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SUMMARY

Disease mapping has been a very active research field during the last years. Nevertheless, time trends

in risks have been ignored in most of these studies and they can provide information with a very

high epidemiological value. Lately, several spatio-temporal models have been proposed: either based

on a parametric description of time trends, on independent risk estimates for every period, or on the

definition of the joint covariance matrix for all the periods as a Kronecker product of matrices.The

following paper offers an autoregressive approach to spatio-temporal disease mapping fusing ideas

from autoregressive time series, in order to link information in time; and spatial modelling, to link

information in space. It is shown that our approach generalises the Kronecker product proposal. As a

result, risk estimates are obtained for every region related to those in their neighbours and to those

in the same region at neighbouring periods. Copyright c© 200 John Wiley & Sons, Ltd.

∗Correspondence to: Miguel Ángel Mart́ınez Beneito. Área de Epidemioloǵıa. Dirección General de Salud

Pública. Generalitat Valenciana. C/ Micer Mascó, 31. 46015-Valencia. Spain
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1. Introduction

Statistical techniques for disease mapping have become very popular in epidemiology during

the last decade. Indeed, several monographs which broadly cover this topic have appeared

recently [1, 2, 3, 4]. These methods enable to smooth ecological health indicators, as for example

Standardized Mortality Ratios [5], life expectancy [6] or fertility schedules [7]. They also allow

to perform ecological regression studies [8] or even survival analysis [9] accounting for the

geographical structure of the administrative units under study, and therefore the dependence

of their observations. As a consequence, the estimates in less populated areas are more reliable

due to the sharing of information between neighbouring regions, which are intended to share

common risk factors. Thus, it becomes possible to display the geographical distribution of risk

even in “small” areas, in which no statistical treatment would imply greater variance in their

estimates. In that case, the most extreme risks would relapse systematically into these regions,

distorting the meaning of the corresponding map [10].

Among all the proposals to perform risk smoothing which have appeared in the literature,

the one stated by [11] (BYM from now on) has had a particular impact, and many applications

of such model can be found. This approach decomposes the risk in every region as the sum

of two effects. The first one, spatially-dependent, models those factors with inter-regional

scope, in order to take into account risk determinants that exceed the limits of one or more

geographical units. The second one, independent for all the different geographical units, allows

for the existence of neighbouring regions with very distinct behaviour opposing to the spatial

term. However, although the BYM model is a benchmark in geographical risk estimation,

it ignores the temporal evolution of risks in the region under study. Therefore, risk estimates

provided with such proposal are supposed to be static in time and this assumption is not always

Copyright c© 200 John Wiley & Sons, Ltd. Statist. Med. 200; 0:0–0
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too realistic, mainly in those problems with a wide observed time window. Nevertheless, despite

the interest of spatio-temporal monitoring of disease, the number of applications published on

this field have been much lower than for the spatial one, maybe due to the difficulties of linking

both the spatial and temporal dependence in a single model.

In the bayesian literature, [12] propose to model spatio-temporal data as an ecological

regression model with spatially structured errors in the form of gaussian conditionally

autoregressive distributions (CAR from now on), both in the intercept and the covariate,

which in this case is the time period. In this approach, risk evolution in time for every region

depends on the evolution of its neighbours, but it only allows linear time trends. Following

this approach, [13] introduce a quadratic term in time trend but they also rely on a parametric

description of such evolution, which they consider to be appropriate for short time periods. In

[14], an ecological regression on time with a proper gaussian CAR effect both in the intercept

and the covariate is proposed, instead of the improper CAR proposal of [12].

Working also in the bayesian frame, but introducing a very different approach, [15] and [16]

model risks for every period as time-independent spatial and heterogeneous effects sharing their

precisions for the different time periods. Following this approach [17] structure the distribution

of the former precisions as a gaussian random walk in time, so variability in spatial dependence

across time is allowed in such a way that those years which are closer have a similar behaviour.

Recently, [18] have also proposed a temporally-independent multivariate model, in which lung

cancer mortality is jointly studied for both males and females considering possible temporal and

spatial correlations between them. On the other hand [19] also introduced temporal dependence

in either the unstructured or spatially structured random effects resorting to gaussian random

walks. Therefore, information on risks in every region is shared between periods providing more

Copyright c© 200 John Wiley & Sons, Ltd. Statist. Med. 200; 0:0–0
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reliable estimates. This approach has also been used in [20] and [21] in an age-period-cohort

frame.

