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An autologistic regression model consists of a logistic regression of a response variable
on explanatory variables and an autoregression on responses at neighboring locations on a
lattice. It is a Markov random field with pairwise spatial dependence and is a popular tool
for modeling spatial binary responses. In this article, we add a temporal component to the
autologistic regression model for spatial-temporal binary data. The spatial-temporal autol-
ogistic regression model captures the relationship between a binary response and potential
explanatory variables, and adjusts for both spatial dependence and temporal dependence
simultaneously by a space-time Markov random field. We estimate the model parameters
by maximum pseudo-likelihood and obtain optimal prediction of future responses on the
lattice by a Gibbs sampler. For illustration, the method is applied to study the outbreaks of
southern pine beetle in North Carolina. We also discuss the generality of our approach for
modeling other types of spatial-temporal lattice data.

Key Words: Autologistic model; Gibbs sampler; Markov chain Monte Carlo; Maximum
pseudo-likelihood; Spatial-temporal model.

1. INTRODUCTION

The southern pine beetle has caused severe damage to pine forests in the southern states
of the United States and hence is of great concern. Research has found that the outbreaks
are influenced by factors such as host volumes, physiographic properties of the fields, and
seasonal temperature. Further, outbreaks of the southern pine beetle in forests throughout
the southern United States show visible spatial and temporal patterns (see, e.g., Mawby
and Gold 1984; Bailey 1995). In particular, temporal patterns of the outbreaks have been
studied. For example, Pye (1993) reported a cycle of length six to seven years for the
outbreaks in the southern United States; Turchin, Lorio, Taylor, and Billings (1991) found
temporal autocorrelation at a lag of one to two years for some populations in eastern Texas.

To our knowledge, Gumpertz, Wu, and Pye (2000) were the first to develop a statistical
model for southern pine beetle outbreak which accounts for potential explanatory variables
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while adjusting for spatial and temporal autocorrelation. They studied the outbreaks of
southern pine beetle in 301 counties of three states in the United States (Georgia, North
Carolina, and South Carolina) from 1960 to 1996. In this article, we focus our attention
on the outbreak data from North Carolina. Aggregated over time, the outbreaks show clear
positive spatial correlation (Figure 1); whereas aggregated over 100 counties, the outbreaks
show positive temporal dependence (Figure 2). In Gumpertz et al. (2000), a marginal logis-
tic regression model was used (see also Diggle, Liang, and Zeger 1994). Statistical models
were constructed by first estimating the temporal dependence for each location and then
accounting for spatial dependence among locations. As a consequence, statistical inference,
including parameter estimation and response prediction, was performed in a stepwise fash-
ion. Even though the inference was optimal at each step, optimality might not be guaranteed
for the final inference. The primary purpose of this article is to develop a spatial-temporal
autologistic regression model that would systematically model the relationship between a
binary response variable and potential explanatory variables, while accounting for spatial
dependence and temporal dependence simultaneously.

Our approach will be to add a temporal component to the atemporal autologistic mod-
els developed by Besag (1972, 1974). Autologistic models account for spatial dependence
among binary variables on a regular or irregular lattice. With the specification of a logistic
regression, autologistic regression models can be used to model relationships between the
binary response variable and potential explanatory variables, while incorporating spatial
correlation (see, e.g., Cressie 1993, sec. 6.5.1). Consider representative sites s1, . . . , sn on
a spatial lattice. For a given neighborhood structure, let Ni ≡ {j : sj is a neighbor ofsi}.
For notational convenience, let j ∼ i if j ∈ Ni. Neighborhood structures are oftentimes
based on proximity among the representative sites. For example, on a regular square lat-
tice, commonly used neighborhoods include first order, diagonal, and second order. Let
Y1, . . . , Yn denote binary responses on the lattice, where Yi ≡ Y (si) = 0 or 1. The joint
distribution of Y ≡ (Y1, . . . , Yn)′ for an autologistic regression model can be formulated
in a way similar to Greig, Porteous, and Seheult (1989):

f(Y) ∝ exp




n∑
i=1

p∑
k=0

θkXk,iYi +
1
2

n∑
i=1

∑
j∼i

θij [YiYj + (1 − Yi)(1 − Yj)]


