Time Series Forecasting using Boosting Technique with Correlation Coefficient

Luzia Vidal de Souza¹, Aurora T. R. Pozo², Anselmo Chaves Neto³, Joel M. Corrêa da Rosa³

¹Associate Professor of Design Department ²Associate Professor of Computer Science Department

³Associate Professor of Statistical Department Federal University of Parana, PO 19981 Curitiba, Brazil

{luzia,aurora,joel,anselmo}@ufpr.br

Abstract

Time series forecasting has been widely used to support decisions, in this context a highly accurate prediction is essential to ensure the quality of the decisions. Ensembles of machines currently receive a lot of attention; they combine predictions from different forecasting methods as a procedure to improve the accuracy. This paper explores Genetic Programming (GP) and Boosting technique to obtain an ensemble of regressors and proposes a new formula for the final hypothesis. This new formula is based on the correlation coefficient instead of the geometric median used traditionally by the boosting algorithm. To validate this method, experiments were accomplished using real, financial and artificial series generated by Monte Carlo Simulation. The mean squared error (MSE) has been used to compare the accuracy of the proposed method against another ones, the "t" test and ANOVA test were used too. The results obtained by using this new methodology was compared with the results obtained from GP, GPBoost and the traditional statistical methodology (ARMA). The results show advantages in the use of the proposed approach.

1. Introduction

An essential element for many management decisions is an accurate forecasting. There are several methods and techniques to forecast time series that include traditional forecasting techniques with theoretical foundations in statistics. These methods present some obstacles and complexities to overcome one of the most important ones is the difficulty to select the model that can provide the best adjustment for a specific dataset usually many attempts have to be done until the best model can be obtained. Considering this scenario, different machine learning techniques have been recently used in this problem, such as Artificial Neural Network (ANN), Evolutionary Computation (EC), in particular, Genetic Programming (GP), which that is considered a promising approach to forecast noisy complex series [1]. This paper extends previous works found in the literature and presents results of experiments that explore GP associated with Boosting algorithm. The Boosting algorithm was proposed and developed by Freund and Schapire [2]. According to Allwein, Schapire and Singer [3], boosting is a method of finding a highly accurate hypothesis by combining many "weak" hypotheses, each of which is only moderately accurate. Paris et al. [4] proposed to use the Boosting algorithm with the GP as a weak learning. This paper presents this algorithm, called Boosting using Correlation Coefficient (BCC) and describes results of different experiments. To evaluate the BCC algorithm, we conducted three groups of experiments. In the first group, we explore the BCC for some real time series forecasting, using Genetic Programming (GP) as base learner, the mean squared error (MSE) has been used to compare the accuracy of the proposed method against the results obtained by GP, GPBoost and the traditional statistical methodology (ARMA). One reason to explore GP is because it has been recently explored to forecast noisy complex series [1] with promising results. The second group of time series explored in this work is the financial series, beside the forecast a trend analysis is done and finally the third group of time series used is a widespread Monte Carlo simulation covering the entire ARMA spectrum.

2. Genetic Programming

Genetic Programming is an Evolutionary Computation technique in which the individuals are computational programs. This theory was developed by John Koza [5], based on the idea of Genetic Algorithms presented by John Holland [6]. Nowadays, GP is acknowledged as an effective research paradigm in Artificial Intelligence and Machine Learning [1, 6, 7], and has been found in the most diverse areas of knowledge, such as: digital circuits, data mining, molecular biology, optimization tasks and many others. In nature, those individuals that better adapt to the environment that surrounds them have a greater chance to survive. They pass their genetic characteristics to their descendents, who will suffer modifications to better adapt to the environment. After many generations, this population reaches a natural evolution. In Genetic Programming (GP), the evolutionary algorithm operates over a population of programs that have different forms and sizes. The initial population must have enough diversity, that is, the individuals must have most of the characteristics that are necessary to solve the problem, because characteristics that do not exist in the initial population will probably not appear during the evolutionary process. The evolutionary process is guided by a fitness function that measures the individual's ability to solve the problem. Those individuals that better solve the problem will receive a better fitness value and consequently, will have a better chance to be selected for the next generation. The choice of this function depends on the domain of the problem. A good choice is essential to provide good results. Once the individuals are selected, it is time to apply the genetic operators. These are: Reproduction an individual is replicated to the next generation, with no modification in its structure; Crossover - two programs are recombined to generate two offsprings and Mutation - a new sub-tree replaces a randomly selected part of a program [5]. This process is repeated until a satisfactory solution or a stop criterion is reached. The GP Algorithm's pseudo-code is given bellow:

- 1. Randomly create an initial population
- 2. Repeat until a good solution or a stop criterion is reached.
 - 2.1Evaluate of each program by means of the fitness function
 - 2.2 Select a subgroup of individuals onto apply the genetic operators
 - 2.3 Apply the genetic operators
 - 2.4 Replace the current population by this new population
- 3. End

3. Boosting

Boosting is a way of combining many weak classifiers to produce a powerful "committee". Boosting works by sequentially applying a classification algorithm to reweighed versions of training data, and taking a weighted majority vote of the ensemble of classifiers thus produced. Each time, the weights are computed according to the error (or loss) on each example in the learning algorithm. Initially, all the weights are equals, but on each round, those weights of the misclassified examples are increased so that the weak learner is forced to focus hard on these examples in the training set. In this way, the learning algorithm is manipulated to look closer at examples with bad predictions. For many classification algorithms, this simple strategy results in dramatic improvements in their performance. Paris [4] used the GPBoost that was based in Iba's propose [9] and realized some experiments where it was clear that the use of this two algorithms together produced good results. The GPBoost algorithm is showed in Figure 1. First of all, the weight distribution $D_{\rm t}$ is initialized in Step 1 and the boosting iterations start (Step 2) by calling each time the GP algorithm. After the GP's complete execution, the best individual f_t in the run is chosen and the weight distribution of D_t is computed according to the loss function for each example. To calculate the loss function different forms can be used, such as the exponential showed in Equation 2. This loss function is also used to calculate the confidence of f_t . Equation 3. In each iteration of the boosting algorithm, the GP is executed with a fitness function that considers the weights of each example. The fitness function has been defined as the absolute errors weighed sum (See Equation 1). However, the fitness function can be defined according to the current problem. When the Boosting algorithm is finished, Step 3, the output must be computed as a combination of the different generated hypotheses. This can be done in different forms. To calculate the final hypothesis F, T functions f_t will be combined. The expression for the output used by Paris [4] is the geometric median weighed by confidence coefficient. These values are sorted and the geometric median (See Equation 4) is taken to be F(x), the final expression.

Given: $S = \{(x_1, y_1), ..., (x_m, y_m)\}; x_i \in X, y_i \in Y$ Step 1: Initialize $D_1(i) := \frac{1}{m} \forall (x_i, y_i) \in S$ Step 2: For t = 1, ..., T do:

Run the GP over D_t with the fitness function:

$$fit = \sum_{i=1}^{m} \left(\left| f(x_i) - y_i \right| * D_t(i) \right) * m$$
 (1)

where f is a function in a GP population, f_t is the best-of-run

Compute the loss for each example

$$L_{i} = 1 - \exp\left(-\frac{|f_{t}(x_{i}) - y(x_{i})|}{\max_{i=1...m}|f_{t}(x_{i}) - y(x_{i})|}\right) (2)$$

Compute the average loss: $\overline{L} = \sum_{i=1}^{m} L_i D_i$

Let:
$$\beta_t = \frac{\overline{L}}{1 - \overline{L}}$$
 (3)

be the confidence given to f_t . Update the distribution:

$$D_{t+1}(i) := \frac{D_t(i)^{1-L_i}}{Z_t}$$

 Z_t a normalization factor

End for:

Step 3: Output F the geometric median of functions f_t

$$F(x) = \min\left\{y \in R : \sum_{t:f_t(x) \le y} \log\left(\frac{1}{\beta_t}\right) \ge \frac{1}{2} \sum_{t=1}^m \log\left(\frac{1}{\beta_t}\right)\right\} \quad (4)$$

