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Abstract: In recent years, multivariate spatial models have been proven to be an

effective tool for analyzing spatially related multidimensional data arising from

a common underlying spatial process. The Bayesian analysis of these models is

popular; however, the selection of an appropriate prior plays an important role

in the inference. The two main contributions of this article are the development

of shrinkage-type default priors for covariance matrices in these spatial models,

and an innovative Gibbs sampling implementation that removes positive definite-

ness constraints when updating entries of the covariance matrix. The default prior

elicitation is non-informative, but results in a proper posterior on the related pa-

rameter spaces. This elicitation not only provides robust inference (with respect to

prior choice), but also provides improved estimation. In the computational step,

the avoidance of sampling from restricted domains provides more stability and ef-

ficiency in the Gibbs implementation. Both simulations and data examples are

provided to validate and illustrate the proposed methodology.
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1. Introduction

The issue of “health disparity” is central to the distribution of federal and
state aid based on socio-economic indicators. Health disparity studies analyze
how the health status of individuals vary across various socio-economic groups
and spatial locations, in particular in relation to a specific disease. Multiple
response variables are available as indicators of health status and, as a result,
models for multivariate spatial lattice data are an indispensable tool for analyzing
health disparity data. Recently, Greco, and Trivisano (2009), Zhang, Hodges,
and Banerjee (2009), Jin, Banerjee, and Carlin (2007), Sain and Cressie (2007),
Jin, Carlin, and Banerjee (2005), Gelfand and Vounatsou (2003), Carlin and
Banerjee (2003), and Kim, Sun, and Tsutakawa (2001) explored multivariate
spatial models for lattice data, adopting the Bayesian framework as the natural
inferential approach.

Although the Bayesian inferential framework is a natural choice for spatial
lattice data, one obvious obstacle is the choice of prior distribution for the model
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parameters. The works mentioned are based on standard subjective and, at best,
vague priors to account for the lack of subjective knowledge. Subjective specifi-
cation of priors was the obvious drawback of introducing bias in the estimation
procedure, the extent of which may not be easy to gauge in applications. A de-
fault, or non-informative prior, is therefore preferable for the Bayesian approach.
In this paper, we develop a new default prior for parameters of generalized linear
mixed models (GLMMs) in the multivariate spatial context, where the underlying
spatial component has a conditionally autoregressive (CAR) model. This prior
is an extension of the reference prior considered in Natarajan and Kass (2000) in
the univariate non-spatial context. The simulation analysis indicates that, while
subjective prior specifications are sensitive, the proposed prior is not. Since
the default prior is not conjugate to the likelihood, our Bayesian computational
scheme is different from previous approaches. We adopt a new parametrization
of the multivariate CAR model based on the Cholesky and spectral decompo-
sitions of matrices; the advantage gained is the removal of positive definiteness
constraints on the inverse covariance matrix.

The rest of the article is organized as follows: Section 2 introduces the multi-
variate CAR model in the spatial context. Section 3 discusses the motivation for
developing the proposed default prior by taking spatial information into account.
The resulting posterior distribution is shown to be proper for both complete and
missing data cases. The Gibbs steps are outlined in Section 4. The Bayesian
inferential procedure is illustrated through an application to cancer mortality
data from the Surveillance, Epidemiology, and End Results (SEER) Program
(www.seer.cancer.gov). Section 5 gives the numerical findings for both sim-
ulated and real data. This is followed by a brief discussion summarizing our
findings in Section 6, and the Appendix.

2. Multivariate Generalized Linear Mixed Models

Assume there are n distinct sites on a spatial domain where observations
on p variables are recorded. The multivariate data consist of the p-dimensional
random vector yj ≡ (y1j , y2j , . . . , ypj)′ for the jth site, for j = 1, . . . , n. Corre-
sponding to the response yij , denote by xij = (xij1, xij2, xijqi)

′ the qi×1 vector of
explanatory variables. The following two-stage hierarchical model is considered
for the distribution of the np × 1 vector of all observables y ≡ (y′

1,y
′
2, . . . ,y

′
n)′:

The yij are independent with a density belonging to the exponential family
fij(y | ηij) = C(y) exp{ ηijy−hi(ηij)}, with canonical parameter ηij , and normal-
izing constant exp{hi(ηij) } =

∫
C(y) exp{ ηijy } dy; ηij is related to covariate

xij via ηij = x′
ijβi + εij , where βi is a qi × 1 vector of regression coefficients and

εij are error random variables. The hierarchical specification is completed by
ε ∼ Nnp(0, D), where εj ≡ (ε1j , ε2j , . . . , εpj)′ is the p × 1 error vector at the jth
spatial site, ε ≡ (ε′1, ε

′
2, . . . , ε

′
n)′ is the np×1 vector of all the error variables, and
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D is the covariance matrix (of dimension np × np ) of ε. Such models are called
generalized linear mixed models (GLMMs; see McCulloch and Searle (2001)).

2.1. Multivariate Gaussian CAR

In the spatial context, the distribution of ε, and hence D, can be given
more structure based on the spatial neighborhood structure N = {Nj : j =
1, . . . , n }, where Nj is the collection of spatial sites that are neighbors of site
j. Such development is known in the literature and we only provide a brief
discussion to introduce the relevant notation for the subsequent sections. For
more details, see Banerjee, Gelfand, and Carlin (2004) and Sain and Cressie
(2007). For the multivariate Gaussian CAR model, ε follows Nnp(0, D) with
D = {Block(−Γ−1

j Λjk)}−1 for some p × p matrices Γj and Λjk, where j, k =
1, . . . , n. Symmetry and positive definiteness of D is guaranteed by requiring

Λjk Γk = Γj Λ′
kj (2.1)

for all pairs (j, k), and Block(−Γ−1
j Λjk) is positive definite with Λjj = −I.