From the classical approach [22] model the spatio-temporal evolution of infant mortality

with a CAR distribution to describe the spatial variability in risk, and use a spline for every

administrative unit to accommodate its temporal variation. This work incorporates smooth

modelling tools to describe the time trend in every location. However, such evolution is

considered independent in neighbouring sites, avoiding the transfer of temporal information

among these regions, which can be very desirable in the case of rare diseases in order to obtain

more reliable estimates.

It is possible to find much more contributions in spatio-temporal modelling in, for example,

environmental [23, 24] or ecological applications [25]. Nevertheless, lattice data are not so

common in those fields, and geostatistical methods are often used in those areas instead of

Gaussian Markov random fields.

As it can be seen, there is neither a spatio-temporal model with the agreement of BYM in

the spatial field nor a wide consensus on how to describe the temporal and spatial evolution

at a single time in a proper way. In this work a spatio-temporal approach to disease mapping

combining time series and spatial modelling ideas is introduced, in order to link risks along

time and space at the same time.

This paper is organized as follows: section 2 introduces our autoregressive approach to

spatio-temporal disease mapping; section 3 shows some theoretical properties of the approach

proposed in section 2 that will provide a useful insight on the dependence structures defined

in the former hierarchical model. The results obtained through a simulated dataset and a

brief comparison with other models are shown in section 4. Finally, section 5 summarizes the

Copyright c© 200 John Wiley & Sons, Ltd. Statist. Med. 200; 0:0–0
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autoregressive model’s behaviour and points out some lines for future development.

2. Autoregressive linking of spatial patterns

The main aim of the approach that we are going to introduce is to define a spatio-temporal

structure in which the relative risks are both spatial and temporal-dependent at the same

time. On the one side we agree with the philosophy of [12], [14] and [13] of defining a similar

temporal evolution in those places that are geographically close. However, our intention is to

define a time structure smoother than those with a linear or a quadratic trend, in order to

describe any kind of evolution in every geographical unit under study. Therefore, in a way,

we also agree with the approach of [22] which may be more appropriate when the number of

studied periods is bigger.

Let Yij be the number of event counts for the ith area and jth period, i = 1, ..., I; j = 1, ..., J ;

Eij the expected number of counts for every area and time interval under the hypothesis that

risk remains constant in space and time. This means that, if pijk is the number of people living

in the ith area in the jth season and kth age group, k = 1, ...,K; then:

Eij =
K∑

k=1

pijk

(∑I,J
i=1,j=1 Yijk∑I,J
i=1,j=1 pijk

)

where, the kth index for Yijk refers to the age group.

From now on, we will asume that Yij follows a Poisson distribution:

Yij ∼ Poisson (Eijexp(rij)) i = 1, ..., I, j = 1, ..., J

where exp(r··) stands for the relative risk for every area and time interval under study. Once

we have defined the observed event counts as a function of its expected value and the relative

risk, it is necessary to define a structure on r that takes profit of spatial and temporal relations

Copyright c© 200 John Wiley & Sons, Ltd. Statist. Med. 200; 0:0–0
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to get reliable estimates. With that aim we define the log-relative risk at the first observed

time period as sum of an intercept, and two random effects, that’s to say:

ri1 = µ + α1 + (1− ρ2)−1/2 · (θi1 + φi1), i = 1, ..., I (2.1)

θi1 ∼ N (0, σ2
θ), i = 1, ..., I

φ1:I,1 = (φ11, ..., φI1) ∼ CAR.normal(σ2
φ)

where the above distributions are parameterized as a function of their variances. The expression

CAR.normal stands for an intrinsic Gaussian conditionally autoregressive distribution [11]

under the restriction that the sum of all of its components must equal 0, in order to guarantee

the property of the resulting distribution on the (n-1)-dimensional resulting space. We will refer

to this term as the spatial effect. We include both random effects, spatial and heterogenous, to

describe the spatial pattern of risk and to ensure enough flexibility to allow very different risk

estimates in close places. In the former expression, ρ corresponds to the temporal correlation

that we are going to introduce next. µ models the mean level of risks for all the periods and

regions and α1 models the mean deviation of the risks in the first period from the mean level

for all of them. For the following time intervals we define the relative risks as:

rij = µ + αj + ρ · (θi(j−1) + φi(j−1)) + θij + φij , i = 1, ..., I, j = 2, ..., J (2.2)

θij ∼ N (0, σ2
θ), i = 1, ..., I, j = 2, ..., J

φ1:I,j ∼ CAR.normal(σ2
φ), j = 2, ..., J

α1:I ∼ CAR.normal(σ2
α)

Hence, the expected values for the relative risk in every region and moment will not depend

only on its neighbours’ estimates during that exact moment, but it will also depend on their

Copyright c© 200 John Wiley & Sons, Ltd. Statist. Med. 200; 0:0–0
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estimates on previous periods. The dependence in every administrative unit among different

time periods has been defined as an order 1 autoregressive time series, so that risk estimates

are temporally dependent. On the other hand the spatial random effect at every time interval

ensures the geographical dependence of risk estimates. Thus, the former modelling enables

us to transfer information between neighbouring time periods and regions as we wanted to

happen.