Figure 1. Algorithm GPBoost

4. Boosting using Correlation Coefficients (BCC)

After having been carried through the study of the Boosting algorithms, it is possible to remark that these algorithms have been sufficiently explored in classification problems. The traditional form of obtaining the Output Function of a Boosting algorithm is to use some kind of weighed combination of the outputs of the different boosting iterations. The weighed combinations are always based on the loss function (or the confidence) of the different functions f_t , such as standard median, geometric median, arithmetic median and arithmetic RMS-based median. Paris [4] reported no significant differences between the different forms of outputs. However, the loss function is one of the possible information that can be used to obtain these weights. The proposal method uses the coefficient of correlation for the updating of the weights, it has been observed that it influences directly in the minimization of the loss function. The same coefficient can also been used in the final combination of the predictors. The correlation coefficient is a metric function that measures the relation degree between two variables. The method BCC is based on this metric and the algorithm is showed at the Figure 2.

Input:

Sequence of m examples $(x_1, y_1), ..., (x_m, y_m)$ where label y is a real number Base learning algorithm: BaseLearner, Number of Hypotheses: *T*

STEP 1: Initialize

Hypotheses number or iteration t = 1Distribution Dt(i) = 1, ..., m for all i Average loss function Lt' = 0

STEP 2:

while $t \le T$ do

Call Base Learner, providing it with the distribution

D_t .

Build the regression model: $f_t(x) \rightarrow y$

Calculate the loss function $L_t(i)$ for each training example as:

$$L_{i} = 1 - exp\left(-\frac{|f_{i}(x_{i}) - y(x_{i})|}{max_{i=1...m}|f_{i}(x_{i}) - y(x_{i})|}\right)$$

Calculate the correlation coefficients as:

$$\rho_t(f_t(x_i), y(x_i)) = \frac{\sum_{i=1}^m (f_t(x_i) - f_t(\bar{x}))(y_i)}{\sqrt{\sum_{i=1}^m (f_t(x_i) - f_t(\bar{x}))^2 \sum_{i=1}^m (f_t(x_i) - f_t(x_i))^2 \sum_{i=1}^m (f_t(x_i) - f_t(x_i) - f_t(x_i))^2 \sum_{i=1}^m (f_t(x_i) - f_t(x_i))^2 \sum_{i=1}^m$$

Update distribution D_t as:

$$D_{t+1}(i) = \rho(f_t(x), y) * \frac{D_t(i)^{1-L_t}}{Z_t}$$

Where Z_t is normalization factor Set t = t + 1End While

STEP 3:

Output the final hypothesis:

$$F(x) = \frac{\sum_{t=1}^{r} \rho_t (f_t(x), y) * f_t(x)}{\sum_{t=1}^{T} \rho_t (f_t(x), y)}$$

Figure 2. Algorithm BCC

5. Time Series Forecasting

In this Section, we compare the GPs performance with GP using traditional Boosting and the new Boosting algorithm (BCC) using as base learner a GP algorithm. These results are also compared with the Box Jenkins [10] traditional statistical methodology. We also present the main steps followed to configure the GP algorithm, GPBoost, BCC and Box Jenkins methodology. Three experiments have been carried out: one exploring academic series, another one is about financial time series where a trade analysis is done and the last one is a widespread Monte Carlo simulation covering the entire ARMA spectrum.

5.1. Forecasting using Box & Jenkins Methodology

In order to allow a comparison with traditional methods, we used the ARMA(p, q) (Autoregressive and

$$RMSE = \sqrt{\frac{\sum_{i=1}^{m} (Z_i - \hat{Z}_i)^2}{m}} * D_i(i) * m$$
(6)

where Z_i is the observation value at time i, \hat{Z}_i is the algorithm forecast at time i and n is the sample's size (test size)

moving average) models, where p and q are the autoregressive and moving average order parameters. The best model for each data set was selected using the AIC criterion, with p and q varying between 0 and 4. These models were adjusted using the free statistical software R [14], and the predictions values were made for each test set. The ARMA model can be represented by Equation 5,

 $Z_t = \mathcal{S} + \phi_{Z_{t-1}} + \dots + \phi_p Z_{t-p} - \Theta_{a_{t-1}}$

where δ is a constant term, ϕ are the

(5)

autoregressive parameters, Q_i are the moving average parameters, a_t is white noise and Z_t is the value for the series at time t.