 , (1.1)

where Xk,i ≡ Xk(si) denotes the kth explanatory variable at site si, θk denotes the kth
logistic regression coefficient corresponding to Xk(·), with k = 0, . . . , p. Further, θij

denotes the autoregression coefficient between the ith site and the jth site, such that θij = θji

and θij /= 0 only if j ∼ i. It follows from (1.1) that the distribution of Yi conditional on all
other Yj , denoted as f

(
Yi|Y \ Yi

)
, depends only on those at the neighboring sites:

f
(
Yi|Y \ Yi

)
= f

(
Yi|Yj : j ∼ i

)
=

exp
{∑p

k=0 θkXk,iYi +
∑

j∼i θijYi(2Yj − 1)
}

1 + exp
{∑p

k=0 θkXk,i +
∑

j∼i θij(2Yj − 1)
} , (1.2)

where i = 1, . . . , n.
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Autologistic regression models are suitable for relating a binary response variable to

potential explanatory variables by a logistic regression, while accounting for spatial depen-

dence by an autoregression. Moreover autologistic regression models can be used to estimate

the probability of success at a given site and predict the outcome at an unsampled site. Hence

autologistic regression models have been applied to many disciplines such as epidemiology,

image analysis, and environmental studies (see, e.g., Besag, York, and Mollie 1991; Wu and

Huffer 1997; Huffer and Wu 1998; Hoeting, Leecaster, and Bowden 2000). In particular,

Gumpertz, Graham, and Ristaino (1997) gave an excellent account of autologistic models

with regression and analyzed the spatial pattern of a Phytophthora epidemic in bell pepper.

However, the aforementioned autologistic regression model is suitable for binary data on a

spatial lattice at a given time point. Oftentimes observations are taken repeatedly over time

and binary data are available on the same spatial lattice at multiple time points. That is, for

a given location si and a given time point t, the response variable is Yi,t ≡ Y (si, t), where

i = 1, . . . , n and t = 1, 2, . . ..

In this article, we propose a general spatial-temporal autologistic regression model as

an extension of the (atemporal) autologistic regression model. The spatial-temporal au-

tologistic regression model captures both spatial dependence and temporal dependence

simultaneously by a space-time Markov random field, in addition to a logistic regression on

potential explanatory variables. As we shall demonstrate in a data example, our generalized

model has good potential in capturing correlation across space and over time. There is also

evidence that it can give credible prediction of future responses. For statistical inference,

we use maximum pseudo-likelihood, which is computationally efficient for parameter esti-

mation, and develop a Markov chain Monte Carlo (MCMC) algorithm for predicting future

responses.

The formulation of the model bears similarity to Besag (1972) and Preisler (1993). In

Besag (1972), a spatial-temporal autologistic model was proposed with the assumption of

stationarity and hence might not be suitable for incorporating regression terms. On the other

hand, Preisler (1993) considered spatial-temporal autologistic regression, but assumed in-

dependence among different time points. Our contribution here is to improve upon Preisler’s

model so that the temporal dependence is accounted for in our proposed spatial-temporal

autologistic regression model. Furthermore, our method can be extended to more general

Markov random fields with pairwise spatial and temporal dependence.

The remainder of the article is organized as follows. Section 2 proposes the spatial-

temporal autologistic regression model, estimates model parameters by maximum pseudo-

likelihood, and uses an MCMC algorithm for prediction. Section 3 applies the spatial-

temporal autologistic regression model to study the outbreaks of southern pine beetle in

North Carolina. Section 4 discusses further model generalization.
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2. SPATIAL-TEMPORAL AUTOLOGISTIC REGRESSION
MODEL

Consider a binary spatial-temporal process {Yi,t : i = 1, . . . , n, t ∈ Z}, where Yi,t ≡
Y (si, t) = 0 or 1 corresponds to the ith site si and time point t with i = 1, . . . , n and
t ∈ Z. For a given time point t, let Yt ≡ (Y1,t, . . . , Yn,t)′ denote the binary responses on
the lattice {s1, . . . , sn}.

