1, where mit (mit ≥ 4) is the largest positive integer
for which (λit + mitθt) > 0 when θt < 0.
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Figure 1: Bankruptcies in the province of Lecce (C.C.I.A.A. data).

The expected value and variance of Yit are finite when θt < 1 and are given by

E(Yit) = φit var(Yit) = ϕ2
t φit

supposed φit = λitϕt and ϕt = (1− θt)
−1.

At this point, we consider the cases of bankruptcy Yt = (Y1t, Y2t, . . . , Y97t)
>, for

every year t, as the response random variables corresponding to the given vector set
Zt = (Z1t, Z2t, . . . , Z97t)

>. Like the Poisson regression model, according to the usual
log-linear specification, we stipulate that the distribution of Yt, for any given Zt, is that
of Generalized Poisson given by (22) with mean

E(Yt|Zt)︸ ︷︷ ︸
φt

= exp(Zt) ,

where φt, t = 1, . . . , 4, is the vector of target parameters from the point of view of
mapping and statistical inference.
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Let Z = (Z1,Z2,Z3,Z4)
> be a n-dimensional vector of explanatory random fields

and Y = (Y1,Y2,Y3,Y4)
> be the vector of response random fields. It is clear that

the product of the (97 · 4) distributions of Yit given Zit will get the expression of the
Generalized Poisson likelihood analyzed, i.e.

p(y|z) =
4∏

t=1

97∏
i=1

p(yit|zit).

The purpose of this analysis is to obtain the spatial-temporal evolution of the distri-
bution of the expected value φt of bankruptcies on Salento, through the information con-
tained in the observed cases and the distributional assumptions. Often, the variability of
expected bankruptcies is affected by a possible spatial interaction between adjacent areas
in the territory considered. In particular, the risk of bankruptcy in a given municipality of
the province of Lecce depends on the risk found in municipalities that are geographically
close. In this case, the structured spatial heterogeneity among the observed cases can be
modeled through a series of random variables Zit, i = 1, . . . , 97, t = 1, . . . , 4, which are
present in each of the 97 municipalities of Salento and each of the 4 years hypothesized.
According to Definition 3.1, the vector Z, or the succession of 4 random fields Z1,Z2,Z3

and Z4, is a STCAR model, since its joint probability density function can be obtained as
follows:

f(z) = f(z4|z1, z2, z3) · f(z3|z1, z2) · f(z2|z1) · f(z1) ,

where the conditional distributions are

Z4|(Z1,Z2,Z3)
> ∼ N

(
3∑

k=1

rkB
−1
4 B(4−k)z(4−k),

[
1

σ2
4

(
WD − ρ4W

)]−1
)

,

Z3|(Z1,Z2)
> ∼ N

(
r1B

−1
3 B2z2 + r2B

−1
3 B1z1,

[
1

σ2
3

(
WD − ρ3W

)]−1
)

,

Z2|Z1 ∼ N

(
r1B

−1
2 B1z1,

[
1

σ2
2

(
WD − ρ2W

)]−1
)

,

with Bt = I− ρtW
−1
D W. The marginal distribution is

Z1 ∼ N

(
0,

[
1

σ2
1

(
WD − ρ1W

)]−1
)

. (23)

In order to assess the degree of proximity between the municipalities of the province
of Lecce (Figure 2), we have chosen the measure ϕ(i, i∗) of the matrix (5) equal to the
border l(ii∗) shared by the municipalities i and i∗, i.e.

ϕ(i, i∗) = l(ii∗) , i = 1, . . . , 97 , i∗ ∈ Ni .
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Figure 2: Neighborhood for municipalities of the province of Lecce.