5.2. Configuration of the GP, GPBoost and BCC

To apply these algorithms, we chose the tool Lil-GP 1.0 [11] which is a free and easily configurable software, implemented according to Koza's GP [5]. For each problem to be solved by the tool, it is necessary to provide configuration files, standard GP parameters, functions and variables to be used for discovering the models, input and output files (training set) and to specify the fitness function evaluation. The parameters used to configure the GP tool are presented in Table 1. The fitness function was defined as the weighed root mean square error (RMSE) (See Equation 6). The RMSE is very used to measure the accuracy of forecasting methods. In this experiment individuals with RMSE equal to 0 or near 0 are the best. The terminal set used is composed by Z_{t-1} , Z_{t-2} , Z_{t-3} , Z_{t-4} , that is, to estimate Z at time t, we considered the last four observations. Besides these terminals a random constant θ is also used.

Table 1. LILGP Parameters

The Boosting algorithm with the different output hypotheses was implemented using the C computer language. The experiment uses ten Boosting iterations. Furthermore, for each dataset, ten models of each algorithm were obtained using a different random initial seed for each training set. After that, each generated model is used to forecast the values in the test set.

5.3. Academic and Benchmark Time Series

The data sets used in this section are from Morettin [12], found at (http://www.ime.usp.br/pam/ST.html) and three financial time series found in (http://www.economatica.com). Each data set was divided into two other data sets: the training and testing

ones. The training set contains 90% of the data series and the remaining 10% is used as test set, Table describes the data sets. Furthermore, for each dataset, ten models of each algorithm (GP, GPBoost, BCC) were obtained using a different random initial seed for each training set. After that, each generated model is used to forecast the values in the test set.

Table 2. Real Time Series

Series	Number of Examples
Atmosphere	365
Beverages	187
Consumption	154
Fortaleza	149
ICV	126
IPI	187
Lavras	384
Sunspots	176
Djiad	1100
Ibovespa	1100
Nasdaq	1100

5.4. Results

To evaluate the performance of the different methods, we used of the mean square error (MSE) average, defined in Equation 9 obtained by using the 10 initial seeds over the test set. For ARMA process, we have only one prediction and then the value of m is one. These results are summarized in Table 3.

$$MSE = \frac{1}{m} \left(\frac{1}{n} \sum_{i=1}^{n} (Z_i - \hat{Z}_i)^2 \right)$$
(7)

Where m is the anameter of seeds and n is	the Value
Populationbsizef examples in the test set.	4000
Population initialization method	full
Number of generations	250
Selection method	best
Initial depth	2-10
Maximum depth limit	10
Maximum number of nodes	50
Crossover rate	0.7
Reproduction rate	0.2
Mutation rate	0.1

Table 3. MSE Average values (test sets)

Series	GP	GP-Boost	ARMA	BCC
Atmosp.	38,08	36,72	38,98	7,59
Bever.	245,65	231,76	308,25	62,59
Consum	236,15	140,52	137,76	60,86
Fortal	423083,18	400212,40	445690,37	209855,37
ICV	554,11	573,53	661026,97	42614,53
IPI	130,99	124,45	624,96	17,05
Lavras	13788,93	8249,27	5335,99	4623,50
Suns.	320,85	318,76	902,70	329,10
Djiad	0,00	0,00	0,05	0,00
Iboves.	0,00	0,00	0,26	0,00
Nasdaq	0,00	0,00	0,06	0,00

Besides comparing the MSE in the test set for all methods used in this experiment, we also applied a paired two-sided "t" test to estimate the performance of BCC against the other methods. The results of these tests are shown in Table 4. The null hypothesis is that the mean difference between the MSE of the algorithms is zero, against the alternative hypothesis that this value is not zero. The performance of the algorithms was evaluated for each pair of algorithms where one of the algorithms is BCC. In column two we presented the comparative results of the traditional GP and BCC. We observe that only in two series our approach is not better than GP. In other series, the BCC algorithm is better than the traditional GP at 95% confidence level. At column three we have the comparative results of the GP-Boost and BCC. We notice that only in 2 series our approach is not better than the GPBoost. In other series, the BCC algorithm surpassed at 95% confidence level. Finally, at column four, we show the comparative results between BCC and the ARMA algorithms. We observe that in all the series our approach is better than the ARMA process at 95% confidence level, in exception of Djiad series in which the p-value was greater then 0.01. In conclusion, the results of the "t" test between BCC and the other methods is almost always less than 0.01, what means, that there is a significant difference between BCC and traditional GP, GPBoost and ARMA methods for these series.