We propose to model the joint distribution of {Yt : t ∈ Z} by specifying a family of
conditional distributions:

f(Yt1 , . . . ,Yt2 |{Yt : t ∈ Z \ {t1, . . . , t2}})

∝ exp




t2∑
t′=t1


 n∑

i=1

p∑
k=0

θkXk,i,t′Yi,t′ +
1
2

n∑
i=1

∑
j∼i

θp+1[Yi,t′Yj,t′

+(1 − Yi,t′)(1 − Yj,t′)]

+
n∑

i=1

θp+2[Yi,t′(Yi,t′−1 + Yi,t′+1) + (1 − Yi,t′)(2 − Yi,t′−1 − Yi,t′+1)]





 ,

(2.1)

for all t1, t2 ∈ Z such that t1 ≤ t2, where Xk,i,t ≡ Xk(si, t) denotes the kth explanatory
variable at site si and time point t, and θk is the logistic regression coefficient corresponding
to Xk(·); k = 0, . . . , p. Further, θp+1 is the spatial autoregression coefficient and θp+2 is the
temporal autoregression coefficient. Note that the specification is consistent for all t1 ≤ t2,
and the joint distribution of {Yt : t ∈ Z} can be shown to exist by Theorem 2.1.1 of Guyon
(1995). In this article, we restrict our attention to space and time invariant logistic regression
coefficients and autoregression coefficients.

Now for the ith site and the tth time point, define a neighborhood set

Ni,t ≡ {(j, t) : j ∼ i} ∪ {(i, t − 1), (i, t + 1)}; i = 1, . . . , n, t ∈ Z. (2.2)

From (2.1), it follows directly that the full conditional distribution of Yi,t is:

f
(
Yi,t|{Yt : t ∈ Z} \ Yi,t

)
= f

(
Yi,t|Yj,t : (j, t) ∈ Ni,t

)
=

exp
{∑p

k=0 θkXk,i,tYi,t +
∑

j∼i
θp+1Yi,t(2Yj,t − 1) + θp+2Yi,t(2Yi,t−1 + 2Yi,t+1 − 2)

}
1 + exp

{∑p

k=0 θkXk,i,t +
∑

j∼i
θp+1(2Yj,t − 1) + θp+2(2Yi,t−1 + 2Yi,t+1 − 2)

} ,

(2.3)

where i = 1, . . . , n, t ∈ Z.
Note that the difference between (1.2) and (2.3) is the temporal term. Hence the inter-

pretation of the regression coefficients θk with k = 0, . . . , p and the spatial autoregression
coefficient θp+1 is similar to that of the usual (atemporal) autologistic model. In particular,
θk represents the changes in the log conditional odds of an outbreak for a unit change in
the corresponding explanatory variable Xk for k = 0, . . . , p and θp+1 can be thought of as
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a spatial dependence parameter (see, e.g., Cressie 1993, p. 424). The additional parameter
θp+2 is the temporal autoregression coefficient and can be thought of as a temporal de-
pendence parameter, in a way similar to the spatial autoregression coefficient θp+1. When
θp+2 = 0, there is no correlation over time, whereas when θp+2 /= 0, there is correlation
over time. A positive θp+2 typically corresponds to a positive temporal correlation while a
negative θp+2 typically corresponds to a negative temporal correlation. The magnitude of
θp+2 is related to the mean difference between consecutive time points at the same site with
same values ((0,0) or (1,1)) and those with opposite values ((0,1) or (1,0)).

The marginal logistic models used in Gumpertz  et al. (2000) focused on the relationship
between the explanatory variables and the probability of outbreaks while the spatial and tem-
poral correlations were of secondary interests. In contrast, the idea of the spatial-temporal
autologistic regression models here is to model the relationship between the explanatory
variables and the probability of outbreaks while accounting for the spatial-temporal depen-
dence simultaneously. If the primary interest of a study is in the regression terms, then both
the marginal logistic regression models and the spatial-temporal autologistic regression
models would be appropriate. If, in addition, it is of interest to understand the spatial-
temporal dependence structure and make predictions at unsampled locations and into the
future, then the spatial-temporal autologistic regression models would perhaps be more
suitable than the marginal logistic regression models.

