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SUMMARY. We propose two approaches for the spatial analysis of cancer incidence data with additional 
information on the stage of the disease at time of diagnosis. The two formulations are extensions of commonly 
used models for multicategorical response data on an ordinal scale. We include spatial and age-group effects 
in both formulations, which we estimate in a nonparametric smooth way. More specifically, we adopt a fully 
Bayesian approach based on Gaussian pairwise difference priors where additional smoothing parameters are 
treated as unknown as well. We argue that the methods are useful in monitoring the effectiveness of mass 
cancer screening and illustrate this through an application to data on cervical cancer in the former German 
Democratic Republic. The results suggest that there are large spatial differences in the stage proportions, 
which indicate spatial variability with respect to the introduction and effectiveness of Pap smear screening 
programs. 
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1. Introduction 
There has been much development of the spatial analysis of 
observational disease data within the last 10 years. The work 
can be categorized into two groups, methodology for data 
where the exact location of each case is known and method- 
ology for aggregated data, where the total number of cases 
is given in predefined administrative areas (for a review, see 
Diggle (1996)). Bayesian approaches for the second type of 
data include the seminal work by Besag, York, and Mollik 
(1991), who propose a Markov random field model for the 
spatial smoothing of disease rates. This model is nowadays 
widely used for disease mapping, the study of spatial varia- 
tion in disease risk (for reviews, cf., Clayton and Bernardinelli 
(1992), Knorr-Held and Becker (2000), or Wakefield, Best, 
and Waller (2000)). 

Probably the most prominent application is the statisti- 
cal analysis of (age-standardized) cancer mortality rates, as 
such data are routinely collected throughout the world. A 
spatial analysis may help identify a spatial signal, which is 
particularly important for rare diseases, where the raw rates 
exhibit too much variation and are not particularly helpful 
in order to judge the variation of the underlying disease risk. 
The estimated spatial pattern may give hints about relevant 
unobserved risk factors, although some general problems of 

interpretation can remain due to the observational type of 
the data. 

In this article, we extend the methodology to the analy- 
sis of cancer incidence data with additional knowledge on the 
stage of disease at time of diagnosis. Our aims are (a) to ad- 
just the crude observed data for effects that can be attributed 
to age and (b) to assess whether there is any spatial varia- 
tion left in the (adjusted) stage proportions. This is of clear 
public health importance for diseases for which screening pro- 
grams have been implemented and spatial variation in stage 
proportions might indicate heterogeneity in the effectiveness 
of cancer screening. 

We propose two formulations based on regression models 
for categorical data on an ordered scale (for a recent review, 
see Fahrmeir and Tutz (2001, Chapter 3)). In the first ap- 
proach, we model cumulative probabilities of disease risk, 
whereas in the second, we model conditional probabilities. 
More specifically, in the latter approach, we consider the prob- 
ability that a person is diagnosed with the disease in a spe- 
cific stage given that she is diagnosed in this or in a higher 
stage. In each formulation, the log odds of these (cumulative 
or conditional) probabilities are decomposed additively into 
age-group and spatial effects. 

We work directly on data stratified by age, which is in con- 
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trast with ordinary disease-mapping methods (without stage 
stratification), where the data are typically standardized by 
age in advance. Such a two-stage estimation procedure allows 
one to calculate the expected number of cases, which is sub- 
sequently used as an offset in a Poisson regression approach. 
However, a simultaneous estimation of age and spatial effects 
should, in general, be preferred because the uncertainty in 
the age estimates is then automatically incorporated. f i r -  
thermore, it is not obvious how to calculate expected cases in 
our multicategorical setting. 

In Section 2, we outline the two different formulations for 
ordinal disease risk data, and Section 3 illustrates the two ap- 
proaches in an application to incidence data on cervical cancer 
in the former German Democratic Republic (GDR) in 1975. 
We compare our estimates with those obtained from a cor- 
responding maximum likelihood approach with unrestricted 
age-group and spatial effects. This corresponds to the com- 
mon comparison of standardized mortality or morbidity ra- 
tios with Bayesian relative risk estimates. The results suggest 
that there are large spatial differences in the (age-adjusted) 
stage proportions, which indicates spatial variability in the 
time of introduction and effectiveness of prevention programs. 
We close with some comments and possible extensions in Sec- 
tion 4. 