Table 4. "t" test – (p- value)

	PG	GPBoost	ARMA
Series	Х	X	Х
	BCC	BCC	BCC
Atmosp.	3,79E-13	1,01E-16	4,16E-18
Bever.	4,75E-10	3,04E-11	4,89E-16
Consum.	0,0091478	1,64E-12	2,59E-15
Fortal.	9,96E-06	7,39E-10	1,12E-12
ICV	0,0122663	0,0121443	8,22E-13
IPI	4,39E-13	3,35E-16	2,61E-26
Lavras	2,92E-07	2,14E-07	0,0113762
Suns.	0,6192578	0,3588191	2,55E-10
Djiad	0,0650122	0,005344	0,0854209

Iboves.	1,82E-09	1,77E-09	3,35E-11
Nasdaq	0,001648	2,16E-05	0,001648

The three last series are financial series, beside the forecast using the proposed methodology, it was made a trading analysis too. The series has 1100 values which one 10% was used for test set. The values used were the return values in according with the Equation 8, because they are free of scale and are non stationary.

$$R_t + 1 = \frac{P_t}{P_{t-1}}$$
(7)

Where P_t is the price of the active at instant t and P_{t-1} is the price of the active at the previous instant. From forecasts, we adopt a trading strategy based on forecasts signs. If it is positive, a buying position is taken, otherwise the trader stays away from the market. We keep the taken position if the return still going in the same direction. Transactions costs are not taken into account. In the Table 5 are presented the comparative values profits obtained by using the strategy based on the forecast sign using the ARMA models, PG, *GPBoost* and BCC. The forecast horizon was 110 days (n-step ahead). In Table 6 are the annualized returns, or either, if the same strategy would be used trough the one year.

Table 5. Financial return in 110 days

Método	BCC	ARMA	PG	GPBoost	
Djiad	2,0%	0,5%	-1,0%	-3,5%	
Ibovd	16,9%	-1,7%	-8,7%	-6,9%	
Nasdaq	7,3%	-5,9%	-8,8%	-3,7%	

Table 6. Financial annualized returns

Método	BCC	BCC ARMA		GPBoost	
Djiad	4,6%	1,0%	-2,3%	-8,0%	
Ibovd	76,6%	-3,9%	-19,9%	-15,7%	
Nasdaq	16,7%	-13,5%	-20,2%	-8,5%	

We observe that in all the cases the BCC methodology was better then the another analyzed methods, because using this BCC the returns are positive bringing positive returns to the investor.

5.5. Monte Carlo Simulation

In order to exhaustively evaluate this new method, a Monte Carlo Simulation have been accomplished, in which we simulated artificial time series that belong to the entire spectrum of the structures AR(1), MA(1), AR(2), MA(2) and ARMA(1,1). To create this series we

have used the free statistical software R, that can be founded at (http://www.r-project.org/). The parameters have been varied in its respective parametric spaces and a noise component has been added. The noise has normal distribution with mean zero and standard deviation one. The dataset included 214.000 series distributed for each structure as showed in the Table 7.

Table 7. Monte Carlo Simulation

		1
Structures	parameters	series
AR(1)	19	9.500
AR(2)	90	45.000
MA(1)	19	9.500
MA(2)	200	100.000
ARMA(1,1)	100	50.000

The same methods used to the academic series were applied to these series.