2.1 PARAMETER ESTIMATION BY MAXIMUM PSEUDO-LIKELIHOOD

Corresponding to the model specified in (2.1), denote the model parameters by θ ≡
(θ0, θ1, . . . , θp+2)′. Suppose observations are obtained from T time points: Y1, . . . ,YT ,
whereYt = (Y1,t, . . . , Yn,t)′; t = 1, . . . , T . To avoid dealing with the complex distributions
of Y1 and YT at the end time points, we consider the following likelihood function of θ

based on the joint distribution of Y2, . . . ,YT−1 conditional on Y1 and YT :

L(θ; Y2, . . . ,YT−1|Y1,YT )

= c(θ)−1 exp




T−1∑
t=2


 n∑

i=1

p∑
k=0

θkXk,i,tYi,t +
1
2

n∑
i=1

∑
j∼i

θp+1[Yi,tYj,t

+(1 − Yi,t)(1 − Yj,t)]

+
n∑

i=1

θp+2[Yi,t(Yi,t−1 + Yi,t+1) + (1 − Yi,t)(2 − Yi,t−1 − Yi,t+1)]





 .(2.4)

Here since the normalizing constant c(θ) does not have a closed form, direct maximiza-
tion of the likelihood (2.4) would require approximation of c(θ) by, for example, a path
sampling technique using Markov chain Monte Carlo (MCMC) (see, e.g., Gelman and
Meng 1998). Because the MCMC requires intensive computations, we use “maximum
pseudo-likelihood” for parameter estimation, which is easier to compute (Besag 1975).
The pseudo-likelihood function, under our context, is the product of the full conditional
distributions f(Yi,t|Yj,t : (j, t) ∈ Ni,t) as in (2.3); i = 1, . . . , n, t = 2, . . . , T − 1.
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Maximization of the pseudo-likelihood function could be processed to obtain the max-
imum pseudo likelihood estimates (MPLE) θ̂ by a standard logistic regression software
routine such as proc logistic in SAS or glm() in S-Plus. Moreover, the maximum
pseudo-likelihood estimates (MPLE) are generally consistent and asymptotically normal
for Markov random fields (see, e.g., Guyon 1995). For autologistic models (with spatial de-
pendence but without explanatory variables), the efficiency of MPLE depends on the values
of the spatial autocorrelation coefficient and can at times be comparable to the efficiency
of the maximum likelihood estimates (see Gumpertz et al. 1997, sec. 3).

However, the standard deviations of these estimates from the standard logistic regres-
sion are invalid and hence need to be assessed differently. We use a parametric bootstrap in
a manner similar to Gumpertz et al. (1997). In particular, we generate M spatial-temporal
binary datasets according to the autologistic model defined in (2.1), for which the model pa-
rameters are fixed at the MPLE θ̂ from the original data. For the mth dataset, we compute the

MPLE θ̂
(m)

, for m = 1, . . . , M . The standard deviation of these MPLE’s {θ̂
(1)

, . . . , θ̂
(M)}

can be used to estimate the standard deviation of θ̂.
To generate a spatial-temporal binary dataset {Y2, . . . ,YT−1} given Y1 and YT , we

use (2.4). The normalizing constant c(θ) does not have a closed form and hence direct
sampling of Y2, . . . ,YT−1 from f(Y2, . . . ,YT−1|Y1,YT ) is not possible. Therefore we
use Markov chain Monte Carlo, or more specifically, a Gibbs sampler. The main idea is to
successively simulate individual Yi,t from the full conditional distribution as in (2.3) for
i = 1, . . . , n, t = 2, . . . , T − 1, and hence obtain a Markov chain that converges to the
target distribution f(Y2, . . . ,YT−1|Y1,YT ). After burn-in, we take M samples from the
Markov chain as the bootstrap samples. We use the log-likelihood values to determine the
length of burn-in iterations as in Geweke (1992).