The prior distributions used for the parameters defined just above are the following:

σ−2
φ , σ−2

θ , σ−2
α ∼ Gamma(a, b)

ρ ∼ U(−1, 1), µ ∼ N(0, c)

In them, prior distributions for the mean risk value for all the time periods, and the precisions

of the random effects are defined in terms of several hyperparameters intended to express vague

information. Regarding with the prior distribution on the temporal correlation parameter, ρ,

has been chosen in a way that ensures the stationarity of the time series, considering that it

has an order 1 autoregressive structure. For α, the vector that accounts for time evolution

in the mean level of risk for every period, a CAR.normal proposal has also been used as

prior distribution. In this occasion, consecutive periods have been considered as neighbouring,

in order to define the dependence structure of the CAR.normal distribution. This prior

distribution does not rely on any predetermined parametric shape that could condition its

values.

In equation (2.1) the term (1−ρ2)−1/2 is introduced in order to make the variance-covariance

matrix of Y·1 equal to the stationary covariance matrix of the series (Y.j)∞j=1. Thus, the risk

distribution for the first period is defined in the same terms than the following ones. Moreover,

this selection will enable us to derive several properties of the former spatio-temporal model

Copyright c© 200 John Wiley & Sons, Ltd. Statist. Med. 200; 0:0–0
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in the following section, which will give us some insight about the dependences defined in the

model. Nevertheless, it is also possible to use other alternatives to define the variance structure

for the first period, as for example, to use precisions for the heterogenous and spatial terms

different to those in the latter periods. We think that this is also a very good alternative to the

previous modelling as the precision parameters for the first period will focus in the description

of the spatial distribution of risks for the first year; while the precision parameter for the

subsequent periods will be used to describe the temporal changes on risks that can have very

different spatial structure to that of the risks in the first period.

We would like to stress that the temporal increments from one period to the following have

spatial structure in the proposed model, so that not only the risk distribution will have spatial

structure in our proposal but also the time trend in every administrative unit will also show

geographical dependence. Therefore, neighbouring regions will have similar risk evolutions, in

the same way that they have similar geographical risk estimates. Thus the estimations of risk

evolution will also be based in the information of neighbouring regions, providing more reliable

estimations. We will study this fact with more detail in the next section.

Lastly, the log-relative risk evolution on time at every moment and place has been defined

as a linear function of such value in the previous season instead of using a trend with a

predefined shape for the whole period under study. Therefore, a flexible modelling is used to

describe temporal evolutions in a similar way to that used for the geographical term. We hope

that this modelling will be able to describe non-linear evolutions of risk in a proper way.

Copyright c© 200 John Wiley & Sons, Ltd. Statist. Med. 200; 0:0–0
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3. Some alternative views to dependence structure

First of all we are going to introduce some of the notation which will be used during this section.

In order to reduce the length of the expressions we will denote as θj = (θ1j , ..., θIj), j = 1, ..., J ;

φj = (φ1j , ..., φIj), j = 1, ..., J and rj = (r1j , ..., rIj), j = 1, ..., J . The expression rj|... for any

j will denote the log-relative risk distribution in period j given µ, α, σφ and σθ, all of the

parameters in the underlying layers of the model. Moreover, rij |r−(ij) (and analogously rj |r−j)

will denote the log-relative risk distribution for the i administrative unit and the j period given

the rest of log-relative risks present in the model. Lastly, Σ will denote the variance-covariance

matrix of θj + φj |σθ, σφ for any period j. Note that, for the model stated in the former section,

Σ will not change from period to period as its prior structure and hyperparameters remain

unchanged along time. Moreover, Σ can also be seen as the sum of a positive definite diagonal

matrix of range n, and a positive semidefinite matrix of rank (n-1), which implies that Σ will

also be positive definite and thus defines a full rank and invertible variance-covariance matrix.

In the previous section, the log-relative risks for every period have been defined conditioned

to those of the previous ones. First of all we will derive the joint distribution of all those risks.