2. Model 
Let nij denote the number of person-years (or simply people) 
at risk in district i = 1,. ..,I and age group j = l , . .  . , J .  
For each cell (i ,j),  let yijs denote the number of diagnosed 
cases of disease in stage s = 1,. . . , S.  We assume that the 
stages are ordered by severity of the disease, with stage S 
being the most severe. Finally, let yijo = nij - Cs,lyijs 
be the number of all person-years at risk that have not be- 
ing diagnosed with the disease (stage 0). We now assume 
that yi j  = (yijo,  yij l , .  . . , yijs) '  follows a multinomial dis- 
tribution with parameters nij and probability vector 7rij = 
(7rijol7rij1,. . . , rijs)', where C,=, 7rijs = 1. 

2.1 The Cumulative Model 
In the cumulative model (McCullagh, 1980), we factorize the 
log odds of the cumulative probabilities p i j s  = 7rijo+...+.rr.. 23 s 
into an intercept term ps,  a spatial effect QSi,  and an age- 
group effect psj, i.e., 

S 

S 

/ s  S \ 

\t=o ' t=s+l 1 
= Ps + os, + psj ( s  = 0,. . . , s - 1). (1) 

Equivalently, this model can be formulated in terms of 
descending cumulative probabilities 1 - p,,,; the correspond- 
ing log odds are simply -(ps+Osz+'psj). Hence, the estimates 
from model (1) can easily be transformed to those correspond- 
ing to an analysis of the data with the category order reversed. 

The probabilities 7rzJs entering the multinomial likelihood 
can be derived from (1) as 

Wt-'(Clo + 00% + POj) 
logit-' (pS + oSz + ps,) 

-1ogit-l(ps-i + es-l,, + ' ~ ~ - 1 , ~ )  

1 - logit-l(Ps-l + OS-l, ,  + PS-lJ) 

( s  = 0 )  

(s = l , . .  . , s -  1) 
(s = S), 

(2) 

where logit-'(z) = 1/(1+ exp(-z)). To ensure that all these 
probabilities are positive, the unknown parameters p s ,  Qsi, 
and psj have to fulfill the constraints 

Ps- l+ os-1,i + VS-l,j < Ps + Qsi + psj (3) 

for all i = 1,. . . , I ,  j = 1,. . . , J ,  and s = 1,. . . ,S - 1 

2.2 The Sequential Model 
The rationale for the sequential model is that a categorical 
response variable can take a specific value s only after the 
levels 0,1,. . . , s - 1 have been reached. This is the case in our 
application, where cancer diagnosis at a specific stage implies 
that the cancer has passed undetected through all stages 
below. A version of the sequential model where covariate 
effects do not depend on the response value is also known 
as the continuation ratio model (Agresti, 1984). 

The sequential approach to ordinal data thus models the 
conditional probability that an individual in cell (i, j )  gets 
diagnosed with the disease in stage s ,  assuming that she 
gets diagnosed of the disease in stage s or higher, i.e. qi j s  = 
Tijs/(Tijs + . . . + rtjs) .  NOW we decompose the log odds of 
these conditional probabilities into an intercept term vs, a 
spatial effect qsz, and an age-group effect $sj as follows: 

= vs + qsz + $hsj ( s  = 0,.  . . , s - 1). (4) 

Note that, formally, the only difference from the cumulative 
model (1) is that rijS replaces the cumulative probability 
~ i j o  + ... + r i j S  in the numerator of the ratio within the 
logarithm. For s = 0, the cumulative and the sequential 
models are apparently identical (assuming compatible priors). 
We will comment on this further in Section 2.5. 

The probabilities 7 r i j s  can now be derived as 

( s  = 0) 

( s  = s>, 
( 5 )  

(see Fahrmeir and Tutz, 2001, p. 94). Note that here the 7r i j s  

are defined through products of probabilities, not through 
differences of probabilities as in the cumulative model. 
Therefore, no further constraints have to be imposed on the 
parameters vs, qsi, and $ ~ ~ j .  A further difference from the 
cumulative model is that a sequential model applied to the 
data but with the category order reversed is not equivalent 
to model (4) except for the noninteresting binomial case 
S = 1. This is a consequence of the rationale underlying the 
sequential model, where categories can be reached successively 
but only in one specific direction. 
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2.3 Prior Assumptions 
The two alternative models proposed above are now complet- 
ed by assigning prior distributions to all unknown parameters. 
For both the spatial and the age-group parameters, we will use 
Gaussian pairwise difference priors (Besag et al., 1995), which 
favor a nearly constant pattern, implied by a high prior mass 
on very small values of the corresponding variance parameter. 
However, the priors we use for these variance parameters 
are highly dispersed; hence, the formulation will be flexible 
enough to capture spatial or temporal gradients or trends if 
there is evidence in the data for it. For the spatial effects, this 
corresponds to the common choice of Markov random field 
models, while for the age-group parameters, this class reduces 
to the so-called random walk priors. Exactly the same priors 
have been used for disease mapping (Besag et al., 1991; Best 
et al., 1999), for space-time modeling of disease risk (Knorr- 
Held and Besag, 1998), and in many other areas of application 
(e.g., Fahrmeir and Lang, 2001). These models neither impose 
stationarity nor assume a specific parametric form; in fact, 
they are closely related to non- and semiparametric smoothing 
methods (see Fahrmeir and Knorr-Held, 2000; Hastie arid 
Tibshirani, 2000). 