The spatial neighborhood weights are defined as wjk = 1 if j and k are
neighbors, and let 0 otherwise, with wjj ≡ 0 for j = 1, . . . , n. Also, let W =
((wjk)) (of dimension n × n), and M be the n × n diagonal matrix M =
diag(w1+, w2+, . . . , wn+) where wj+ ≡

∑
k∈Nj

wjk.
A further parametrization, for computational as well as for practical analysis,

is given by Γj = Γ/wj+ and Λjk = (wjk/wj+) · H, which entails a common
covariance matrix Γ for all sites j and a common set of dependencies parameters
H, both rescaled by w−1

j+ . Such parametrization allows for sites with a larger
number of neighbors to have lower variability, which is reasonable to expect. The
symmetry requirement of (2.1) is equivalent to HΓ = ΓH ′ or, in other words,
F ≡ Γ−1/2HΓ1/2 is symmetric, where Γ1/2 is the (unique) square root matrix
of Γ and Γ−1/2 is its inverse. With the above re-parametrization, the inverse of
D is

D−1 = (In ⊗ Γ−1/2)(M ⊗ Ip − W ⊗ F )(In ⊗ Γ−1/2), (2.2)

where A⊗B is the Kronecker product of matrices A and B. Positive definiteness
of D−1 is ensured by restricting eigenvalues of F = Γ−1/2HΓ1/2 to be in (−1, 1);
a proof is presented in the Appendix. In the case when the eigenvalues of F are
all 1, that is, F = Ip, D−1 is positive semi-definite. This is because M ⊗ Ip −
W ⊗ Ip = (M − W ) ⊗ Ip and (M − W )1 = 0, where 1 is the n × 1 vector
of ones. In this special case, the CAR model is equivalent to the intrinsically
autoregressive (IAR) model.

The concatenated vector of all ηij ’s at the jth spatial location is denoted
by ηj ≡ (η1j , η2j , . . . , ηpj)′. Further, define η ≡ (η′

1, η
′
2, . . . , η

′
n)′ to be the

np × 1 vector of all ηij variables. It follows that η ∼ Nnp(Xβ, D), where
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β = (β′
1, β

′
2, . . . , β

′
p)

′ is the q × 1 concatenated vector of all regression coeffi-
cients with q =

∑p
i=1 qi, and X = (X ′

1 X ′
2 . . . X ′

n)′ is the p n × q design matrix
with Xj = Block Diagonal(x′

1j , x
′
2j , . . . , x

′
pj) denoting the p× q design matrix at

the jth spatial location for j = 1, . . . , n.

2.2. Handling partial observations

Let P and C be all pairs (i, j) where yij is either partially observed or com-
pletely observed, respectively. Given η, the conditional likelihood contribution
corresponding to the partially observed data, Dobs say, can be written as

`(Dobs |η) =
∏

(i,j)∈C

fij(yij | ηij)
∏

(i,j)∈P

Fij(Pij | ηij), (2.3)

with Fij(Pij | ηij) =
∫
yij∈Pij

fij(yij | ηij) dyij denoting the contribution arising
from the partial information that yij belongs to the set Pij . No contribution is
made to the likelihood if yij is missing, but we may incorporate covariates xij at
the missing site in η. The (unconditional) likelihood is

`(Dobs |β, F ,Γ) =
∫

η
`(Dobs |η) f0(η |β, F ,Γ) dη, (2.4)

where f0 denotes the density of Nnp(Xβ, D). Examples of partially observed
data are common in rare diseases. For example, when mapping cancer incidences,
certain counties do not report the exact number of incidences if the total number
is less than a known threshold. In this case the partial information is Pij =
{ yij < τ } where τ is the threshold.

3. Default Prior Elicitation

This section discusses appropriate default priors on the model parameters
β, H, and Γ. Since each βi represents the regression effects to the mean of the
observations yij , it is natural to elicit a standard “flat” non-informative prior
on each βi for i = 1, . . . , p, namely, πN (β) ∝ 1. It is also natural to consider a
Jeffrey’s type non-informative prior on Γ of the form πJ(Γ) ∝ (det(Γ))−(p+1)/2.
However, a Jeffrey’s type prior leads to an improper posterior distribution.

Theorem 1. Let π0(H) be a proper prior on H. The default prior specification

π0(β, H,Γ) = πN (β) × πJ(Γ) × π0(H) (3.1)

gives a posterior distribution on the parameters that is improper.

Proof: We refer the reader to a proof in the Appendix. The consequence of
Theorem 1 is that new motivation is required for the development of a default



DEFAULT BAYESIAN ANALYSIS FOR MULTIVARIATE GENERALIZED CAR MODELS 235

prior on Γ that would make the posterior proper. We discuss the development
of such a prior in the subsequent paragraphs.

Our justification for the default prior comes from looking at the conditional
update of each ηij given the data yij and the rest of the η elements. In the
normal-normal case, one can explicitly derive an expression for the weights that
represent the contribution of the data, yij , and the rest of the η to the conditional
mean of ηij . However, in the case of non-conjugate GLMMs, it is not possible
to obtain a closed form expression for the weights. An approximate approach
can be considered based on a quadratic expansion of the exponential family pdf
fij(y | ηij) = C(y) exp{ ηijy−hi(ηij)}, to yield a similar analysis as in the normal-
normal model.