2.2 OPTIMAL PREDICTION BY MARKOV CHAIN MONTE CARLO

As in (2.4), for predicting YT+1, . . . ,YT ∗ , we consider the joint predictive distribution
of YT+1, . . . ,YT ∗+T ∗∗−1 conditioned on the observation YT and a prespecified value
YT ∗+T ∗∗ :

f(YT+1, . . . ,YT ∗+T ∗∗−1|YT ,YT ∗+T ∗∗)

∝ exp




T ∗+T ∗∗−1∑
t=T+1


 n∑

i=1

p∑
k=0

θkXk,i,tYi,t +
1
2

n∑
i=1

∑
j∼i

θp+1[Yi,tYj,t

+(1 − Yi,t)(1 − Yj,t)]

+
n∑

i=1

θp+2[Yi,t(Yi,t−1 + Yi,t+1) + (1 − Yi,t)(2 − Yi,t−1 − Yi,t+1)]

)}
, (2.5)

where T ∗∗ extra time points are included to reduce the potential boundary effects at time
point T ∗, with T +1 ≤ T ∗ ≤ T ∗+T ∗∗−1. Again we use a Gibbs sampler to draw samples
YT+1, . . . ,YT ∗+T ∗∗−1 from the predictive distribution f(YT+1, . . . ,YT ∗+T ∗∗−1|YT ,
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Figure 1. Total number of years a county experienced an outbreak of southern pine beetle in 1960–1996, for each
of the 100 counties of North Carolina.

YT ∗+T ∗∗). Similar to (2.3), it follows that the full conditional distribution of Yi,t is:

f(Yi,t|{YT , . . . , YT ∗+T ∗∗} \ Yi,t) = f
(
Yi,t|Yj,t : (j, t) ∈ Ni,t

)

=

exp{∑p

k=0 θkXk,i,tYi,t +
∑
j∼i

θp+1Yi,t(2Yj,t − 1) + θp+2Yi,t(2Yi,t−1 + 2Yi,t+1 − 2)}

1 + exp{∑p

k=0 θkXk,i,t +
∑
j∼i

θp+1(2Yj,t − 1) + θp+2(2Yi,t−1 + 2Yi,t+1 − 2)}
,

where i = 1, . . . , n, T +1 ≤ t ≤ T ∗+T ∗∗−1. Sampling from these individual conditional
distributions is straightforward. Upon convergence, the samples of {Yi,t : i = 1, . . . , n, t =
T + 1, . . . , T ∗} are used to generate the predicted binary responses.

3. EXAMPLE: OUTBREAKS OF SOUTHERN PINE BEETLE

In this section, we apply the spatial-temporal autologistic regression model to a study

of the outbreaks of southern pine beetle (Dendrotonus frontalis) in North Carolina. Recall

that Gumpertz et al. (2000) aggregated the binary data to a count at a given site and modeled

the proportion of years each site experienced an outbreak. The temporal correlation was

accounted for by an overdispersion in the working variance-covariance matrix using gener-

alized estimating equations, while the spatial correlation was accounted for by the sample

correlation between each pair of sites. However, as mentioned in Section 1, the analysis

was performed in several steps. In this regard, the spatial-temporal autologistic regression

model developed in Section 2 provides a systematic alternative to account for both spatial

dependence and temporal dependence.

The data consist of the presence and absence of southern pine beetle in the 100 counties

of North Carolina from 1960 to 1996. That is, {Yi,t : i = 1, . . . , 100, t = 1960, . . . , 1996},

where Yi,t = 0 for absence and Yi,t = 1 for presence of an outbreak in the ith county and

the tth year. We used the first 31 years (1960–1990) of data for model building and set aside
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Figure 2. Total number of counties that experienced an outbreak of southern pine beetle in the state of North
Carolina from 1960 to 1996.

the last 6 years (1991–1996) of data for model validation, as in Gumpertz et al. (2000).

Two counties were considered to be neighbors if the corresponding county seats are within

30 miles of each other, similar to the neighborhood structure considered in Section 6.1 of

Cressie (1993). Figure 1 plots the total number of years a county experienced an outbreak for

each of the 100 counties. The spatial distribution demonstrates positive correlation among

neighboring counties. Indeed, Moran’s I index is .64 with a p value less than .001 and

Geary’s C index is .32 with a p value less than .001, both indicating some evidence of

positive spatial correlation. Figure 2 is a time-series plot of the total number of counties

that experienced an outbreak in a year, for each of the years from 1960–1996. The epidemic

seems to have peaked in the mid-1970s and there is evidence of positive correlation over

time.