In the cumulative model, we separate the spatial parame- 
ters into independent sets 00, . . . , 0 ~ - 1 ,  s = 0 ,  . . . , S-1, where 
0, = (0,1,. . . , Bsr), and assume that, for each category s, 0, 
follows a Gaussian Markov random field (MRF) model (Besag 
et al., 1991), 

(6) 
where the sum in the exponent goes over all pairs of adjacent 
areas il and i 2 .  For some motivation for I - 1 instead of I 
degrees of freedom for the precision (the inverse variance) AeLi 
in (6), see Knorr-Held (2002). 

For each unknown precision parameter A,, , s = 0, .  . . , S- 1, 
we adopt a gamma prior, 

with suitably chosen constants a and b. The S sets of Markov 
random fields 00, .  . . ,0s-1 are assumed to be independent. 
Alternatively, one could specify a multivariate MRF model, 

where 0i = (Qo i , .  . . , 0si) ’ .  A Wishart prior would be the 
common choice for the precision matrix A@, i.e., 

again with suitably chosen constants a and B,  where a is 
a scalar and B is an S x S matrix. Such a multivariate 
MRF model might be appropriate if the MRFs 00, . . . , 0 ~ - 1  
are expected to be correlated. However, note that a priori 
independent fields 00,.  . . , 0s-1 can still be dependent in the 
posterior if they are dependent in the likelihood. So, without 
strong prior knowledge about the correlation, we do not 
expect any major differences between the two formulations 

and stick to the simpler form with Q priori independent 
MRFs. 

The formulation proposed in Besag et al. (1991) is more 
elaborate, with additional parameters for unstructured spatial 
heterogeneity. It is computationally convenient to employ 
a reparameterized version (e.g., Carlin and Louis, 1996, 
p. 308), where OSi is independent Gaussian with mean 8,, 
and precision T:, say, and a GMRF prior is now placed on the 
latent vectors O,, just like in (6) for 0,. In our application, 
we have tested both models with and without the additional 
unstructured parameters. 

For the age-group-specific parameters, we assume along 
similar lines that, for each category s, the parameters ps = 
(psi,. . . , p s ~ )  follow a simple Gaussian random walk in time 
with variance A;,:, with a flat prior for the initial value psi. 

Such a formulation is the exact temporal analogue of model 
(6) because the prior can be written again in the pairwise 
difference form, 

(8) 
( - j = 2  

We assume prior independence for the sets of parameters 
90, . . . , ps-1, which again can easily be relaxed by adopting 
a multivariate Gaussian random walk model. Also, we use 
again gamma hyperpriors for the precision parameter A,, , 
s = 0, . . .  , S  - 1. Finally, for each intercept parameter 
PO,  . . . , p - 1 ,  we adopt a flat, locally uniform prior. 

Similarly, for the sequential model, we use MRF priors 
for TI, = (qsl,. . . ,v81), random walk priors for $s = 
($,I,. . . r q 5 ’ s ~ ) ,  and a flat prior for vsr s = 0 , .  . . , S - 1. The 
exact forms of the prior densities can easily be obtained by 
replacing p, by v,, 0, by q,, and ps by $, in the above 
description of the priors in the cumulative model. 

2.4 Model Choice and Parameter Jnterpretation 
At this point, it might be worth noting that the posterior dis- 
tribution of the conditional probabilities qi j ,  can, of course, 
easily be derived from the cumulative model as well because 
they are just simple functions of the posterior distribu- 
tion of the 7ri js’s. Similarly, the posterior distribution of 
the cumulative probabilities pij ,  could be calculated from 
the sequential model. Indeed, both formulations allow the 
exploration of every functional of the posterior distribu- 
tion of the nijs’s. The difference between the two fomu- 
lations is the different parameterization of the 7ri js’s, with 
different quantities being the focus for smoothing, either 
the cumulative or the sequential conditional probabilities. 
Preferences for one or the other model can either be based on 
interpretation issues or on more formal model-choice criteria. 