We consider the prediction of the vector ηj given yj and η−j (the rest of the
ηij ’s excluding the ones at site j). From Taylor’s expansion, we have

hi(ηij) ≈ hi(η∗ij) + (ηij − η∗ij)h
(1)
i (η∗ij) +

1
2
(ηij − η∗ij)

2h
(2)
i (η∗ij), (3.2)

where η∗
j ≡ (η∗1j , . . . , η

∗
pj) is a fixed value. Substituting (3.2) in

∏p
i=1 exp{ ηijyij−

hi(ηij) }, the latter simplifies, after completing squares, to

exp
{
−1

2
(ηj − η∗

j (yj))′H
(2)
j (ηj − η∗

j (yj))
}

(3.3)

with η∗
j (yj)≡

(
H

(2)
j

)−1(yj−h
(1)
j +H

(2)
j η∗

j ), where h
(1)
j =

(
h

(1)
1 (η∗1j), . . ., h

(1)
p (η∗pj)

)′

is the p × 1 vector of first derivatives and H
(2)
j = diag

(
h

(2)
1 (η∗1j), h

(2)
2 (η∗2j), . . .,

h
(2)
p (η∗pj)

)
is the diagonal matrix of all second derivatives of hi, i = 1, . . . , p,

evaluated at η∗
j . Now η ∼ Nnp(Xβ, D), which implies that the conditional

distribution of ηj given η−j is

exp
{
−wj+

2
(ηj − ηCAR

j )′(Γ−1)(ηj − ηCAR
j )

}
(3.4)

for some ηCAR
j . Combining (3.3) and (3.4), the conditional mean of ηj (again by

completion of squares) is (H(2)
j +Γ−1 wj+)−1H

(2)
j η∗

j (yj)+(H(2)
j +Γ−1 wj+)−1Γ−1

wj+ηCAR
j with (matrix) weights W1j = (H(2)

j + Γ−1 wj+)−1H
(2)
j and W2j =

I − W1j corresponding to the direct estimate yj and the population mean, re-
spectively. Since W1j varies with j, we first replace it by its average across all
the sites. Thus, we set w0 = 1

np

∑
j trace(H(2)

j /wj+). Substituting H
(2)
j /wj+

by its average w0 Ip in the expression of W1j above, we get the matrix

U ≡
(
w0Ip + Γ−1

)−1
w0Ip = ( w0Γ + Ip)

−1 w0Γ.

Note that 0 ≤ U ≤ Ip in terms of positive definiteness, with det(U) representing
the volume of the weight matrix U . Our proposal is to induce a prior on Γ such
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that the prior on det(U) is uniform. A similar technique was used by Daniels
(1999) and Natarajan and Kass (2000) in the univariate non-spatial context.

To get this uniform distribution on U , note that the multivariate Beta family
of distributions, given by f(U | a, b) = C(det(U))a−(p+1)/2(det(Ip −U))b−(p+1)/2

with a > (p− 1)/2 and b > (p− 1)/2, forms a class of priors on U . The uniform
prior is obtained by setting a = b = (p + 1)/2. The resulting prior on Γ is

πUV (Γ) = det (Ip + w0Γ)−(p+1) . (3.5)

This is also the prior developed in Natarajan and Kass (2000) leading to shrinkage-
type estimators in the non-spatial context. The uniform volume prior is proper
from Theorem 2 of Natarajan and Kass (2000).

The prior on H is induced via F . The prior on F is taken to be independent
of Γ and is constructed as follows: Writing the spectral decomposition of F as

F = QΛQ′, (3.6)

we put a uniform prior on Q; to have positive definiteness, we put a uniform
prior U(−1, +1) on the eigenvalues in Λ. The default prior on (β, F ,Γ) is thus

π0(β,F ,Γ) = πN (β) × πUV (Γ) × 1
2p

. (3.7)

For each i = 1, . . . , p, the design matrix corresponding to the ith response variable
is the n × qi matrix X̃i = (xi1, xi2, . . . , xin)′. The submatrix X̃Ci is formed by
taking all rows j of X̃i for which (i, j) ∈ C.

Theorem 2. Assume that fij, and Fij in (2.3) are bounded above by a constant
independent of ηij for each pair (i, j). Under (3.7), the posterior is proper if
there exists qi linearly independent row vectors in X̃Ci, for each i=1, . . . , p, such
that∫

Γ

∫
F

∫
β

∫
η

( p∏
i=1

qi∏
j=1

fij(yij | ηij)
)
f0(η |β, F ,Γ)dηπ0(β, F ,Γ)dβdF dΓ<∞,

(3.8)
where f0 is as in (2.4) and π0 is the prior at (3.7).

Remark 1. Under the assumptions of Theorem 2, 0 ≤ fij ≤ A and 0 ≤ Fij ≤ B,
say. In our applications, fij is taken to be either a Poisson pmf or a normal pdf.
For the Poisson (or generally for a discrete distribution), it easily follows that
A = B = 1, independent of i and j. When fij is normal with mean ηij and fixed
standard deviation σ0, A = 1/

√
2πσ0 and B = 1, and independent of i and j.

Generally for densities, the bound A needs to be established on a case-by-case
basis.
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Remark 2. Theorem 2 shows that propriety can be achieved if there are at least
qi sites on the lattice for which the yijs are completely observed. The only further
check that we have to perform is to see if the design matrix corresponding to those
sites X̃Ci is non-singular. This is a requirement for each i, so the conditions of
Theorem 2 can be checked separately for each i = 1, . . . , p.

4. Bayesian Inference

A slightly different (yet equivalent) parametrization of the spatial multivari-
ate GLMM is considered in developing the Gibbs sampler. Let L denote the lower
triangular matrix obtained from the Cholesky decomposition of Γ−1 = LL′. De-
fine the matrix B ≡ LQ with entries B = ((buv))

p
u,v=1, where Q as in (3.6).