In order to get such distribution it will be useful to calculate their covariances, thus:

Cov(rj , rj+1|...) = Cov((µ + αj) · 1I + ρ · (θj−1 + φj−1) + (θj + φj),

(µ + αj+1) · 1I + ρ · (θj + φj) + (θj+1 + φj+1)) = ρ · Cov(θj + φj , θj + φj) = ρ · Σ

for all the periods j ranging from 1 to (J − 1). Proceeding in a similar way the covariance

expressions for all the pairs {rj , rj′} can be calculated for j, j′ = 1, ..., J ; as a consequence

Copyright c© 200 John Wiley & Sons, Ltd. Statist. Med. 200; 0:0–0
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the joint distribution of all the log-relative risks can be derived as:



r1

r2

...

rJ




|... ∼ N







(µ + α1) · 1I

(µ + α2) · 1I

...

(µ + αJ) · 1I




,
1

1− ρ2




Σ ρΣ ... ρJ−1Σ

ρΣ Σ ... ρJ−2Σ

...
...

. . .
...

ρJ−1Σ ρJ−2Σ ... Σ







(3.1)

The former expression can also be expressed in a more summarized form as:



r1

r2

...

rJ




|... ∼ N ((µ · 1J + α)⊗ 1I , Λ⊗ Σ) (3.2)

in which ⊗ denotes the Kronecker product of two matrices and Λ denotes the correlation

matrix of an order 1 autoregressive time series of length J , which means:

Λ =
1

1− ρ2




1 ρ ρ2 ... ρJ−1

ρ 1 ρ ... ρJ−2

ρ2 ρ 1 ... ρJ−3

...
...

...
. . .

...

ρJ−1 ρJ−2 ρJ−3 ... 1




Thus, we can see how the proposed model structures the temporal and spatial dependence

and how the information is shared among the different periods. In particular, the spatio-

temporal model just introduced defines a separable covariance structure. Note that the model

with independent risks in time is just a particular case of the one stated just above with ρ = 0.

In section 3.4.3 of [2] the construction of an Intrinsic Gaussian Random Field as a Kronecker

product of matrices is already proposed. Although the present model follows a rather different

Copyright c© 200 John Wiley & Sons, Ltd. Statist. Med. 200; 0:0–0
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formulation to that used in [2], as it is based in the conditional distribution of the risk for

every period conditioning to the previous ones, instead of its joint distribution. Nevertheless,

expression 3.2 shows that both models have a common covariance structure. In fact, the Type

IV interaction defined in [19] as a Kronecker product of two matrices, one defining the spatial

structure and another defining the temporal one, can be seen as a particular case of our model

without heterogeneous term and with ρ fixed to 1, as he uses a random walk instead of an

autoregressive process to link information in time.

Once equation number (3.2) states the joint distribution of the log-relative risks for the

whole periods under study, if we condition the distribution in one period to the information

in the rest of the periods, it is easy to show that:

rj |r−j , ... ∼ N (µj ,Σj) (3.3)

where, if mj = (µ + αj) · 1I :

µj =





mj + ρ · (rj+1 −mj+1) j = 1

mj + ρ
(1+ρ2) · ((rj+1 −mj+1) + (rj−1 −mj−1)) j = 2, ..., (J − 1)

mj + ρ · (rj−1 −mj−1) j = J

and

Σj =





Σ j = 1

(1 + ρ2)−1 ·Σ j = 2, ..., (J − 1)

Σ j = J

Thus, in our approach, risk estimates for every period have spatial covariance structure,

as it is usual in most disease mapping model proposals. Moreover, the mean values for the

log-relative risks are not constant in every moment, as they vary geographically depending on

the risk estimates for the neighbouring periods. In fact, if a risk excess has been determined

Copyright c© 200 John Wiley & Sons, Ltd. Statist. Med. 200; 0:0–0
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for a region in periods j − 1 and j + 1, the expected relative risk for such region in period j

will have a value higher than one, and as a consequence a risk excess estimate will be also very

likely for this region in period j. This property will give the estimates of consecutive periods a

higher coherence, as high/low risk periods in general will be followed by high/low risk periods.

Regarding the distribution of the log-relative risk for the i geographical unit in the j period

conditioned to the rest of log-relative risks, it will be useful to rearrange expression (2.2) in

the following way:

rij = µ + αj + (ρθi(j−1) + θij) + (ρφi(j−1) + φij), i = 1, ..., I, j = 2, ..., J

Thus, risks are expressed as a sum of two autoregressive effects, being the first one

heterogeneous and the second one spatially structured.