Among the possible explanatory variables, we focused on the 11 most important ex-

planatory variables identified by Gumpertz et al. (2000): elevation (in m), longitude, saw

volume (in m3/ha), hydric proportion, xeric proportion, size of national forest (in 1,000 ha),

average daily maximum temperature in the fall (in ◦C), average precipitation in the fall (in

cm), average daily maximum temperature in the winter (in ◦C), average daily maximum

temperature in the summer (in ◦C), and average precipitation in the summer (in cm). These

variables were recorded at the county level and some of the variables were transformed to

either a log or square-root scale. Two interactions, one between the saw volume and the

average daily maximum winter temperature and the other between the saw volume and the

average daily maximum summer temperature, were created as in Gumpertz et al. (2000).

Along with the spatial component and the temporal component, there are a total of 15

variables in the autologistic model (Table 1).
The MPLE θ̂ was obtained by maximizing the product of the full conditional distribu-
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Table 1. Maximum Pseudo-Likelihood Estimates of the Coefficients for the Final Model Selected by
Backward Elimination

Variable Estimate Bootstrap bias Bootstrap SD

X0 Intercept −28.492 −.408 8.093
X1 Ln[elevation (m)] — — —
X2 Longitude — — —

X3

√
saw volume (m3/ha) 1.318 .001 .772

X4

√
hydric proportion −.068 −.005 .056

X5

√
xeric proportion .040 .003 .033

X6

√
national forest (thousand ha) — — —

X7 Mean daily maximum fall temp (C) −.249 −.003 .153
X8 Mean fall precipitation (cm) .666 .030 .250
X9 Mean daily maximum winter temp (C) — — —
X10 Mean daily maximum summer temp (C) .515 .006 .193
X11 Mean summer precipitation (cm) — — —
X12 = X3 × X9 — — —
X13 = X3 × X10 −.015 .000 .009
Spatial effect .807 .012 .088
Temporal effect .810 −.013 .121

tions:

f
(
Yi,t|Yj,t : (j, t) ∈ Ni,t

)
=

exp
{∑13

k=0 θkXk,i,tYi,t + θ14
∑

j∼i
Yi,t(2Yj,t − 1) + θ15Yi,t(2Yi,t−1 + 2Yi,t+1 − 2)

}
1 + exp

{∑13
k=0 θkXk,i,t + θ14

∑
j∼i

(2Yj,t − 1) + θ15(2Yi,t−1 + 2Yi,t+1 − 2)
} ,

(3.1)

for i = 1, . . . , 100 and t = 1961, . . . , 1990. Evaluated at the MPLE θ̂, a Gibbs sampler was
implemented according to (3.1) and after burn-in, a bootstrap sample of size M = 5,000
was generated. From these 5,000 samples, the standard deviations of the MPLE θ̂ were
estimated. The MPLEs and their corresponding standard deviations are reported in Table 2.

Because not all the parameter estimates {θ̂k : k = 0, . . . , 15} were significantly
different from zero, we set out to determine a suitable reduced model. We started with the
full model (3.1) and performed backward elimination based on a t-ratio of an estimate θ̂k

and its standard deviation. At each step, we eliminated the variable that had the least t-ratio
and then fit the reduced model to the data using maximum pseudo-likelihood, as we did
with the full model. We used a unit t-ratio as our cut-off, which has been reported effective
for model selection in linear regression (see, e.g., Chatterjee, Hadi, and Price 2000, sec.
11.9). The elimination procedure was stopped when all the coefficients had t-ratios above
1. The steps in the backward elimination are shown in Table 2. In particular, the variables
were eliminated in the following order: the mean summer precipitation (X11), the size of
national forest (X6), the elevation (X1), the mean daily maximum winter temperature (X9),
interaction between the saw volume and the mean daily maximum winter temperature (X12),
and finally the longitude (X2). The final reduced model has seven explanatory variables,
namely the saw volume (X3), the hydric proportion (X4), the xeric proportion (X5), the
mean daily maximum fall temperature (X7), the mean fall precipitation (X8), the mean daily
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Table 2. Individual Steps in a Backward Elimination. Reported are the maximum pseudo-likelihood
estimates of the coefficients and the standard deviations (in parentheses) estimated by a
bootstrap method.