Then we have D−1 = (In ⊗ L)(M ⊗ Ip − W ⊗ F )(In ⊗ L′) = (In ⊗ L)(M ⊗
Ip − W ⊗ QΛQ′)(In ⊗ L′) = (In ⊗ LQ)(M ⊗ Ip − W ⊗ Λ)(In ⊗ Q′ L′) =
(In ⊗ B)(M ⊗ Ip − W ⊗ Λ)(In ⊗ B′).

The advantage of the re-parametrization of D−1 in terms of B is that the
entries of B are unconstrained. Note that it is possible to obtain Q and L

uniquely from B using the QR decomposition of B′ = QR, where Q is orthogonal
and R is upper triangular. It follows that L = R′ and Q = Q′. The four main
steps of the Gibbs sampler are the following.

• Update ηij, based on the (conditional) posterior density of ηij given the rest
of the parameters:

π(ηij | . . .) ∝ exp{ ηijyij − hi(ηij) −
Aij

2
(ηij − η∗ij)

2}, (4.1)

where η∗ij ≡ x′
ijβi + ε∗ij , and ε∗ij has the expression ε∗ij = (1/

∑p
v=1 b2

iv)ε0,

ε0 =
p∑

v=1

b2
ivλv

∑
k∈Nj

wjk

wj+
εik︸ ︷︷ ︸

(A)

−
p∑

v=1

p∑
u=1,u6=i

bivbuvεuj +
p∑

v=1

p∑
u=1,u6=i

bivbuvλv

∑
k∈Nj

wjk

wj+
εuk,

(4.2)
with εuv = ηuv − x′

uvβuv for all (u, v) = 1, . . . , p except for (u, v) = (i, j), and
Aij = wj+

∑p
v=1 b2

iv. The update of ηij is done by a griddy grid sampler based
on (4.1) for each fixed pair (i, j), and cycling through all the combinations of
(i, j) ∈ {(1, 1), . . . , (1, n), . . . , (p, n)}. Note that when yij is missing, term (A)
in equation (4.1) is absent. When yij is partially observed, it is first treated as
missing and then updated based on the truncated distribution fij(· | ηij) given
that yij ∈ Pij .

• Update β: The update of β requires a re-ordering of the variables involved.
For each i = 1, . . . , p, let ηr

i = (ηi1, ηi2, . . . ηin)′ and εr
i = (εi1, εi2, . . . εin)′, and let
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ηr ≡ ((ηr
1)

′, (ηr
2)

′, . . . , (ηr
p)

′) and εr ≡ ((εr
1)

′, (εr
2)

′, . . . , (εr
p)

′) denote the np × 1
vector of re-ordered entries from η and ε, respectively. The covariance matrix of
εr is subsequently a re-ordered version of D given by (Dr)−1 = (B⊗In)(Ip⊗M−
Λ ⊗ W )(B′ ⊗ In). If X̃ = ((Block Diagonal{X̃i})) denotes the block diagonal
matrix consisting of the design matrices for the ith response variable for i =
1, . . . , p, the conditional posterior distribution of β is multivariate normal with
mean µβ, and covariance matrix Sβ, where

µβ = (X̃ ′(Dr)−1X̃)−1(X̃ ′(Dr)−1ηr) and Sβ = (X̃ ′(Dr)−1X̃)−1. (4.3)

• Update Λ: The re-parametrization in terms of B and Λ means the diagonal
entries of Λ can be updated independently of each other. Consider the p × n
matrix, Υ, constructed by putting εij in its ith row and jth column. Define a
new matrix p × n matrix E as E = B′Υ, and let e′i be the ith row of E for
i = 1, . . . , p. The conditional posterior density of λk is given by

π(λ | . . .) ∝ exp
{
−1

2
e′k(M − λW ) ek

}
(det (M − λW ))1/2 (4.4)

on −1 ≤ λk ≤ 1, independently for each k = 1, . . . , p. The update of λk is based
on a griddy grid sampler using (4.4) for each fixed k.

• Update B: The conditional posterior density of B has the expression π(B | . . .)

∝exp

{
−1

2

p∑
k=1

e′k(M−λkW )ek

}
× det

(
w0I+BB′)−(p+1)×det(BB′)(n+1)/2,

(4.5)
where e′k ≡ e′k(B) is as defined in (4.4) but now viewed as a function of B. The
update of B is carried out by updating each entry buv one at a time. Note that
for each (u, v), the conditional posterior density of buv has the same expression
as (4.5) up to a constant of proportionality. Thus, buv is updated using a griddy
grid sampler based on (4.5). The derivation of (4.4) and (4.5) is given in the
Appendix.

5. Experimental Results

5.1. Simulation study

We have conducted extensive simulation studies to check the performance
of our methodology. The experimental settings closely mimic county-level data
for southern lower Michigan as obtained from the SEER database. We took
p = 2 with y1j and y2j representing binomial responses on n = 40 spatial
sites, with neighborhood structure determined by the adjacency information
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among 40 southern lower Michigan counties. Given η, the observed data were
yij ∼ Binomial (Tij , [eηij ]/[1 + eηij ]), for i = 1, 2 and j = 1, . . . , 40, independent
of each other; Tij , the total number of trials was selected independently from
a Uniform(22, 48) distribution. The distribution of η was multivariate Gaus-
sian CAR with the following true parameter specifications: β1 = (−1, 0.3)′,

β2 = (−0.5,−0.2)′, Γ =
(

0.5 0.1
0.1 0.125

)
and F =

(
0.7 −0.1
−0.1 0.2

)
. The first

components of β1 and β2 correspond to the intercept terms. Here q1 = q2 = 2
and additional covariate information was gathered from independent normal dis-
tributions: X1 ∼ N(0, σ2 = 0.3) and X2 ∼ N(1, σ2 = 0.5).