Therefore, the final stage of the hierarchical model is to estimate the space-time pa-
rameters of the stochastic component. More precisely (Consul, 1989), the log-likelihood
function of the Generalized Poisson model can be written as

l(yt; φt, ϕt) =
∑n

i=1 {log φit + (yit − 1) log[φit + (ϕt − 1)yit]

−yit log ϕt − [φit + (ϕt − 1)yit]/ϕt − log yit!} ,

for t = 1, . . . , 4.
The maximum likelihood equations for the estimation of the parameters φt and ϕt are

given by equating to zero the first partial derivatives of l(yt; φt, ϕt), i.e.




∂l

∂ϕt

(yt; φt, ϕt) = 0

∂l

∂φt

(yt; φt, ϕt) = 0

⇒





n∑
i=1

[
yit (yit − 1)

φit + (ϕt − 1) yit

− yit

ϕt

+
φit − yit

ϕ2
t

]
= 0

n∑
i=1

[
1

φit

− 1

ϕt

+
yit − 1

φit + (ϕt − 1) yit

]
= 0

(24)

These equations are clearly non-linear in the parameters. Consequently, the maximum
likelihood estimates of φt and ϕt were obtained through the algorithm Scilab’s fsolve
(Antonelli and Chiaverini, 2009). These approximations allowed to estimate the unknown
parameters of our STCAR model (Table 2).

The parameters of spatial association ρt, t = 1, . . . , 4, were obtained as minimum
points of the function (19), by the known Newton Raphson procedure (Figure 3). Conse-
quently, given the values of ρt, it was easy to calculate the parameters of overall variability
σ̂2

t , t = 1, . . . , 4, via the estimator (18).
The parameters of temporal association rt, t = 1, . . . , 3, were obtained as Weighted

Least Squares Estimates, based on information provided by the relation (20).

5.2 Implementation of the Model
To construct our maps of risk, it was necessary to estimate the probability distribution of
the STCAR model, given the cases of bankruptcy on the province of Lecce. Through the
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Table 2: estimates of two types of parameter.

years spatial association temporal association
t ρ̂1 ρ̂2 ρ̂3 ρ̂4 r̂1 r̂2 r̂3

2000 0.909
2001 0.909 0.964 0.302
2002 0.909 0.964 0.928 0.084 0.108
2003 0.909 0.964 0.928 0.950 0.048 0.060 0.085

Figure 3: Minimum points of the parameters of spatial association.

Bayes theorem, the posterior distribution was obtained, unless a normalization constant,
as the product of the likelihood and the prior distributions:

f(z|y)︸ ︷︷ ︸
Posterior

∝ p(y|z)︸ ︷︷ ︸
Likelihood

f(z4|z1, z2, z3)f(z3|z1, z2)f(z2|z1)f(z1)︸ ︷︷ ︸
Prior

It seems clear that this posterior distribution is analytically intractable. To obtain a
large enough number of his realizations, it was necessary to use a particular Markov Chain
Monte Carlo (MCMC) method known as Gibbs sampler (Gelfand and Smith, 1990). Us-
ing a thinning of the parameter samples by every 10th iteration, Gibbs sampler was al-
lowed to generate a Markov chain of 15000 elements of the following type:

(z
(0)
1 , z

(0)
2 , z

(0)
3 , z

(0)
4 )>︸ ︷︷ ︸

z(0)

, (z
(1)
1 , z

(1)
2 , z

(1)
3 , z

(1)
4 )>︸ ︷︷ ︸

z(1)

, . . . , (z
(15000)
1 , z

(15000)
2 , z

(15000)
3 , z

(15000)
4 )>︸ ︷︷ ︸

z(15000)

.

More specifically, given the realization ξ(14999) obtained in the 14999th iteration, the
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values that have generated the final realization ξ(15000) were sampled from their full con-
ditional distributions, according to the following steps:

z
(15000)
1 extracted from f(z1|z(14999)

2 , z
(14999)
3 , z

(14999)
4 ,y),

z
(15000)
2 extracted from f(z2|z(15000)

1 , z
(14999)
3 , z

(14999)
4 ,y),

z
(15000)
3 extracted from f(z3|z(15000)

1 , z
(15000)
2 , z

(14999)
4 ,y),

z
(15000)
4 extracted from f(z4|z(15000)

1 , z
(15000)
2 , z

(15000)
3 ,y) .

