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Abstract: Environmental data are spatial, temporal, and often come with many
zeros. In this paper, we take the standard formulation of a zero-inflated Poisson
(ZIP) model, as well as an alternative parameterization, and develop a space-time
model to investigate haulout patterns of harbor seals on glacial ice. The data
consist of counts, for 18 dates on a lattice grid of samples, of harbor seals hauled
out on glacial ice in Disenchantment Bay, a coastal bay near Yakutat, Alaska. A
space-time ZIP was constructed by using spatial conditional autoregressive model
(CAR) model and a temporal first-order autoregressive model (AR1) as random
effects in ZIP regression model. Because seals are unlikely to be undetected,
we consider another model that completely specifies and separates the binary
from the count process, but still has an inflated number of zeros. We compare
this model to the standard ZIP. Both models indicate that ice density plays a
strong role in where seals haul out, with highest haulout probabilities and counts
at intermediate ice densities. We create maps of smoothed prediction rates for
harbor seal haulouts based on ice density and other covariates.
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1 Introduction

Environmental data are spatial, temporal, and often come with many ze-
ros. Statisticians are developing models of increasing complexity to handle
these data. Time series (e.g., Brockwell and Davis, 1991), spatial statistics
(e.g., Cressie, 1993), and zero-inflated Poisson (ZIP) regression (e.g., Lam-
bert, 1989) are all well-developed subjects. There are increasing numbers of
examples where models combine these subjects, such as space-time models
for Gaussian data (e.g. Wikle et al., 1998) and spatial ZIP models (e.g.
Agarwal et al., 2002). Wikle and Anderson (2003) developed a space-time
ZIP model for tornado counts that is very similar to our development.

2 Data

The data consist of counts of harbor seals hauled out on glacial ice in
Disenchantment Bay, a coastal bay near Yakutat, Alaska. Aerial surveys
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were conducted twice weekly, weather permitting, starting 27 May and
ending on 4 August in 2002. Surveys were flown between 13:00 - 15:00 h
(ADT) to coincide with the daily peak in numbers of seals hauling out. A
single engine aircraft (Cessna 206; Yakutat Coastal Airways Inc., Yakutat,
AK) was flown at a target speed of 90-100 knots and altitude of 305 m
(1000 ft). There are 18 time events that we index i = 1, 2, . . . , 18. The ice
and seal point data were summarized into a lattice of 400 × 400 m cells
for the entire study area; the spatial locations are on a grid that we will
index arbitrarily, j = 1, 2, . . . ,m. Grid cells that did not have ice had no
possibility for seals to haul out, and not all grid cells had ice for each date.
In all there were 2489 cells that contained ice over the 18 time periods.

3 Models for Zero-Inflated Count Data

A space-time ZIP can be constructed by using spatial conditional au-
toregressive model (CAR) model and a temporal first-order autoregressive
model (AR1) as random effects in a ZIP model. A ZIP regression model is
given by

Zi,j |Yi,j =

{

0 if Yi,j = 0,
Poi(λi,j) if Yi,j = 1.

(1)

where Poi(λi,j) is a Poisson distribution with mean function λi,j and Yi,j

has a Bernoulli distribition with mean function pi,j ; Yi,j ∼ Bern(pi,j), for
the ith time and the jth spatial location. Now we use link functions, as is
common for generalized linear models (McCullough and Nelder, 1989) to
relate the means of these distributions to a linear mixed model,

log(λi,j) = νi + x
′

i,jβ + ǫi,j ,

logit(pi,j) = µi + x
′

i,jα + δi,j ,
(2)

where logit(a)≡ log
(

a
1−a

)

and xi,j are covariates that vary both spatially

and temporally. In our case, variables such as percent ice in a sample unit
changes spatially and temporally due to weather and currents between
observations. In a fixed effects model, we would assume that νi and µi are
separate means for each time; here we treat them as separate linear models
for covariates that only vary temporally, such as the weather on the day of
the photograph that affects all spatial locations equally.

νi = ν0 + t
′

iη + ξi,

µi = µ0 + t
′

iγ + τi,
(3)

where ti are time-varying covariates. It is here that we allow temporally
autocorrelated errors, which are modeled with AR1 models,

ξi = φξξi−1 + σξWξ,i; i > 1,

τi = φττi−1 + στWτ,i; i > 1,
(4)
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where Wξ,i and Wτ,i are independent Gaussian random variables. In (2), we
assume that each time period has a separate and independent realization of
a spatial process for ǫi,j and δi,j . We use a spatial conditional autoregressive
model (CAR) (see Besag 1974 and Cressie, 1993) for each time period, but
allow the autocorrelation parameters to be common across time periods.
Hence,

δi = Gau(0, σ2

δ (I − ρδC)−1
M)

ǫi = Gau(0, σ2

ǫ (I − ρǫC)−1
M)

(5)

where the spatial process for the ith time period δi is independent of the
spatial process δi′ when i 6= i′, and similarly the spatial process ǫi is inde-
pendent of the spatial process ǫi′ when i 6= i′. Gau(·, ·) is a (multivariate)
Gaussian (normal) distribution. We defined a neighbor of a sample as any
other sample with its centroid within 1 km. The weights in C were row-
standardized (Haining, 1990, pg. 82); that is, each row in C contains all
zeros except for columns that indicate a neighbor, and these values are
the inverse of the number of neighbors for that sample. The matrix M is
a diagonal matrix where the diagonal elements contain the inverse of the
number of neighbors.

3.1 A Nonmixture Model

The ZIP model is important when zeros are a mixture of two processes; a
binary process and a count process that includes zero whenever the binary
process has a value of one. When considering harbor seal counts on ice, as
in our application, the binary process is the absence or presence of harbor
seals, and the count process is the number of seals. If there are detectabil-
ity issues, this model is appropriate because it expresses the idea that an
observed count can be 0 even though seals are present; i.e., some seals
are undetected. However, in our application, we have aerial photographs
of very high resolution, and seals are unlikely to be undetected. Hence, we
consider a model that completely specifies and separates the binary from
the count process. They are no longer a mixture, but there is clearly an
overabundance of zeros in comparison to a simple Poisson distribution, so
it is logically tied to ZIP models and can be compared purely on a model-
fitting basis. We term this the “Poisson+1/Binary” model and denote it
P1B. For it’s formulation as a space-time model, we modify (1) to be,

Zi,j |Yi,j =

{

0 if Yi,j = 0,
Poi(λi,j) + 1 if Yi,j = 1.

(6)

The rest of the model follows exactly as in the ZIP, using (2-5).

3.2 Priors

We put diffuse priors on all regression parameters: α, β, γ, η. Because these
are modeled on a log scale, there are computational instabilities if they are
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allowed to get too large, so we let each regression parameter have a normally
distributed prior with a variance of 10. The autoregression parameters for
both space, (ρδ and ρǫ) and time (φτ and φξ) are bounded from -1 to 1, but
we did not expect any negative autocorrelation, so we used uniform priors
from 0 to 1. For the variance parameters of the random effects (σ2

δ , σ2

ǫ ),
we let the square root be uniformly distributed between 0 and 10; again,
to keep the random effects from becoming too large and causing numerical
instability.

4 Results

We present results on estimated space-time autocorrelation parameters,
estimated regression coefficients, and smoothed prediction maps.
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