Two types of priors were considered for Γ: (a) the default prior πUV (Γ) ∝
det(Ip + ω0Γ)−(p+1); (b) the proper inverse Wishart given by πIW (Γ) = IW (ρ,
ρA), where ρ ≥ p. The inverse Wishart distribution is a generalization of the
inverse gamma for the variance parameter in a multivariate setting. If Γ ∼
IW (m,Ψ), the expectation and variance of entries of Γ are given by E(Γkl) =
Ψkl/(m − p − 1) and var(Γkl) = [(m − p + 1)Ψ2

kl + (m − p − 1)ΨkkΨll]/[(m−
p)(m−p−1)2(m−p−3)], where Γkl and Ψkl are the (k, l)th entries of p×p ma-
trices Γ and Ψ, respectively. When ρ is large, E(Γ) ≈ A, and var(Γij) ≈ 1/ρ,
leading to a high concentration of probability around the initial guess of A.
Thus, this prior does not represent non-informative prior knowledge. Prior (b)
was proposed by Sain and Cressie (2007) as the choice of vague prior for Γ
when ρ is large, which is not the case (actually, Sain and Cressie (2007) put a
prior on Γ−1 as Wishart(ρ, (ρA)−1), but this is equivalent to choice (b) since
Γ ∼ IW (m,Ψ) iff Γ−1 ∼ W (m,Ψ−1)).

The priors (a) and (b) for Γ above in turn induce priors on B. This is
based on the transformations Γ → Γ−1, Γ−1 → LL′, and (L, Q) → B. The
derivation of the Jacobian for the composition transformation from (Γ, Q) →
B is given in the Appendix. The priors on B turn out to be πUV (B) =
det(ω0Ip + BB′)−(p+1) det(BB′)1/2 and πIW (B) = exp {−(ρ/2)tr(ABB′)} ×
det(BB′)(ρ−p)/2, respectively, for the priors (a) and (b) for Γ. Prior choices for β

are (i) the default non-informative constant prior πN (β) ∝ 1, and (ii) the proper
subjective prior πG(βk) ∼ N(0, σ2

k Iqk
), independently for each k = 1, . . . , p.

Using (ii), it is easy to see that the posterior for β is N(µ,S), where µ =
SX′(Dr)−1ηr, S−1 = X′(Dr)−1X + Σ−1 with Σ = Block Diagonal(σ2

kIqk
).

Thus we investigate three prior choices: (I) πUV (B) and πN (β) and (II) πIW (B)
and πG(βk) with ρ = 5, A = Ip and σ2

k = 100, and (III) πIW (B) and πG(βk)
with ρ = 100, 000, A = Ip and σ2

k = 100. Here (I) is our proposed default prior,
(II) is a proper prior with small ρ, and (III) is a prior with large ρ. Note that
(II) is weakly informative whereas (III) is highly informative.

The Gibbs sampler was run for 10, 000 iterations and checked for convergence
using traceplots and the R-statistic of Gelman and Rubin (1992). We established
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Table 1. Deviations measures for averages over β, Γ, F and η for the
complete data case.

θ β Γ F η

Prior (I) (II) (III) (I) (II) (III) (I) (II) (III) (I) (II) (III)

RMAD 0.253 0.250 0.258 0.799 1.660 2.994 0.956 0.982 0.990 0.557 0.533 0.558

MSE 0.017 0.017 0.017 0.045 0.113 0.336 0.166 0.167 0.169 0.066 0.071 0.085

CP 0.861 0.894 0.925 0.896 0.618 0.000 0.881 0.859 0.859 0.874 0.933 0.932

W 0.383 0.430 0.478 0.546 0.642 0.027 1.236 1.161 1.107 0.787 0.943 1.040

convergence for all experiments with 5, 000 iterations; all diagnostic plots were
satisfactory. Outputs from the Gibbs chains were used to compute different
statistics to validate and compare the proposed Bayesian methodology. The
three prior choices were compared in terms of their ability to derive consistent
estimation and prediction results. The deviation measures of comparisons were
(1) relative mean absolute deviation (RMAD), (2) mean square error (MSE), (3)
empirical 90% highest posterior density (HPD) coverage probabilities (CP), and
(4) width of the 90% HPD set (W). Formulas for a generic quantity θ are given
by RMADθ = (E(θ) − θ0)/θ0, MSEθ = E(θ − θ0)2, CPθ = P{θ0 ∈ HPD(θ)},
and W the width of HPD(θ); in the RHS of each expression, θ represents a
sample (or samples) from the posterior, HPD(θ) is the 90% HPD set calculated
based on θ samples, and θ0 is the true value set in the simulation experiments. We
used 500 replications in each experiment and report the averages of the deviation
measures. The computational time for all 500 replications in each experimental
setup was approximately 20− 25 hours. All computations were carried out using
an HP ProLiant DL160 machine (a cluster of nodes) with 8 Intel Xeon cores
and 24GB of memory at the High Performance Computing Center (HPCC) in
Michigan State University.