Regarding parameter interpretation, we are particularly 
interested in spatial disease risk estimates adjusted for age. 
The (age-adjusted) overall relative risk (regardless of the stage 
of the disease) in district i can be obtained from the quantities 
exp(-Ooi) and exp(-voi). Similarly, in the sequential model, 
we can interpret exp(-B,i), s = 1,. . . , S-1, as the cumulative 
adjusted relative risk in district i .  In the sequential model, 
exp(--q,i), s = I , .  . . , S - 1, can be interpreted as the (age- 
adjusted) odds ratio for the conditional probability of being 
diagnosed in stage s + 1 or higher, given diagnosis in stage s 
or higher. For the age-group effects, we also prefer to display 
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-qs j  and - - $ ~ ~ j  (rather than cpsj and Q S J ) ,  the age-group 
effects on the cumulative probabilities 1 - p i j s  and on the 
conditional probabilities 1 - q i j s ,  respectively. This has the 
advantage that higher values in the figures displaying age 
effects and darker colors in the spatial maps can be associated 
with a higher (cumulative or conditional) risk of a more severe 
stage of the disease at diagnosis. 

For assessment of the model fit, we routinely monitor the 
posterior distribution of the saturated deviance (Spiegelhalter 
et al., 2002), 

I J  

i=l j=l 

with the multinomial squared deviance residual 

(using the convention that 0 log 0 = 0). Each deviance residual 
d i j  = (d:j)1/2 can be seen as a (standardized) measure of 
fit, comparing the observed number of cases yijS with the 
fitted number of cases nijsrijs for all stages s = 0 , .  . . , S.  
Note that this is well defined in both models, as only the 
multinomial cell probabilities enter. For a well-fitting model, 
D should be asymptotically (with increasing data in each cell 
( i , j ) )  around I . J .  S (the factor S appears here due to the 
multinomial response with S “free” categories). The mean 
posterior deviance D can be used as an overall measure of 
model fit and can be combined with a term p~ called the 
effective number of parameters to give a deviance information 
criterion (DIC) for model choice (see Spiegelhalter et al. 
(2002) for further details)). 

2.5 A Comparison o j t h e  Two Models 
As an illustration, we now consider a simple example with 
S = 2 categories and no further stratification with respect t o  
age or space (i.e., I = J = 1). 

The difference between the two models is a different para- 
meterization of the multinomial probabilities 7r = ( T O ,  TI, 

~ 2 ) ‘ .  The cumulative model parameterizes the model with 
respect to cumulative probabilities po = T O  and p1 = T O  + “1 

with po < p l .  The sequential model uses qo = TO and the 
conditional probability q1 = q / ( l  -no). Suppose now we use 
independent flat beta(1,l) priors for po and pi in model 1 or 
40 and q1 in model 2, respectively. No attempt is made here 
to choose compatible priors (Dawid and Laurizen, 2001); the 
following discussion holds for any prior choice as long as the 
priors are assumed to be independent (note, however, that 
the order restriction po < pi already implies a dependence 
between po and p l  in the cumulative model). 

In the sequential model, it can now easily be seen that, con- 
ditional on the data, qo and q1 are still independent because 
the posterior is proportional to the multinomial likelihood 

which can be factorized into independent beta terms. There- 
fore, 40 and q1 are independent in the posterior with marginal 

distribution 

40 I Y beta(y0 + 1, Y 1  + y2 + 1) 

and 

41 I Y N beta(yl+ 1 , ~ 2  + 1). 

In the cumulative model, however, the posterior 

P(P0,Pl I Y) cC P Y ( P 1  - Po)y’(l - PdYZ 
for po < p l  and 0 elsewhere 

cannot be factorized and po and pl will be dependent. 
Furthermore, although po = qo = T O ,  the marginal posterior 
distribution of po 

1 

PO I Y  c C ~ $ ~ ~ ~ ~ l - P o ~ y ’ ~ l - p l ~ ( ’ l i l p l  

is different from the posterior for qo and does not seem to 
be analytically tractable. We can easily sample from the 
posterior p(p0,pl I y), e.g., by Markov chain Monte Carlo, 
and compare the corresponding multinomial probabilities n 
with the one obtained from the sequential model. In some 
empirical comparisons, we have found slight differences for 
the posterior distribution of rrg and stronger discrepancies for 
TI and n2. 