On the one hand, if we only had the heterogeneous term in the former expression, the log-

relative risks for every region would follow an order 1 autoregressive time series geographically

independent of its neighbours. On the other hand, in the case of only having the spatial term

we would have as:

P (rij |r−(ij), ...) = P
(
(rj |r−j , ...)i|(r1j , ..., r(i−1)j , r(i+1)j , ..., rIj |r−j)

)

P ((rj |r−j , ...)i) is already known, as it has been calculated previously in equation (3.3). And,

if we only have the spatial term, which follows a Gaussian Markov Random Field distribution,

we have that:

P (rij |r−(ij), ...) ∼ N
(

(µj)i +
1
ni

∑

k∼i

(rj − µj)k,
σ2

φ

ni

)

where k ∼ i denotes all the regions k neighbouring with region i, and ni denotes its number of

neighbours. If the expression of µj is taken into account it can be seen that rj − µj denotes

the deviates of rj from its predictions based only on its neighbouring periods. Thus, the
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expected log-relative risk for rij depends on the residuals of the temporal predictions of its

neighbours. In fact, if the neighbouring regions of i for period j have higher/lower risks than

its expected value (attending to its behaviour in their adjacent periods), then rij will also have

an expected log-relative risk higher/lower than zero. Therefore the time trend for every region

will also depend on its neighbours’ time trends.

In the case of having both spatial and heterogeneous terms, the log-relative risks will

follow a combination of the information in such region at different moments, provided by the

heterogenous time series, and some information from the time trends from the neighbouring

regions. The weight of these two components in the final combination will be determined by

the values that σφ and σθ take in their posterior distributions. Moreover, the contribution of

the information in the rest of periods to risk estimates at every moment is modulated by the

temporal correlation. In that sense, values of |ρ| close to 1 point to a high temporal correlation

and much information is shared between consecutive periods; meanwhile, values of |ρ| close to

0 point to temporal independence, avoiding the transfer of information about risks between

consecutive periods.

Finally, several properties have been derived for the model stated in section 2. In fact, it

has been shown that such proposal defines a separable spatio-temporal covariance structure

to describe risk evolution in time and space. Nevertheless, starting from the above model, a

wide variety of non-separable covariance structures can be defined without much effort, simply

introducing slight modifications in its formulation. One of such modifications has already

been mentioned before, this would be to consider the covariance structure for the first period

different to those of the following ones. But different precision parameters for all the periods

could also be considered and even an autoregressive term could be added for the correlation
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parameter that could also vary with time. Thus, it is really straightforward to extend the

former model to non-separable spatio-temporal structures that could explain the observed

events in a more flexible way.

4. Performance on a simulated dataset

Three simulated datasets have been generated to test the performance of the model introduced

in section 2. The 47 mainland provinces in Spain, shown in figure 1, have been considered as

the area of study. For everyone of them 15 Poisson counts have been generated intending to

represent the observed events in different time periods. The relative risks for those periods are

considered to evolve smoothly both in time and space. Indeed, for every time period j, the

relative risk in every province i is proportional to the value of the surface:

λ(x|j) = 1 + π1 · N2(x|µ(j), Σ1) + π2(j) · N2(x|Y2, Σ2) + π3 · N2(x|Y3, Σ3(j))

in its centroid. Therefore, the relative risk in every location is proportional to the sum of a

constant surface and three additional bivariate normal components, the first one moves as

time evolves, the second one changes its contribution to the whole risk as a function of time

and the third one changes its dispersion every period. This means that the expectation for the

first component moves from location A to B of figure 1 during the 15 simulated periods, the

variance-covariance matrix for this component is diagonal with a standard deviation of 100 km

both for northing and easting. Finally π1, which controls the number of events generated by

this component, takes a value of 10. The second component keeps still during all the periods in

location C of figure 1 with a diagonal and spherical covariance matrix of 100 km of standard

deviation. However, its strength changes over time raising from 3 to 10 during the first 8
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Relative Risk

<0.7
0.7−0.9
0.9−1.1
1.1−1.4
>1.4

C

D
A

B
100 km

Figure 1. Risks for the mainland provinces of Spain in the first simulated period.

periods and then descends again to 3 during the last periods. Lastly, the third component

remains at point D during all the periods in the same way as its strength remains to be 10,

however its covariance matrix changes with time. In fact, such matrix is also spherical and

diagonal, but its standard deviation increases from 50 kilometers to 200 kilometers from the

first to the last period.

The risk for every region and period is proportional to the risk surface estimation in its

centroid, more precisely, if Xi i = 1, ..., 47 are all those centroids, the number of observed
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cases in province i and period j follows a Poisson distribution with mean:

δ ·
(

λ(Xi|j)∑47
k=1 λ(Xk|j)/47

)

Note that the former expression is formed by the product of δ, a parameter that controls

the expected number of events for all of the regions, and a second term of mean value

equal to 1 which can be interpreted as the relative risk at every region and moment. Three

different datasets have been generated following the former mechanism, for δ having values 1,

3 and 5 so that they only differ in the expected number of cases at every region and period

but not in their risk distributions. Figure 1 shows the relative risk distribution for the first

simulated period of the three datasets. The three former datasets can be found at the web

page http://www.uv.es/mamtnez/ETpaper/datasets.txt.