Table 1 reports a summary of all deviation measures. For convenience of
understanding, we report averages over specific components of the unknown pa-
rameters; for example, the β column reports the average over all β components,
β11, β12, β21, β22, and similarly for the other parameters Γ and F . The last col-
umn reports averages over all 40 × 2 = 80 predicted values for η; the deviation
measures are calculated based on η0, the true values generated in each replica-
tion. Entries in Table 1 clearly show the sensitivity of standard prior distributions
(i.e., priors (II) and (III)) used in the literature. For example, for a wrong choice
of ρ and A in πIW , the coverage can be even 0 along with high MSE and RMAD.
This effect can be reduced with a more sensible prior choice, for example, choice
(II). On the other hand, πUV always provides sensible results. One might notice
that the sensitivity of priors (II) and (III) is highest for Γ compared to the other
columns in Table 1. This is due to the fact that the prior for Γ changes signif-
icantly for the three choices (I-III), whereas we always use the default uniform
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Figure 1. Posterior densities for Γ22 corresponding to the three prior choices.

prior for F . The regression parameters β are less affected by the prior choice
compared to Γ due to the fact that β is related to the mean parameter with
large prior variance while Γ is related to dispersion. Nevertheless, the standard
choice of Gaussian prior on β also appears to be somewhat sensitive, but not
to the extent of Γ. Although the η components are not fixed model parameters
(i.e., they vary from county to county), their inference can also be sensitive to
the different prior choices. To explain the discrepancies in the Γ entries, Fig-
ure 1 plots the posterior densities of Γ22, the (2, 2)th entry of Γ, corresponding
to the three different prior choices for a arbitrarily chosen replicate. Note that
under (III), the prior mean is I2 whereas the prior variance is 10−5, making it
highly concentrated on a value different from the true Γ22; while we understand
that the small prior variance is unreasonable, this choice is not uncommon (see,
for example, Sain and Cressie (2007)). The situation improves under prior (II)
where the prior mean is the same but the prior variance is 0.2, which gives a
comparatively higher prior mass around the true Γ22. Overall, the proposed de-
fault prior πUV performed well in all respects. This prior is thus a robust choice.

We also explored the choice Γ =
(

10 6
6 5

)
. The results were similar to those

discussed here. The componentwise univariate spatial analysis was carried out
and, as expected, the multivariate analysis had superior performance.

We also performed similar experiments with 10% missing observations. The
results are reported in Table 2. Comparative trends similar to the complete data
case with priors (I-III) were also observed here.

5.1. Data examples

The Bayesian inferential framework was applied to study bivariate depen-
dence of a number of health-socio-economic indicators in the state of Michigan.
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Table 2. Deviation measures for averages over β, Γ, F , and η for the missing
data case.

θ β Γ F η

Prior (I) (II) (III) (I) (II) (III) (I) (II) (III) (I) (II) (III)

RMAD 0.256 0.254 0.263 1.037 1.782 2.992 0.916 0.928 0.929 0.539 0.559 1.132

MSE 0.018 0.018 0.018 0.074 0.143 0.336 0.155 0.157 0.158 0.071 0.075 0.090

CP 0.911 0.936 0.951 0.923 0.634 0.000 0.931 0.890 0.882 0.889 0.936 0.934

W 0.445 0.495 0.534 0.710 0.746 0.026 1.294 1.210 1.157 0.840 0.977 1.059

Two studies were conducted with different pairs of response variables: (1) lung
cancer mortality incidence and poverty, and (2) lung cancer mortality and air
quality index (AQI) measurements. Study (1) and (2) illustrate the complete
and missing data applications, respectively.

We considered lung cancer mortality counts over a period 2001-2005 in Michi-
gan counties obtained from SEER program (SEER*Stat Database: Mortality -
All COD, Aggregated With County,Total U.S. (1990-2005) <Katrina/Rita Pop-
ulation Adjustment>). A poverty measure and other socio-economic county at-
tributes were also obtained from the SEER program that is based on US Census
2000 (SEER*Stat Database: County Attributes - Total U.S., 1969-2005 Counties,
www.seer.cancer.gov/seerstat/variables/countyattribs). The AQI mea-
surements were obtained from the US Environmental Protection Agency (EPA)
AQI report site (http://www.epa.gov/air/data/monaqi.html?st~MI~Michigan).
We considered an average of median AQIs over a period 2001-2005. The AQI
is a daily index value calculated for each air pollutant measured; the highest of
these index values is the AQI value, and the pollutant responsible for the highest
index value is the “Main Pollutant”. The criteria pollutants used to calculate
AQI are: CO (Carbon monoxide), NO2 (Nitrogen dioxide), O3 (Ozone), SO2

(Sulfur dioxide), PM2.5 (Particulate matter smaller than 2.5 micrometers), and
PM10 (Particulate matter smaller than 10 micrometers). The highest possible
AQI value is 500. A day having an AQI value 0 through 50 is considered ’Good’
and a day having an AQI value 0 through 50 is considered ’Moderate’. The
32 counties in Michigan had AQI measurements over a period 2001-2005 in the
’Good’ or ’Moderate’ categories. Emission variables, in particular PM2.5, was
obtained from US EPA’s National Emission Inventory (NEI) database (http:
//www.epa.gov/air/data/emisdist.html?st~MI~Michigan). Since emission
data in this website is available only up to 2002, we considered the average
of 2001-2002 emission data. The unit is tons per county. In each application,
the Gibbs sampler was run for 10, 000 iterations and checked for convergence as
in the simulated data. Posterior samples were obtained from the Gibbs chains

www.seer.cancer.gov/seerstat/variables/countyattribs
http://www.epa.gov/air/data/monaqi.html?st~MI~Michigan
http://www.epa.gov/air/data/emisdist.html?st~MI~Michigan
http://www.epa.gov/air/data/emisdist.html?st~MI~Michigan
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for computing the mean, standard deviation, and 90% HPD intervals for all the
parameters.