Variable Full model Step 1 Step 2 Step 3

X0 −20.728 (16.904) −21.515 (15.636) −21.837 (15.102) −23.848 (14.255)
X1 .049 (.202) .052 (.194) .047 (.189) — —
X2 .162 (.175) .159 (.178) .145 (.149) .116 (.116)
X3 1.739 (1.588) 1.829 (1.255) 1.776 (1.158) 1.725 (1.025)
X4 −.113 (.069) −.115 (.069) −.115 (.067) −.114 (.068)
X5 .080 (.044) .079 (.049) .080 (.048) .079 (.049)
X6 .015 (.055) .012 (.052) — — — —
X7 −.373 (.480) −.358 (.459) −.322 (.403) −.346 (.384)
X8 .720 (.355) .708 (.324) .703 (.298) .704 (.292)
X9 −.085 (.302) −.102 (.263) −.110 (.251) −.113 (.246)
X10 .726 (.425) .729 (.413) .695 (.361) .717 (.354)
X11 −.037 (.263) — — — — — —
X12 .017 (.021) .017 (.020) .017 (.019) .017 (.018)
X13 −.031 (.025) −.032 (.022) −.031 (.022) −.030 (.020)
X14 .812 (.104) .812 (.101) .812 (.100) .811 (.096)
X15 .811 (.143) .810 (.135) .811 (.128) .810 (.122)

Variable Step 4 Step 5 Step 6

X0 −22.862 (12.805) −22.669 (12.712) −28.492 (8.093)
X1 — — — — — —
X2 .114 (.118) .076 (.098) — —
X3 1.657 (.944) 1.308 (.932) 1.318 (.772)
X4 −.110 (.066) −.093 (.063) −.068 (.056)
X5 .073 (.048) .063 (.040) .040 (.033)
X6 — — — — — —
X7 −.459 (.310) −.273 (.157) −.249 (.153)
X8 .701 (.270) .696 (.244) .666 (.250)
X9 — — — — — —
X10 .729 (.350) .536 (.207) .515 (.193)
X11 — — — — — —
X12 .011 (.014) — — — —
X13 −.026 (.018) −.015 (.011) −.015 (.009)
X14 .811 (.090) .809 (.095) .807 (.088)
X15 .813 (.117) .812 (.130) .810 (.121)

maximum summer temperature (X10), and interaction between the saw volume and the mean
daily maximum summer temperature (X13). Interestingly both the spatial component and
the temporal component were retained. In fact, both components were the most significant
variables throughout the model-selection steps. The log-odds of outbreak in the fitted final
model is:

log

(
Pr(Yi,t = 1|Yj,t : (j, t) ∈ Ni,t)
Pr(Yi,t = 0|Yj,t : (j, t) ∈ Ni,t)

)
= −28.492 + 1.318 ×

√
saw volume − .068 ×

√
hydric proportion

+.040 ×
√

xeric proportion − .249 × fall temp + .666 × fall precip

+.515 × summer temp − .015 ×
√

saw volume ∗ summer temp

+.807 ×
∑
j∼i

(2Yj,t − 1) + .810 × (2Yi,t−1 + 2Yi,t+1 − 2). (3.2)
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Figure 3. Histograms of the predicted total number of counties that experienced an outbreak of southern pine
beetle in the state of North Carolina from 1991 to 1996.

The MPLEs and their corresponding standard deviations for the final model are reported in
Table 1. As a byproduct, the empirical bias of the MPLEs based on the bootstrap samples
was computed and was found to be negligible.