This simple example transfers to the general case. Although 
both the cumulative and the sequential model specify the 
same model for the probability 7rijo of not developing the 
disease, the posterior distributions of po  and YO, Boi and 
Q O ~ ,  and cpoj and $oj are not necessarily exactly the same 
(except for the binomial case S = 1) because of the different 
parameterization of the remaining multinomial probabilities 

Incidentally, the maximum likelihood estimates will be the 
same in both models due to the invariance property of such 
estimates with respect to reparameterization (e.g., Cox and 
Hinkley, 1974). For example, in the above example, the ML 
estimate for po and qo is yo/(yo+y1 +yz) while p l  is estimated 

Returning to the factorization (lo),  we note that the same 
independence structure holds also in the general sequential 
model and implies that we could--equivalently to the joint 
multinomial approach defined by (4) and (5)-estimate S 
binomial regression models, 

(rijl,.’.,%js). 

by ( Y O + Y ~ ) / ( Y O + Y ~ + Y ~ ) )  and 41 is estimated by Y ~ / ( Y I + Y ~ ) .  

completely separately. This factorization in fact reflects 
explicitly the conditional definition of the model. Hence, there 
will be no information in the likelihood about correlation 
between parameters for different stages. In particular, the 
extension to multivariate MRF and random walk priors as 
discussed earlier for the cumulative model does not seem to 
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be useful here. A separate modeling approach might be 
advantageous if one is mainly interested in the variation of 
the stage-specific proportions but not in the overall disease 
rate. Note that then the actual number of person-years nij is 
not even needed for such an analysis. This in fact opens up the 
possibility for continuous spatial modeling of the risk surface 
(for a similar non-Bayesian approach for spatial case-control 
data, see Kelsall and Diggle (1998)) if the exact locations of 
disease cases are known. 

Finally, the factorization (10) implies that the posterior 
distribution of VO, V O ~ ,  and $y)j will be the same whether or 
not we further stratify by the cancer stages. This would not 
be exactly the case in the cumulative model. 

2.6 Computational Issues 
Inference has been carried out using C++ routines developed 
by the first author. We have used Markov chain Monte Carlo 
(MCMC) to sample from the relevant posterior distributions, 
applying univariate Gaussian Metropolis random walk 
proposals for all components of 8, ( v s )  and pa (Qs), s = 
I , . .  . , S  - 1, while Gibbs steps have been used for the 
remaining precision parameter. The spread of each Metropolis 
proposal was tuned in an automatic fashion, prior to the 
collection of the posterior samples, so that the corresponding 
acceptance rate for each parameter was between 35 and 45%. 
Note that, in the cumulative model, one needs to check the 
additional restriction (3). If the Metropolis proposal did not 
fulfill the restriction, it was simply rejected (formally due to 
a zero prior term in the numerator of the acceptance ratio). 

Both formulations impose an identifiability problem on 
the overall risk parameter ps (v.), as those can also be 
absorbed by both age-group and spatial effects. We have 
recentered both 8, (qs) and (ps (?lS) after each iteration, with 
a corresponding adjustment to ps (vs) for s = 0 , .  . . , S - 1. 
This is a valid approach as long as we assume a locally uniform 
prior for ps (vS) because it neither changes the value of the 
likelihood nor of the prior (all pairwise difference priors have 
an implicit flat prior on the overall level), hence not of the 
posterior. Furthermore, it enables us to  explore the posterior 
distribution of the age and spatial effects. Alternatively, one 
could impose a sum-to-zero restriction directly in the prior 
for each age-group and spatial parameter block. However, 
one would need to implement a block updating algorithm, as 
suggested in Rue (2001) because single-site updating would be 
impossible due to degenerate full conditionals. Block updating 
would also be helpful for sparse data, where similar models 
are known to have convergence and mixing problems (Knorr- 
Held and Rue, 2002). However, the data we considered in our 
application are not particularly sparse and MCMC mixing 
was fine for the single-site scheme we have implemented. 

We finally note that Albert and Chib (1993, 2001) sug- 
gested a latent variable approach for Bayesian inference by 
MCMC both in the cumulative and sequential model. This 
can be advantageous in applications where the number of 
observations is small or moderate. However, in the current 
context, the number of latent variables will be equal (in 
the cumulative model) or even a multiple (in the sequential 
model) of the number of person-years at risk. This seems to 
be prohibitive; e.g., in our application, the number of person- 
years, which is here simply the population number, exceeds 
seven million. 

Figure 1. 
for the four different models. 

Boxplots of posterior samples from the deviance 

3. Application 
We now describe an application of the methodology described 
above to incidence data on cervical cancer in the former 
German Democratic Republic (GDR). The data are available 
on a yearly basis; here we present results for the year 
1975, shortly after the introduction of Pap smear screening 
programs. We have used the values a = 1.0 and b = 0.001 as 
the default choice for the gamma hyperprior of all precision 
parameters, which corresponds to an extremely dispersed 
distribution for the (inverse gamma distributed) variances 
with infinite mean and variance and a prior mode at 0.0005. 