5.1.1. Complete data example: Study 1

The mortality of lung cancer, the first component of the response variable
in Study 1, is rare enough relative to the population in the 68 counties of lower
Michigan that a Poisson distribution is appropriate. We write the model (condi-
tional on η1j) as

y1j
ind∼ Poisson(Eje

η1j ), i = 1, 2 and j = 1, . . . , 68,

where y1j measures the observed number of deaths in county j, and Ej is the
estimated population at risk; we assume the Ej are known and give a way for
calculating them later. The poverty count, y2j , is taken to be the second com-
ponent of the response variable in Study 1. We model y2j as a Binomial with
the number of trials being the total county population and success probability
eη2j/(1 + eη2j ). The associated covariates for y1j are the intercept, PM2.5, the
extents of urbanization, non-white population, and non-industry (these are mea-
sured as proportions). Covariates for poverty are the intercept, the extents of
urbanization, and non-industry. Thus, q1 = 5 and q2 = 3.

To calculate Ej , we take each county’s age distribution into account, as
available from Census 2000. The expected age-adjusted number of deaths due in
county j is Ej =

∑m
k=1 ωkNk

j , for j = 1, . . . , 68, where ωk =
∑68

j=1 Dk
j /

∑68
j=1 Nk

j

is the age-specific death rate due to lung cancer for age group k, and Nk
j and

Dk
j are the total population at risk and the number of deaths in county j for age

group k, respectively. The county level maps of the age-adjusted standardized
mortality ratios (SMRs), Y1j/Ej for lung cancer, shown in Figure 2, exhibit
evidence of correlation over space. Figure 2 also gives the spatial distribution of
poverty levels that can be seen to be highly spatially correlated with lung cancer
(simple correlation between lung cancer and poverty is around 0.4).

We present summary conclusions of our analysis. The standard errors of the
parameter estimates for prior (I) are smaller compared to priors (II) and (III).
For example, the average standard error of regression coefficients for lung cancer
is 0.61 under prior (I), and 0.65 and 1.28 for (II) and (III), respectively. For
the variance component parameters, the standard errors and widths of HPD sets
are comparable under priors (I) and (II). Note that the inference for Γ is highly
misleading for prior (III), since most of the posterior probability is concentrated
around the prior mean. Another difference is that the covariate PM2.55 (related to
the particle matter in the air) for lung cancer incidence is positive and significant
under (I), whereas it is insignificant under priors (II) and (III). For prior (III),
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[0.950, 1.050)
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[0.800, 0.875)
[0.512, 0.800)

[15.00, 20.38)
[12.00, 15.00)
[11.00, 12.00)
[10.00, 11.00)
[09.00, 10.00)
[06.00, 09.00)
[03.36, 06.00)

(a) Obs SMR (b) Poverty(%)

Figure 2. Observed SMR of Lung Cancer and Poverty in Michigan.

the posterior mean takes a negative value that is not very realistic. For brevity
other statistics, along with the smooth map of η, are suppressed.

5.1.2. Missing data example: Study 2

In Study 2, AQI is taken as the second component of the response variable
in place of poverty. Air pollutant monitoring stations are sparsely located in
32 of 68 lower Michigan counties and thus constitute missing information. The
covariates for AQI are the intercept and the non-industrialization status of the
county (q2 = 2). We take y2j to be normally distributed with mean η2j and fixed
standard deviation σ0, estimated using our data and set at 0.1.

Results for the standard errors and width of HPD sets for the parameters
are similar to the complete data case. There are two striking features in this
application. First, the extent of urbanization for lung cancer incidence is negative
and significant under (I), whereas it is positive under the other two priors (which
may not be reasonable). Second, the regression coefficient for racial segregation
(non-white) is significant under (I) and (II) but not under (III). This shows the
sensitivity of the subjective elicitation under the missing data setup as well.

6. Summary and Conclusion

In the absence of reliable subjective information, the use of Jeffreys type
non-informative priors or diffuse conjugate priors is popular. However, in the
context of the hierarchical spatial multivariate CAR models, we have shown that
none of these priors will work; the Jeffreys prior yields a posterior that is im-
proper whereas the diffuse conjugate prior is highly sensitive. This led us to elicit
priors on the model parameters that are close to Jeffreys, but still yield a proper
posterior for inference. The development of prior elicitation can be thought of
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as an extension of Natarajan and Kass (2000) in the spatial context. Besides the
prior development, we propose some innovative computational techniques for the
Gibbs implementation. Suitable transformations are made on the parameters to
avoid sampling from restricted domains, thus providing more stability and effi-
ciency in the Gibbs steps. The methodology has been extended to the case of
missing responses in the multi-dimensional setup.
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Appendix

Proof of the positive definiteness of D. A necessary and sufficient condition
for D to be positive definite (pd) is that D−1 be positive definite. Since Γ−1/2 is
pd and hence non-singular, it follows from (2.2) that (M⊗Ip−W ⊗F ) is positive
definite. The eigenvalues of (M ⊗ Ip −W ⊗F ) are those of (M ⊗ Ip −W ⊗Λ),
which are all eigenvalues of M − λkW , for k = 1, . . . , p. Now, requiring that
M−λkW be diagonally dominant (which implies positive definiteness), it follows
that

|λk|
∑
l∈Nj

wjl < wj+ ⇒ |λk|wj+ < wj+ ⇒ |λk| < 1 (A.1)

for all k = 1, . . . , p.

Proof of Theorem 1. In order to show that the posterior is improper, it is
enough to show that the marginal of y ≡ (y′

1,y
′
2, . . . ,y

′
n)′ does not exist; that is,

the integration with respect to the variable η and the parameters H, Γ, and β

is infinity. The marginal of y is

m(y) =
∫

η

∫
H

∫
Γ

∫
β

 p∏
i=1

n∏
j=1

fi(yij | ηij)

 1
(2π)np/2

(det(D))−1/2

× exp
{
−1

2
(η−Xβ)′D−1(η−Xβ)

}
dη π(H)dH

1
(det(Γ))(p+1)/2

dΓ dβ.