Given the fitted parameter values of the final model, we then used a Gibbs sampler
to obtain the prediction of outbreaks from 1991 to 1996. In particular, we considered the
joint predictive distribution of Y1991, . . . ,Y2000, conditioned on Y1990 and Y2001 as in
(2.5). That is, with T = 1990, T ∗ = 1996, we chose T ∗∗ = 5 to reduce the effect of the
boundary time point on the prediction. The Gibbs sampler was based on the full conditional
distributions f(Yi,t|{Y1990, . . . ,Y2001}\Yi,t) as described in (3.2), for t = 1991, . . . , 2000.
Upon convergence of the Gibbs sampler, M = 10,000 sets of {Yi,t : i = 1, . . . , n, t =
1991, . . . , 1996} were used as the predicted binary responses. Here we generated Yi,2001

for the ith county at the end time point as an independent trial with an outbreak probability
of (

∑1990
t=1960 Yi,t)/31 (i.e., the average outbreak rate of this county in 1960–1990), where

i = 1, . . . , 100. Using a small simulation study, we assessed the effect of YT ∗+T ∗∗ =
Y2001 and found that in this case the values of Y2001 had little effect on the prediction of
Y1991, . . . ,Y1996. Further, the explanatory variables in 1991–1996 were used for prediction,
but not the actual observed outbreaks, as the terms Y1991, . . . ,Y1996 that appear in the full
conditional distributions are simulated values in the Gibbs sampler iterations.

Figure 3 shows the histograms of the M = 10,000 predicted total number of outbreaks
in North Carolina for each year in 1991–1996. Figure 4 shows the average predicted total
number of outbreaks in 1991–1996 for each county in North Carolina. Using the actual
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Figure 4. Mean predicted total number of years a county experienced an outbreak of southern pine beetle in
1991–1996, for each of the 100 counties of North Carolina.

data from 1991–1996, we computed a prediction error rate as the proportion of counties
for which an outbreak was predicted differently from the actual observation, for each set
of {Yi,t : i = 1, . . . , n}, where t = 1991, . . . , 1996. We used two ways to compute the
predicted value in the prediction error rate based on the M = 10,000 Gibbs samples: one is
the mode of the predictive distribution and the other is the mean of the predictive distribution
rounded to an integer value, for each i = 1, . . . , n. When the mode of the Gibbs sample was
used, the prediction error rates were .05, .15, .19, .06, .17, and .24 for 1991–1996; whereas
when the mean of the Gibbs sample was used, the prediction error rates were .08, .17, .22,
.09, .20, and .27. Our model gave reasonably good predictions. This, and the fact that the
spatial and temporal components played an important role in the final reduced model gave
justification for the need of the spatial-temporal autologistic regression model developed in
this article.

4. DISCUSSION

In this article, we have developed an autologistic regression model for binary data which
allows for a logistic regression while accounting for both spatial dependence and temporal
dependence. We have used maximum pseudo-likelihood for parameter estimation and a
parametric bootstrap for the corresponding standard deviations. Further we have proposed
a Gibbs sampler to predict the responses at future time points. The methodology has been
applied to successfully characterize and predict the outbreaks of southern pine beetle in
North Carolina, based on 31 years of data. It is worth mentioning that the explanatory
variables in our dataset are time-invariant, including the weather information. We believe
that the fit of the model and the prediction of outbreaks could be improved further, should
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those time-variant explanatory variables become available.
Note that the spatial model (1.1) can be reparameterized to:

f(Y) ∝ exp




n∑
i=1

p∑
k=0

θ∗
kXk,iYi +

1
2

n∑
i=1

∑
j∼i

θ∗
ijYiYj


 .

When X0,i ≡ 1 for all i and thus θ∗
0 corresponds to an intercept, there is a 1:1 correspondence

between the parameters {θk, θij} and {θ∗
k, θ∗

ij}. Similar reparameterization can be applied
to the spatial-temporal model (2.1).

Our approach can be extended to Gibbs fields to form more general spatial-temporal
automodels with pairwise spatial-temporal dependence. More specifically, the joint dis-
tribution of {Yt : t ∈ Z} can be specified via a family of conditional distributions in a
Gibbsian form. Examples of Gibbs fields include autobinomial, negative-binomial, Pois-
son, and Gaussian models. With proper parameterization, statistical inference can be carried
out in a similar manner as in Section 2. It may also be of interest to extend the model to
have time-varying coefficients and space-time interaction terms, which we leave for future
investigation.
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