The data are stratified by I = 216 administrative districts 
and J = 14 age groups (20-24, 25-29, . . . ,  80-84, and 
85+). There were no cases below age 20. The original records 
give information on the stage of the detected lesion in 
six categories: (I) dysplasia, (11) carcinoma in situ (both 
premalignant), and (111-VI) malignant cancer of increasing 
severity. Effective screening shifts (a) the stage of the detected 
lesion toward earlier stages, preferentially to a premalignant 
condition, and (b) the time of detection toward younger age 
groups. Here we focus on the effect of stage shift and combine 
for simplicity the premalignant categories I and I1 into stage 
s = 1. Similarly, we aggregate the malignant categories 111-VI 
into stage s = S = 2. We have deleted 35 cases (0.5%) with 
missing information on the stage of the disease. The total 
number of cases sum to 3466 in stage 1 and 3540 in stage 
2; the corresponding total female population in the 14 age 
groups is 7,262,311. The median number of cases per district 
(regardless of the stage) is 20.5 (range 3-759). Stage-specific 
medians are 9 (0-433) for stage 1 and I1 (1-326) for stage 2. 

In a first assessment of the model fit, Figure 1 compares the 
posterior distribution of the deviance (9) of the cumulative 
and the sequential model; both of them either without 
(denoted by CUM and SEQ) or with (denoted by CUM+ 
and SEQf) additional unstructured random effects. Among 
the simpler formulations without additional unstructured 
random effects, the sequential model fits the data better than 
the cumulative model because the mean posterior deviance 
is smaller (5403 compared with 5820) and the support of 
the posterior deviance samples of the two models is well 
separated. Compared with the actual number of cells times 
the number of stages (I. J . S = 216 . 14 . 2 = 6048), this 
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Table 1 
Deviance summaries 

Model D PD DIC 

CUM 5820 130 5950 
CUM+ 5812 129 5941 
SEQ 5403 245 5649 
SEQ+ 5384 259 5644 

seems to be a decent fit to the data and indicates that neither 
interactions of age with space nor additional unstructured 
parameters are needed in both formulations. Indeed, the 
more complex formulations with additional parameters for 
unstructured heterogeneity give only a minor improvement 
in model fit, with a slightly smaller mean posterior deviance 
of 5812 for the Cumulative and 5384 for the sequential model. 

In the following, we therefore restrict our attention to the 
formulations without the additional unstructured parame- 
ters. We note, however, that the DIC criterion has a slight 
preference for the sequential model with additional unstruc- 
tured effects (see Table 1). It is unclear if such a small differ- 
ence in DIC really matters. One would also like to  ensure that 
this difference is not due to Monte Carlo error; in particular, 
the assessment of the Monte Carlo error of p~ is difficult 
(Spiegelhalter et al., 2002). Fortunately, in our application, all 
maps and figures are virtually indistinguishable so our con- 
clusions are the same with or without the additional unstruc- 
tured effects. 

First we compared the mean deviance residuals d,, . Over- 
all, 69% of the residuals from the sequential model are smaller 
than the corresponding ones from the cumulative model (see 
also Figure 2 for a graphical comparison), but no general 
pattern could be observed that would indicate the lack of fit 
of the Cumulative model in particular age groups or districts, 
say. One is tempted to study the deviance residuals further 
stratified by stage, but this does not prove useful because 
stage-specific contributions ytJS log(y,,, / (n , ,S~ , , s ) )  czln be 
large in absolute size although their sum may still be small. 

Turning now to  the estimated age effects, Figure 3 displays 
posterior median estimates within 90% pointwise credible 
intervals of -400 and -cp1 from the cumulative model. One 
can see a fairly similar inverse “bathtub” pattern of the two 
curves. The second curve, which describes the age pattern 
relevant for being diagnosed with a malignant form of the 
disease, has a nearly constant slope for age between 30 and 
70, whereas the slope of the first curve, representing the log 
relative risk for both the premalignant and malignant stage, 
is already negative in that age range. This reflects the fact 
that the malignant stage of cervical cancer is more likely to 
be diagnosed in older age groups, as the cancer needs time to 
progress (undetected) through the premalignant stage. 