5.6. Evaluation Metrics

In our approach we have considered the MSE as a comparison measure because it is an accepted metric used by the statistical community. However, it is not always an easy task to know when an algorithm presents better results from another only based on this metric. In order to analyze the relative performance of the algorithms more precisely, one statistics technique, ANOVA [13], is used to test if there is significant difference between the algorithms. Once the ANOVA test shows that there is a significant difference between two methods then Tukey-Kramer test [13] is applied to verify which the algorithms is significant better than the others.

5.7. Results

Table 8 presents the MSE in the foreseen values for all the algorithms, Table 9, shows the ANOVA test for AR(1) and AR(2) structures, Table 10 shows the results of the ANOVA test for MA(1) and MA(2) structures and finally the Table 11 shows the results of the ANOVA test for ARMA(1,1). In the Tables the symbol X is used to denote no statistical difference between the methods. For the structures AR(1) and ARMA(1,1) in 74% of the cases the method BCC is significant better than the other at 99% confidence level; on the other hand, for the structures AR(2) in 94% of the cases the method BCC is significant better than the other at 99% confidence level; following for the MA(1) structures in 87% of the cases the method BCC is significant better than the other at 99% confidence level; finally, for the structures MA(2) in 54% of the cases the method BCC is significant better than the other at 99% confidence level. Concluding, in almost all the cases the method

BCC is the best, when the method is not the best, there no statistical difference between the methods.

 Table 8. MSE in Foreseen values

Forecas.	MSE	AR(1)	AR(2)	MA(1)	MA(2)	ARMA (1,1)
	ARMA	2,3702	4.3479	2.3150	3,0335	1,7917
	GP		1,3176		2,2456	1,8133
e136	GPBoost	1,0118	1,1906	1,1318	2,0985	1,1327
	BCC	0,9282	1,0997	1,0781	1,9234	1,1087
	ARMA	2,3527	4,1828	1,8223	2,7355	2,0809
127	GP	1,9907	1,5090	1,6281	2,1690	1,2657
e137	GPBoost	1,1842	1,3537	1,1394	2,0773	1,1427
	BCC	1,0924	1,2563	1,0260	1,8843	1,0553
	ARMA	2,0450	4,0820	1,8098	2,6617	2,2494
120	GP	1,0470	1,3674	1,1456	3,2616	1,3300
e138	GPBoost	1,0311	1,1733			1,1277
	BCC	0,9583	1,4734	0,9838	1,9117	1,0897
	ARMA	2,1817	4,1294	1,9132	2,6473	2,3892
120	GP	1,3314	1,4605	1,2253	3,0242	1,6402
e139	GPBoost	1,2955	1,2963	1,1898	2,0711	1,1417
	BCC	1,2194	1,5489	1,0972	1,9318	1,0871
	ARMA	2,0486	4,2354	1,7691	2,6666	2,4768
140	GP	1,5099	1,6394	1,2392	2,1816	1,3522
e140	GPBoost	1,3779	1,4485	1,1130	2,0828	1,1416
	BCC	1,2547	1,4844	1,0077		1,0806
	ARMA	1,9550	4,5942	1,8326	2,6444	2,5734
1.4.1	GP	1,4487	1,5345	1,1601	2,3654	1,2922
e141	GPBoost	1,2907	1,3558	1,1285	2,0613	1,1399
	BCC	1,4669	1,3466	1,0123	1,9397	1,1006
	ARMA	1,6495	4,5034	1,8526	2.6580	2,6567
e142	GP	2,2842	1,6545	1,2233	2,3011	1,6019
6142	GPBoost	1,1341	1,1711	1,1996	2,0800	1,1467
	BCC	1,0966	1,2458	1,0695	1,9264	1,2413
	ARMA	1,4880	4,7462	1,8323	2,6514	2,6738
e143	GP	2,0030	1,7681	1,2425	3,1361	1,2913
e145	GPBoost	0,9834	1,3549	1,1424	2,0581	1,1375
	BCC	0,9053	1,4738	1,0188	4,4017	1,0651
	ARMA	1,2274	3,6964	1,7596	2,6497	2,7013
e144	GP	0,8461	5,0540	1,3345	2,7877	1,3619
6144	GPBoost	0,8106	1,2776	1,1668		1,1386
	BCC	0,7475	1,5608	1,0914	2,6743 2,6596	1,0664
	ARMA	1,4540	3,6346	1,8127	2,6596	2,7278
e145	GP	1,1212	1,4859	1,4670	3,0190	1,3692
e145	GPBoost	1,1029	1,2636	1,1852	2,0717	1,1365
	BCC	1,3978	1,2616	1,0703	2,4415	1,4385
	ARMA	1,6769	3,3792	1,8306	2,6673	2,7513
-146	GP	1,4171	2,4862	1,1538	2,5006	10,2940
e146	GPBoost	1,3755	1,2689	1,1349	2,0858	1,1417
	BCC	1,2677	1,2078	1,0377	2,4169	1,1677