(25)

Note that, thanks to the independence between the random variables Zit of the respec-
tive random fields Zt, distributions (25) have been obtained through the product of the
following full conditional distributions:

f(zit|zNit
, yit) ∝ p(yit|zit)f(zit|zNit

) , i = 1, . . . , 97 , t = 1, . . . , 4 .

The result is represented by a succession of 4 thematic maps of the province of Lecce,
which is able to describe the space-time distribution of expected bankruptcies of small
and medium local enterprises (Figure 4).

In particular, the mapping on Salento of the posterior probability that the risk of
bankruptcy is higher than the average risk in the territory (Figure 5) revealed two in-
teresting aspects:

1. a clockwise geographical rotation between the municipalities off limits to local en-
terprises;

2. a cyclical trend in the years from 2000 to 2003 of high-risk municipalities.

Further noting the most of the municipalities involved by large-scale retail trade (Pagine-
gialle data, year 2003), we are able to observe an unusual fact compared with cases
of study presented so far in spatial epidemiology: over time, the area affected by the
shopping center, initially classified as “high risk of bankruptcy”, returns an area “under
control” for the survival of small and medium local enterprises. Indeed, enterprises that
should enliven their municipality, probably focus within the mall, so as to exploit its com-
mercial synergy.

5.3 Validation of the Model
Overcoming the computational difficulty of an analytical determination, the Gibbs sam-
pler allowed to simulate realizations of the posterior distribution using the Bayesian ap-
proach. Despite everything, however, it was necessary to validate the hierarchical model
hypothesized, in order to assess the reliability of the maps produced.

We decided first to use 5000 iterations for the preconvergence “burn-in” period and
then further 10000 iterations as our “production” run for posterior summarization. In
particular, after 5000 processings sufficient to remove the effects of the initial values, the
realizations from 5001th iteration to 15000th interaction have been extracted from the
simulated posterior distribution, i.e.

z(5001), z(5002), . . . , z(14999), z(15000) extracted from f(z|y) .
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Figure 4: Expected bankruptcies in the province of Lecce (C.C.I.A.A. data processing).

After reaching convergence, we needed to run the simulation for a further number of
iterations to obtain samples that can be used for posterior inference. One way to assess
the accuracy of the posterior estimates was by calculating the Monte Carlo Error (MCE)
for each random field of interest. As a rule of thumb, the simulation should be run until
the MCE is less than about 5% of the sample standard deviation (Table 3).

Moreover, the choice of using a thinning of the parameter samples by every 10th itera-
tion made possible a good mixing of the Markov chain. Therefore, the 15000 realizations
have allowed to obtain the probability density function of random field on Salento after
the 4th year of the survey.

6 Conclusion
This article has focused on the formulation of new Conditional Auto-Regressive (CAR)
model, the Spatial Temporal Conditional Auto-Regressive (STCAR) model, capable of
treating measurements recorded at each spatial location and at different periods. Main
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Figure 5: Probability of risk of bankruptcy in the province of Lecce (C.C.I.A.A. data
processing).

feature of the model proposed is the presence of a space-time autoregressive matrix that
allows to handle the spatial dependence between sites as well as the temporal dependence
among the realizations.

In particular, using the STCAR model as the distribution of the random effects in the
mean structure in a Hierarchical Bayesian model, it was possible to obtain, through a par-
ticular Markov Chain Monte Carlo (MCMC) method, known as Gibbs sampler, a series of
maps of risk of bankruptcy of small and medium enterprises located in 97 municipalities
of the province of Lecce, in a span between the years 2000 and 2003. The trend illustrated
by these maps showed that, over time, the municipalities affected by the mall and, for that
reason, classified at high risk of sudden bankruptcy return to be attractive to small and
medium local enterprises which integrate with the mall and take advantage of the synergy
created by this last.