The estimates of -$o from the sequential model (Figure 
4, left plot) are directly comparable with -PO (Figure 3, 
left plot) because both correspond to the overall log relative 
disease risk (keep in mind, however, that the estimates do not 
have to be exactly identical, as commented on earlier). Here 
there is virtually no difference to see. Finally, the right plot 
in Figure 4 displays the age effect on the conditional risk of 
the malignant disease stage 2, given a diagnosis in stage 1 or 

I I I I I 

0 1 2 3 4 

CUM 

Figure 2. Estimated mean deviance residuals from the 
sequential model (y-axis) plotted against the corresponding 
ones from the cumulative model (z-axis). 

2. As expected, an increasing conditional risk with increasing 
age can be seen, which is remarkably linear on the logit scale. 

Figure 5 now displays the estimated spatial incidence 
pattern regardless of the stage. The first map shows stan- 
dardized morbidity ratios (SMRs) calculated by internal 
standardization through joint maximum likelihood (ML) 
estimation (see Breslow and Day, 1987, Chapter 4). More 
specifically, we obtained the SMRs by applying a standard 
logistic regression procedure to the aggregated cases in stages 
1 and 2 as responses, using age group and district as factors 
(each of them restricted to sum to zero). Displayed is the 
exponential of the estimated spatial parameters, which can 
hence be interpreted as (age-adjusted) relative risk estimates. 
The other two maps display the corresponding (posterior 
median) relative risk estimates exp(-Bo) and exp(-go) from 
the cumulative and sequential models, respectively. One can 
see a fairly similar pattern with the expected smoothing 
effect, slightly more pronounced for the cumulative model. 
This might be caused by the additional order restrictions (3). 
Note that we have used the same scale from 0.4 to 2.5 in all 
maps, which covers the estimates from the cumulative model 
(range 0.64-2.39) but not all of the SMRs (0.35-3.19) nor all 
of the estimates obtained from the sequential model (0.49- 
2.68). The range was chosen in order to make the spatial 
pattern in the smoothed maps more visible. 

Figure 6 now displays, on the same scale as Figure 5, 
estimates of the relative risk of a tumor diagnosis in the 
malignant stage 2 of the disease. The left map gives ML 
estimates, calculated just as in Figure 5, but only with the 
cases in stage 2 as responses. The other map displays the 
median relative risk estimates exp(-B1) from the cumulative 



498 Biometrics, September 2002 
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Figure 3. 
from the cumulative model. 

Estimated median age effects of -PO (left plot) and -(PI (right plot) within 90% pointwise credible intervals 

15-19 30-34 45-49 60-64 75-79 15-19 30-34 45-49 60-64 75-79 

Figure 4. 
from the sequential rnodel. 

Estimated median age effects of -go (left plot) and --+I (right plot) within 90% pointwise credible intervals 

model. There is less spatial variation than for the overall risk 
exp(-Oo) (Figure 5 ,  middle map), with slightly higher values 
east of West Berlin (the hatched region in the middle of the 

Finally, Figure 7 (right map) gives the estimated odds ra- 
tio exp(-qI) from the sequential model for the probability of 
a diagnosis in a malignant stage of the disease, conditional 
on a diagnosis in stage 1 or 2. For comparison, the left map 
displays the corresponding ML estimates. These have consid- 

map). 

erably more variation; in fact, the district-specific ML esti- 
mates did not even exist for 7 out of the 216 districts due to 
no observations in stage 1. The smoothed map shows higher 
conditional risk of stage 2 in the southwest and lower con- 
ditional risk in the northeast and some other parts of the 
country. This corresponds roughly to what is known about 
the local introduction of cervical cancer screening programs. 
Cervical cancer screening by Pap smear was first introduced 
in the former GDR as a pilot project in two specific regions 

Figure 5. 
(middle map), and the sequential model (right map). 

Relative risk estimates for diagnosis of the disease regardless of the stage by ML (left map), the cumulative 
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Figure 6. Relative risk estimates for diagnosis of the disease in stage 2 by ML (left map) and the cumulative model (right 
map). 

in 1974, East Berlin and Mecklenburg-Vorpommern (north- 
ern coastal region). Available information on the number of 
lab tests indicates that, in the 1970s, the highest number of 
tests were carried out in these two areas, while in Saxony- 
Anhalt and Thuringia (the southeast of the GDR), the lowest 
numbers were observed (Quaas and Heinrich, 1998). 

The maps fit roughly into this pattern: In the northwest 
(initially high number of tests), they show totally a higher 
proportion of identified premalignant and malignant cancers 
(Figure 5 ) ,  but among them low proportions of malignant 
cancers (Figure 7). In the southwest of the country (initially 
low numbers of tests), totally a lower proportion of identi- 

Figure 7. 
(left map) and the sequential model (right map). 