For every one of the datasets generated 6 models have been fitted. First, the BYM approach

has been considered ignoring the temporal evolution of risk. Secondly, two models with

temporally independent effects have been proposed. In them, spatial and independent effects

are included for every period, with independent precision terms for every time interval in the

first proposal (we will call this model Ind1 ), and sharing the same precision value for the

second one (Ind2 ). Finally, three models with autoregressive temporal structure have also

been proposed. The first one (AR1 ) corresponds exactly to the model described in section 2.

The second one (AR2 ) considers the precision parameter for the first period different to those

described in the following periods, thus having a non-separable spatio-temporal correlation

structure. The third model (AR3 ) is similar to AR2 but it only includes the spatial term

for every period, leaving out the heterogenous term, in order to get a more parsimonious

description of risks behaviour.

Regarding to the hyperparameters of the above models a Gamma distribution with
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parameters a = 0.5, b = 0.005 has been defined for the precisions of the random effects

in all the models. On the other hand, a precision of 0.01 has been used for the prior

distribution of µ. Inference for all the models has been carried out in WinBUGS 1.4.1

[26] and the syntax for the model described in section 2 can be found at the web page

http://www.uv.es/mamtnez/ETpaper/model.txt. After discarding 5.000 iterations of burn-in,

10.000 more were generated and only 1 of every 10 of them was saved. Convergence checking

was performed attending to the potential scale reduction factor and the effective sample size

implemented in the package R2WinBUGS of the statistical software R [27]. More information

about these statistics can be found in [28]. It has been tested that the potential scale reduction

factor has been lower than 1.05 and the effective sample size above 100 for all the parameters

in the former models.

Table I shows the correlation and mean squared error (MSE) between the posterior mean

of the relative risk and its true value in every region by period combination, for every dataset

and model run. The DIC [29] model selection criterium for all the above models is also shown.

Several facts arise from the observation of table I, firstly a great agreement among the 3

criteria used to evaluate the quality of the fit can be seen. In general those models with higher

correlations are those with lower MSE and lower DIC, although the last one does not take into

account the true relative risk to assess the fit.

On the other hand, the autoregressive models show better fit than the other ones, so that

the structuring of temporal correlation seems to have a very desirable effect on fitting terms.

The BYM proposal, which ignores time trend, shows even better results in our example than

those models with temporally independent estimates. Moreover model Ind2, which shares the

precisions of the random effects among periods, have better performance than model Ind1.
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Therefore, it seems to be really advisable to share information among different periods, in fact

the worst model from those analyzed has been the one in which information was not shared at

all. Regarding to the autoregressive temporal modelling, model AR2 looks slightly better than

model AR1 in those datasets with higher number of observed events, moreover model AR3

shows better performance than the former two. Those differences are due to the inclusion of

the heterogeneous and spatial effects to model the differences from period to period, which can

overparameterize the model (unless the amount of observed events is high enough to admit

these two sources of variability). This fact can be confirmed in table I as the third model shows

better results when the number of events generated is lower (δ=1) than when this number is

higher (δ=5).

Table I also suggests that other autoregressive models could be considered. It can be seen that

by excluding the heterogenous term and considering the first period as different, improves the

fit of the model. Therefore it would be interesting to consider a model with both modifications

at a time. Which means the original variability could be described appropriately in the first

period with its own precision parameters and both spatial and heterogenous effects, and from

that moment the heterogeneous term could be ignored to describe the time trends in a more

parsimonious way.

Regarding model performance as a function of the number of observed events, table I

shows that those models which share less information among different periods have the worst

performance when such number is lower. Indeed, correlation for model Ind1 decreases from

0.76 to 0.55, for δ equal to 5 and 1 respectively, while such correlation only decreases 0.06 units

in the BYM and AR3 models. Thus, the transfer of information among periods is particularly

useful when the number of observed events is lower and the information available for every
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period is scarcer. On the contrary, the BYM has been tested to be the only model that increases

its deviance when the number of observed events increases (result not shown), meaning that

this approach is not so good when there is a higher amount of information in every period.

In that case a smoother spatio-temporal model can be a better alternative as there is enough

information available to carry it out.