Let ε = η − Xβ. Next, write det(D) = det(Γ)n × g0(H) for some function
g0 of H, and note that the expression within the exponent can be simplified to
−(1/2)tr(Γ−1S), where S =

∑n
j,l=1 Hjlεjε

′
l with Hjl ≡ −wjl H if j 6= l, and
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Hjj = wj+ Ip. Now, integrating with respect to Γ, the marginal reduces to

m(y) ∝
∫

H

∫
β

∫
ε

 p∏
i=1

n∏
j=1

fi(yij | εij + x′
ijβi)

 1
(det(S))n/2

dε dβ (g0(H))−1 π(H) dH,

ignoring proportionality constants. Let ε11 = u11 and εij = uiju11 for (i, j) 6=
(1, 1), with an associated Jacobian of unp−1

11 . With this substitution, S = u2
11 S∗,

where S∗ =
∑n

j,l=1 HjlUjl with Ujl = Vj V ′
l , V1 = (1, u21, u31, . . . , up1)′, and

Vj = (u1j , u2j , . . . , upj) for j ≥ 2. It follows that det(S) = u2p
11 det (S∗). Then

m(y) =
∫

H

∫
β

∫
u

 p∏
i=1

n∏
j=1

fi(yij |u∗
iju11 + x′

ijβi)

 1
u11

1
(det(S∗)n/2)

du dβ (g0(H))−1 π(H) dH,

where u∗
ij = uij for (i, j) 6= (1, 1), u∗

11 = 1 and S∗ =
∑n

j,l=1 HjlUjl). It follows
that the integral with respect to u11 diverges around u11 = 0, proving that
m(y) = ∞.

Proof of Theorem 2. Without loss of generality, we take the first qi rows of
X̃Ci to be the linearly independent rows. It follows that the marginal of y,

m(y) ≤ C0

∫
F

∫
Γ

∫
β

∫
η

(
p∏

i=1

qi∏
j=1

fij(yij | εij + x′
ijβi)

)
f0(η |β F ,Γ)

dβ dη π(F ) dF πUV (Γ) dΓ,

where C0 is a constant depending on A and B and the submatrix X∗
i = (x

′
i1, . . .,

x
′
iqi

)′, is of dimension qi × qi with full rank qi. With ri = (εi1, . . . , εiqi)
′ + X∗

i βi

for i = 1, . . . , p, condition (3.8) implies that

m(y) ≤
p∏

i=1

det(X∗
i )

∫
ε

∫
F

∫
Γ

f0(ε |F ,Γ) dεπ(F ) dF πUV (Γ) dΓ

≤
p∏

i=1

det(X∗
i ) < ∞,

since the integrands are all integrable: f0 integrates to 1 with respect to ε , and
π(F ) and πUV (Γ), respectively, integrate to 1 with respect to F and Γ since they
are proper priors.

Derivation of the Jacobian from (Γ, Q) → B. We consider three trans-

formation steps: (Γ, Q)
(a)→ (Γ−1,Q)

(b)→ (L, Q)
(c)→ B, where (a) is an inverse
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transformation, (b) is Cholesky decomposition, and (c) is QR decomposition.
The Jacobian of each transformation are as follows (Muirhead (1982)): (a)
dΓ = det(Γ−1)−(p+1) dΓ−1, (b) dΓ−1 = 2p

∏p
i=1 Lp+1−i

ii dL′, and (c) dB =∏p
i=1 Lp−i

ii dL′(Q d∗Q′), where (Q d∗Q′) defines the Haar measure on the
set of p × p orthogonal matrices. Thus, defining dQ ∝ (Qd∗Q′), we have
dΓdQ = det(Γ−1)−(p+1) 2p

∏p
i=1 Lp+1−i

ii dL′dQ ∝ det(Γ−1)−(p+1)
∏p

i=1 LiidB ∝
det(Γ−1)−p−1/2dB ∝ det(BB′)−(p+1/2)dB.

Derivation of (4.4) and (4.5): The posterior density of (Λ,B) given the other
parameters is

π(Λ, B | · · · ) ∝ |(Dr)−1|1/2 exp
{
−1

2

(
ηr − X̃β

)′
(Dr)−1

(
ηr − X̃β

)}
×det(Ip + w0(BB′)−1)−(p+1) det(BB′)−(p+1/2). (A.2)

In the above, |(Dr)−1|1/2 = (det(BB′))n/2 ·
∏p

k=1 (det(M − λkW ))1/2 and(
ηr − X̃β

)′
(Dr)−1

(
ηr − X̃β

)
= εr′(B ⊗ In)(Ip ⊗ M − Λ ⊗ W )(B′ ⊗ In)εr

=
p∏

k=1

e′k(M − λkW ) ek,

since (B′ ⊗ In) εr = (e′1, . . . , e
′
p)

′. Also, note that det(Ip + w0(BB′)−1)−(p+1) =
det(BB′ + w0Ip)−(p+1) · (det(BB′))(p+1). Substituting these three expressions
into (A.2), we get

π(Λ, B | · · · ) ∝
p∏

k=1

(det(M − λkW ))1/2 × exp
{
− 1

2

p∑
k=1

e′k(M − λkW ) ek

}
×det(BB′ + w0Ip)−(p+1) · (det(BB′))(n+1)/2. (A.3)

The posteriors in (4.4) and (4.5) are obtained from (A.3) by viewing the other
parameter in the pair (Λ, B) as fixed.
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