	ARMA	1,2946	3,4343	1,8601	2,6690	2,7759
e147	GP	1,0576	1,5164	1,2334	2,7557	1,8779
614/	GPBoost	1,0276	1,3071	1,1368	2,0776	1,1450
	BCC	0,9326	1,2561	1,0224	2,5989	1,1471
	ARMA	1,3387	3,3868	1,7664	2,6551	2,7658
e148	GP	1,1235	2,2805	1,2059	2,7182	6,5438
6148	GPBoost	1,0967	1,2308	1,0886	2,0734	1,2860
	BCC	1,0049	1,1477	1,0428	2,1184	1,2057
	ARMA	1,2239	3,5028	1,7232	2,6740	2,8048
e149	GP	1,0304	1,5118	1,1609	2,7705	1,3648
6149	GPBoost	1,0237	1,2823	1,1196	2,1262	1,1386
	BCC	0,9286	1,8203	1,0069	1,9977	1,0578
	ARMA	1,7268	3,4916	1,7436	2,6571	2,8316
e150	GP	1,7379	1,6753	1,1366	2,5503	3,4325
	GPBoost	1,5064	1,4174	1,0936	2,0637	1,1398
	BCC	1,5922	1,4630	0,9879	2,0916	1,0977

Table 9. p-values ANOVA for AR(1) and AR(2)

	AR(1)			AR(2)	
Forec.	p-value	Best	Forec.	p-value	Best
e136	0,0758955	BCC	e136	2,52E-12	BCC
e137	1,46E-07	Х	e137	2,67E-11	BCC
e138	6,71E-10	BCC	e138	4,89E-11	BCC
e139	1,57E-08	Х	e139	2,90E-09	BCC
e140	3,63E-13	Х	e140	1,89E-08	BCC
e141	1,14E-14	Х	e141	1,34E-09	BCC
e142	2,60E-06	Х	e142	1,08E-06	BCC
e143	6,88E-15	Х	e143	3,50E-05	BCC
e144	1,38E-14	Х	e144	0,064436	Х
e145	2,81E-08	Х	e145	9,88E-15	BCC
e146	0,1778037	Х	e146	1,62E-06	BCC
e147	1,25E-06	Х	e147	1,04E-13	BCC
e148	0,3044825	Х	e148	2,93E-05	BCC
e149	4,36E-14	Х	e149	7,70E-06	BCC
e150	0,0209229	Х	e150	7,08E-12	BCC

Table 10. p-values ANOVA MA(1) and MA(2)

	MA(1)			MA(2)	
Forec.	p-value	best	Force.	p-value	best
e137	0,098902	Х	e137	6,04E-11	BCC
e138	0,0004836	Х	e138	0,004464	BCC
e139	0,0002593	BCC	e139	0,070179	Х
e140	0,0008891	BCC	e140	9,51E-09	BCC
e141	0,0008415	BCC	e141	2,55E-06	BCC
e142	0,0014546	BCC	e142	1,05E-06	BCC
e143	9,27E-05	BCC	e143	0,533148	Х
e144	0,0090384	BCC	e144	0,669801	х
e145	0,0075967	BCC	e145	0,341698	Х
e146	0,0004726	BCC	e146	0,287049	X X X
e147	0,0010775	BCC	e147	0,465983	Х
e148	0,0012959	BCC	e148	0,022435	х
e149	0,0009356	BCC	e149	0,000156	BCC
e150	0,0016053	BCC	e150	0,037747	X

Table 11. p-values ANOVA ARMA(1,1)