From now on, we will focus on the description of the results for the dataset with δ = 3. Table

II shows the posterior mean and 95% posterior credibility interval for the temporal correlation

parameter. Similar values are obtained for the 3 autoregressive models. Note that model Ind2

is the particular case of model AR1 with ρ equal to 0, thus if we observe the posterior mean of

ρ in this last model, it looks clear why the data are better fitted by the autoregressive proposal,

as it is a generalization of the former model. As the temporal autocorrelation parameter is

very high (around 0.9), the risk estimates for every region in consecutive periods will be very

similar and a smooth temporal trend will be described by those risks.

On the posterior distribution of the precisions of the random effects in the autoregressive

models, we find that in model AR1 the posterior mean of the spatial precision, σ−2
φ , is 30.30

and its 95% credibility interval is [11.45,95.48]; in the same way, the heterogeneous precision

σ−2
θ has a posterior mean of 35.11 [18.64,58.04]. For model AR2 different precisions for the

first period and the following ones are considered, in fact for the first period the posterior

estimate for the spatial precision (2.92 [1.14,7.05]) is remarkably lower than for the rest of

periods (62.64 [16.16,165.70]). This result is not true for the heterogeneous precision, as the

precision for the first period is 41.56 [6.76,174.30] versus 43.39 [21.87,81.56] for the following

ones. These values suggest that there are remarkable differences between risk distribution for

the first period and the posterior steps in risk from one time interval to the following one,
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Figure 2. True and estimated time trends for several regions.

as we pointed out in section 2. Finally, the precision for the spatial random effects in model

AR3 is 17.87 [8.95,36.15]. Therefore, if the heterogenous term is removed from the model, the

precision for the spatial effect decreases to explain the variability that was previously explained

with both components.

Figure 2 displays the risks’ time trend for several provinces for model AR3, the one with best

fit indicators. In the figure, the bold lines stand for the true risk evolution for every selected

region and the dashed lines show their predicted trends. As it can be seen, the predicted
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trend for every province is a compromise between their true risk values and those predicted

in their neighbouring provinces. In general, the predicted trend for every province seems to

reproduce the true pattern, although predictions are not too accurate. Nevertheless, more

accurate predictions are obtained when the number of observed events is higher (δ=5). It can

also be seen that provinces in separate regions have a very distinct behaviour, while those

in the same region evolve in a similar manner, which is good from an epidemiological point

of view. Time trends also look very smooth due to the presence of temporal correlation, but

despite the dependence between consecutive observations, a wide variety of shapes can be

adjusted as it can be apreciated in figure 2.

Finally, maps showing the true relative risks and their posterior estimations in models AR3

and Ind2 (from the dataset with δ=3) for the 15 periods are displayed at the web page

http://www.uv.es/mamtnez/ETpaper/maps.txt. These models have been chosen as they are

the best in terms of fit between all the independent and autoregressive ones, respectively.

We can observe that for these, the AR3 model has much closer predictions to the true risk

than those from the Ind2. Moreover, they are temporally much more stable showing a greater

coherence from period to period than those from model Ind2.

5. Discussion and future lines of development

The model just proposed shows several characteristics that, in our opinion, make it very

attractive. We would like to remark the following:

• Information is shared in time in a similar manner to that used to share information

in space. Hence, risks are smoothed accounting for both the information in spatial and
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temporal neighbours and therefore more reliable estimates are obtained as they are based

in a greater amount of information. Moreover, the definition of temporal structure as an

autoregressive process enables the data to modulate its importance, in contrast to a

Gaussian random walk proposal. Therefore, the balance between the spatial an temporal

dependence is determined by the data.

• As it can be seen in the simulated datasets, neighbouring regions have similar time

trends. This assumption has been widely used for the geographical risk distribution and

its application to the time trend seems very reasonable from an epidemiological point of

view.

• Time trends for every region do not rely on a specific parametric shape which has to be

specified in the model formulation. Such shape would condition the risk estimates as, in

that case, they would have to follow the parametric family imposed in the model and it

may not be flexible enough to describe the variety of time trends that arise in the data.

This feature of our model is even more important when the number of periods under

study is higher and a wider collection of shapes can be described in the geographical

units under study.

• The conditional approach just introduced for the temporal structure (instead of its direct

definition as a Kronecker product on the joint structure matrix) is in our opinion one

of the main advantages of the former model. This new approach permits introducing

slight modifications in the model formulation which extend the joint structure matrices

of these models to a broader class than that formed by Kronecker product of matrices.

Indeed, the joint structure matrix of model AR2 in this paper is no longer separable,

can not be expressed as a Kronecker product of matrices and it seems to have better fit
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properties than its analogous to the Kronecker product, model AR1.