Conditional odds ratio estimates for diagnosis in the malignant stage 2,  given diagnosis in stage 1 or 2 by ML 
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fied premalignant and malignant cancers can be seen, but 
among them high proportions of malignant cancers. In de- 
tail, the pattern is more complicated. Not the entire area of 
Mecklenburg-Vorpommern shows the low proportion of can- 

joint cancer registry in Berlin for providing the dataset on 
cervical cancer. The revision has benefited from helpful com- 
ments from two referees. 

cers. and areas with initially low frequencies of testing show RESUMB - 

nevertheless low proportions of malignant cancers (e.g., Sax- 
ony in the southeast). These findings may be due to the fact 
that several factors influence the effectiveness of a screening 
program: (a) availability of the program, (b) quality of the 
program, (c) attendance of the eligible population, and (d) 
quality of outcome reports to the cancer registry. These fac- 
tors may affect the outcome differently in the different re- 
gions of the country. The maps show only the overall effect 
of these factors. Thus, the method might be valuable in pro- 
viding indicators of areas with unsatisfactory performance of 
the screening, whatever the reasons. Their elucidation would 
need more detailed epidemiological investigation. 

4. Discussion 
In this article, we have proposed methods for the spatial anal- 
ysis of cancer incidence data with additional knowledge of the 
stage of the disease. Throughout, we have used Markov ran- 
dom ficld models in order to acknowledge the spatial structure 
of the data. Of course, other models for spatial correlation can 
be used as well, e.g., the recently developed adaptive smooth- 
ing methods based on partition (Knorr-Held and Raaer, 2000; 
Denison and Holmes, 2001) or mixture models (Green and 
Richardson, 2000). We are currently investigating the appli- 
cability of partition models to such data. 

In terms of comparing the two proposed models, it seems 
that most arguments are in favor of the sequential model: 
(a) This model is easier to implement because no order con- 
straints are necessary. (b) We can even separate the analy- 
sis and fit S binomial regression models separately. (c) The 
conditional interpretation of the parameters is more useful in 
order to judge the effectiveness of cancer screening and shows 
connections to the statistical analysis of spatial case-control 
studies (Kelsall and Diggle, 1998). (d) In our application, the 
sequential model provided a substantially better model fit. 
Only if the interest lies in estimating cumulative relative risks 
should the cumulative model be preferred. 

An obvious extension of the two models considered is the 
inclusion of relevant covariates in order to reduce (explain) 
the observed spatial pattern. Depending on the covariate and 
on the model, the effect could be assumed to be independent 
of the stage or stage-specific. For example, if the number of 
lab tests would be available on a district-specific level, it could 
be included in the sequential model (4) for s = 1. 

Finally, we note that the incidence data from the GDR can- 
cer registry is actually available for all years between 1961 and 
1989. An interesting problem would be to construct a space- 
time model that captures the increasing number of cases in 
the premalignant stage and their temporal effect on the num- 
ber of diagnosed malignant cases sometime later. Here the 
specification of the time lag between the premalignant and 
malignant stage is not obvious and could possibly even be 
estimated from such data as well. 
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Nous proposons deux approches dans l’analyse spatiale des 
incidences de cancer, conques pour le cas oh l’on dispose 
kgalement d’informations sur le degrk de la maladie au mo- 
ment du diagnostic. Les deux modeles prbsentbs sont en fait 
des extensions de modbles couramment utilisbs dans l’analyse 
de donn6es catkgorielles sur une Bchelle ordonnke; nous y in- 
cluons des effets spatiaux et des effets li6s B l’lge, que nous es- 
timons par lissage non paramhtrique. Plus prbciskment, nous 
empruntons une voie tout B. fait bayksienne en posant, sur les 
diffbrences libes aux comparaisons par paires que nous voulons 
explorer, des distributions a priori de type gaussien. Quant 
aux parametres de lissage, ils sont, eux aussi, suppos6s incon- 
nus. I1 y a beaucoup d’arguments en faveur de ces mkthodes, 
tout B fait utiles pour contrder l’efficacit6 des screenings pra- 
tiquks dans les cancers les plus frkquents. Nous illustrons ce 
fait par une analyse de donnhes portant sur le cancer du col de 
l’utkrus en ex-RDA. Les rbsultats de cette analyse suggerent 
de grandes diffkrences dans les proportions relatives des degr6s 
de la maladie selon les rkgions, en fonction de la prksence et 
de l’intensitk des programmes de dkpistage du cancer du col 
par cytologie cervico-vaginale. 
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