ARMA(1,1)			
Forec.	p-value	best	
e136	0,0758955	Х	
e137	1,46E-07	BCC	

e138	6,71E-10	BCC
e139	1,57E-08	BCC
e140	3,63E-13	BCC
e141	1,14E-14	BCC
e142	2,60E-06	BCC
e143	6,88E-15	BCC
e144	1,38E-14	BCC
e145	2,81E-08	BCC
e146	0,1778037	Х
e147	1,25E-06	BCC
e148	0,3044825	Х
e149	4,36E-14	BCC
e150	0,0209229	Х

6. Conclusion

This paper explores Boosting technique to obtain an ensemble of regressors and proposes a new formula for the updating of the weights and for the final hypothesis. Differently from the works founded in the literature, in this paper, we investigate the use of the correlation metrics as a factor besides the error metric. This new approach, called Boosting using Correlation Coefficients (BCC) has been empirically obtained trying to improve the results of the other methods. To evaluate the new BCC algorithm, we conducted three groups of experiments.

We explore the BCC for time series forecasting, using Genetic Programming (GP) as base learner, in the first group of the experiments it was used academic series, to the second group of the experiments was used financial series and a trading analysis was made comparing the methods GP, GPBoost, ARMA and the BCC method. The third group of the experiments a widespread Monte Carlo simulation was made. In the Monte Carlo Simulation, series were generated in the entire parametric space for the main ARMA structures: AR(1), AR(2), MA(1) MA(2) and ARMA(1,1). From all these experiments we can conclude that in almost all the cases the method BCC is the best and when the method is not the best, there is no statistical difference between the methods compared.

We conclude that the algorithm proposed (BCC) is very advantageous time series forecasting. These results encourage us to conduct future experiments to explore the BCC algorithm with other base learners. We intend to better evaluate the proposed approach and to explore meta-learning to select the best algorithm according to the characteristics of the data sets.

7. References

[1] M. A. Kaboudan, "Genetic programming prediction on stock prices," Journal Computational Economics, vol. 16, pp. 207–236, 2000.

[2] Y. Freund and R. E. Schapire, "A decision-theoretic generalization of on-line learning and an application to

boosting," Journal of Computer and System Sciences, vol. 55, pp. 119–139, 1997.

[3] E. L. Allwein, R. E. Schapire & Y. Singer, "Reducing multiclass to binary: A unifying approach for margin classifiers". Journal of Machine Learning Research, v.1, p. 113-141, 2000.

[4] G. Paris, D. Robiliard, and C. Fonlupt, "Applying boosting techniques to genetic programming," in IEEE International Joint Conference on Neural Networks, 2004, pp. 1163–1168.

[5] J. Koza, Genetic Programming: On the Programming of Computers by Means of Natural Selection.1em plus 0.5em minus 0.4emMIT Press, 1992.

[6] J. Holland, Adaptation in Natural and Artificial Systems.1em plus 0.5em minus 0.4emMIT Press, 1975.

[7] F. Banzhaf, W. Nordin, P. Keller, and F. D. Francone, Genetic Programming: An Introduction.1em plus 0.5em minus 0.4emMorgan Kaufmann, 1998. [8] R. E. Schapire, "The boosting approach to machine learning: An overview," in MSRI Workshop on Nonlinear Estimation and Classification, Berkeley, CA, March 2002.

[9] H. Iba, "Bagging, boosting, and bloating in genetic programming," in BDE+99, 1999, pp. 1053–1060.

[10] G. E. P. Box and G. M. Jenkins, Time series analysis: forecasting and control.1em plus 0.5em minus 0.4emHolden-Day, 1970.

[11] D. Zongker and B. Punch, Lil-gp 1.0 User's Manual, Michigan State University, July 1995.

[12] P. A. Morettin and C. M. C. Toloi, Análise de Séries Temporais.1em plus 0.5em minus 0.4emEdgard Blucher LTDA, 2004.

[13] D. M. Levine; D. Stephan; T. C. Krehbiel & M. L. Berenson, "Statistics for Managers using MS EXCEL", 3rd Edition, 2002.

[14] "http://cran.r-project.org/mirrors.html."