• This new proposal makes it possible to introduce a very complex covariance prior

structure with a reasonable computational burden. Moreover, the conditional approach

just introduced enables to make inference in standard bayesian simulation packages, as

for example WinBUGS. We think that this is another non negligible practical advantage

of this model as it is going to be possible to carry it out without a huge effort by a wide

community of potential users.

Regarding to the temporal term, in our simulated dataset it has been shown that to consider

such term independently among time for every region, can make the model even worse in terms

of fit, mainly when the number of observed events is lower. Nevertheless, sharing information

among periods has been shown to improve the fit and makes it possible to describe time

trends which in a spatial-only study would be ignored. In our experience with the model in

real datasets, we have seen that the temporal dependence is generally very important, indeed

higher than the spatial one. Thus, the hypothesis of similar risks in time seems to be at least

as reasonable as the widely spread hypothesis of considering similar risks in space.

The proposed model has only a limited predictive power. A parametric temporal approach, as

for example the one in [12], would have better predictive properties in general; but, in exchange,

the capability to describe any shape in the time trends would be lost and the predictions would

rely on the validity of such parametric assumption in the future. The predictive abilities of

the proposed model could also be increased by considering a spatio-temporal age-period-cohort

model, as for example those in [20] and [21]. Nevertheless, the mere spatio-temporal description

of risks during a long period of time has a high interest by its own, in fact it is adding a new

dimension to traditional disease mapping to help to determine the risk factors involved in the
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studied disease. Moreover spatio-temporal disease mapping methods provide an updated view

of the geographical risk distribution instead of the mean risk distribution over a long period of

time, thus these methods let to obtain a close risk description at the present time in contrast

to habitual disease mapping proposals.

As future lines of development of our work we would like to point out three directions. First,

we think that the modifications of the model proposed in section 2 should be explored and

it would very interesting to assess the improvements that they provide in terms of fit. For

example, it looks interesting to consider different precision parameters for every period or to

allow the temporal correlation parameter vary with time. These model modifications generate

more flexible covariance structures that could provide a better fit, but as it can be seen in

section 4 a balance has to be kept between the flexibility of the model and the amount of

information available. In fact, it has been seen that too flexible structures are only acceptable

if an acceptable number of events are observed, and we think that this consideration has to

be kept in mind when thinking about new models.

As a second line of development it would be very interesting to consider autoregressive

temporal models of order higher than 1. The aim of the present work has been to show

that autoregressive linking of spatial terms was possible and that such structure could share

enough information between consecutive years maintaining enough flexibility to describe

temporal evolution without resorting to a parametric shape. Nevertheless, autoregressive

models of higher order can be considered, as in some situations they could provide better

fit and predictions than the one presented here. In fact, model selection or averaging between

autoregressive models of several orders can also be considered.
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Lastly, another time series techniques can be considered to link information between different

time periods. Thus, a moving average approach looks straightforward to consider, in a similar

way to that used in section 2 to define the autoregressive linkage of information. This modelling

is more appropriate for diseases that depend on an event that modifies the risk for two (or more

in the case of moving average of higher order) periods. It is also possible to consider the time

evolution at every site as an integrated time series. Moreover, moving averages, autoregressive

and integrated models can be considered at the same time, in such a way that all the ARIMA

methodology would be available to link information between consecutive periods. Nevertheless,

we would like to point out that although the time series methodology provides several tools

to share information in time, the identification of the structure of the time series followed by

the data can be a hard task when the number of time periods available is small.
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Accompanying Tables

Model Correlation MSE DIC

δ=5 δ=3 δ=1 δ=5 δ=3 δ=1 δ=5 δ=3 δ=1

BYM 0.84 0.82 0.78 0.075 0.078 0.104 967.4 910.4 837.5

Ind1 0.76 0.67 0.55 0.104 0.134 0.190 993.7 981.9 886.1

Ind2 0.79 0.74 0.64 0.093 0.112 0.163 967.1 946.7 876.3

AR1 0.91 0.90 0.83 0.041 0.045 0.100 844.3 849.3 825.2

AR2 0.92 0.91 0.82 0.039 0.042 0.111 843.6 847.1 813.3

AR3 0.93 0.93 0.87 0.034 0.035 0.073 829.5 836.3 813.1

Table I. Model comparison in terms of correlation and Mean Squared Error between the original risks

and their posterior estimates. The DIC criterium for model selection is also shown.

Model Posterior mean 95% Posterior C. I.

AR1 0.85 [0.76,0.92]

AR2 0.88 [0.78,0.93]

AR3 0.91 [0.85,0.96]

Table II. Posterior summaries for temporal correlation in the autoregressive models.
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