Finally, the validation of the hierarchical model hypothesized has allowed to establish
the full validity of the results achieved by the STCAR model proposed.
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Table 3: Monte Carlo Error after the 4th year of the survey.
i Z̄4

√
v̂ar(Z4) MCE i Z̄4

√
v̂ar(Z4) MCE

1 0.000 0.882 0.009 51 -0.002 0.872 0.009
2 0.026 0.823 0.009 52 0.001 0.591 0.007
3 0.026 0.912 0.010 53 0.016 0.877 0.010
4 0.027 0.995 0.011 54 0.007 0.877 0.010
5 0.011 0.924 0.010 55 -0.001 0.756 0.009
6 0.005 0.956 0.011 56 -0.003 1.030 0.012
7 0.015 0.769 0.008 57 0.000 0.712 0.008
8 0.005 0.969 0.010 58 -0.006 0.946 0.011
9 0.003 0.863 0.009 59 0.020 0.844 0.010
10 0.000 0.944 0.011 60 0.025 1.262 0.011
11 -0.005 0.742 0.009 61 0.010 0.876 0.010
12 -0.002 0.869 0.009 62 0.009 0.824 0.008
13 -0.012 0.986 0.011 63 0.015 0.935 0.012
14 0.017 0.852 0.010 64 0.010 0.697 0.007
15 0.000 0.736 0.009 65 -0.003 0.755 0.009
16 0.018 0.743 0.008 66 0.009 0.894 0.008
17 0.001 0.944 0.010 67 0.003 0.876 0.010
18 0.001 0.904 0.010 68 -0.009 0.972 0.010
19 0.032 1.145 0.010 69 0.002 0.813 0.010
20 -0.003 0.816 0.010 70 0.007 0.808 0.009
21 0.015 0.902 0.009 71 0.006 0.979 0.011
22 0.010 0.639 0.007 72 0.009 0.908 0.010
23 0.007 0.764 0.009 73 0.005 0.773 0.008
24 0.025 1.219 0.012 74 0.018 0.955 0.010
25 0.008 1.007 0.011 75 0.010 1.133 0.011
26 0.013 0.620 0.007 76 -0.002 0.726 0.008
27 0.008 1.055 0.011 77 0.006 0.814 0.008
28 0.025 1.137 0.011 78 0.008 1.023 0.011
29 0.008 0.590 0.007 79 0.002 0.966 0.011
30 0.009 0.669 0.007 80 0.008 0.908 0.011
31 0.015 0.847 0.010 81 0.012 0.669 0.008
32 0.005 0.954 0.011 82 0.006 1.024 0.010
33 -0.001 0.922 0.010 83 0.008 0.779 0.009
34 -0.009 0.862 0.010 84 0.010 0.810 0.007
35 -0.001 0.567 0.007 85 0.017 0.830 0.009
36 0.003 0.671 0.008 86 0.028 1.112 0.011
37 0.009 0.688 0.007 87 -0.003 0.763 0.009
38 0.001 0.765 0.008 88 0.008 0.862 0.009
39 -0.007 0.717 0.009 89 0.010 0.961 0.010
40 0.001 0.864 0.010 90 0.005 0.717 0.008
41 -0.005 1.165 0.013 91 0.001 0.901 0.011
42 0.010 0.780 0.010 92 0.007 0.696 0.007
43 0.000 0.697 0.009 93 -0.001 0.706 0.009
44 0.007 0.862 0.011 94 0.012 0.922 0.010
45 0.004 0.873 0.009 95 0.011 0.916 0.010
46 0.006 1.047 0.011 96 -0.005 1.306 0.014
47 0.004 0.870 0.010 97 0.007 0.875 0.010
48 0.010 0.877 0.010
49 0.012 0.950 0.010
50 0.020 1.040 0.009


