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Abstract. Notions of Bayesian analysis are reviewed, with emphasis on Bayesian
modeling and Bayesian calculation. A general hierarchical model for time series
analysis is then presented and discussed. Both discrete time and continuous time
formulations are discussed. An brief overview of generalizations of the fundamental
hierarchical time series model concludes the article.
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1. Intorduction
1.1. THE BAYESIAN VIEWPOINT

Much of the Bayesian viewpoint can be argued (as by Jeffreys and Jaynes, for
examples) as direct application of the theory of probability. In this article the
suggested approach for the construction of Bayesian time series models relies on
probability theory to provide decompositions of complex joint probability distri-
butions. Specifically, I refer to the familiar factorization of a joint density into an
appropriate product of conditionals.

Let z and y represent two random variables. I will not differentiate between
random variables and their realizations. Also, I will use an increasingly popular
generic notation for probability densities: [z] represents the density of z, [z|y] is
the conditional density of = given y, and [z,y] denotes the joint density of z and
y. In this notation we can write “Bayes’s Theorem” as

[yl2] = [z|y]ly]/[=]. (1)
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Equally important to probability theory and to Bayesian modeling is the relation

[ﬂz/mmww. (@)

Of course, relationships such as (1) and (2) hold for conditional densities. For
example, if w is a third random variable, then

olu] = [lely, wllyluld.

Furthermore, a variety of nestings, hierarchies, and other relations among vari-
ous conditional densities are possible. Finally, appropriate factorizations of joint
densities are useful. For example,

[2,y, w] = [z]y, w][y|w][w] 3)

is a familiar result in probability theory.

Equation (3) is particularly relevant to the discussion here. Specifically, it is
the basis of Hierarchical Models. As modelers, faced with complex structures and
a variety of random quantities to be modeled, Bayesians and other “stochastic
modelers” break the modeling process of a large collection of variables into the
pieces, following (3), and model the required conditional distributions. Hierarchical
models have a long history in Bayesian statistics. Some discussion and references
may be found in [1] and [2].

Markovian Models form a quintessential example of conditional modeling. In
large scale applications of generalizations of (3), various patterns or structures
in the conditional distributions are considered. Consider a time series of data,
Z1,-..,Tn. We can write the joint distribution of these values as

[Z1,.--sZn] = [ZnlTn-1,-- s Z1][Tn-1]|Tn—2,- .., 21] ... [21]. (4)

A common assumption about these conditionals goes something like “the distri-
bution of z; given ‘all’ the past zs’s only depends on a restricted subset of the
recent past.” A one-step Markov model is that for each ¢, [x;|the past] = x|z 1],
leading to the joint distribution

[.231, ey .Z'n] = [$n|$nfl][~rnfl|$n72] ... [1‘1]

Markovian reasoning has been applied beyond the time series setting. The key
observation is that one is free to index a countable collection of random variables
in any convenient, meaningful fashion. The modeler may then directly apply (4)
and formulate the resulting conditionals. A primary example involves modeling of
spatial correlation in spatial statistics and image analysis. See [3] for discussion
and references. The Markovian step involves the intuition that the value of a
variable at a location, conditional on the values at appropriate collections of other
locations, actually depends only on the values in a subset of “nearby” locations.
Users of Markov random field models use this sort of reasoning, though the usual
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construction is not a direct use of (4). Hence, some care is taken to insure that the
resulting specifications do yield a true joint distribution. Markov meshes, special
cases of Markov random fields, are constructed by direct use of (4). See [4]. More
generally, hierarchical reasoning offers an organized approach to spatio-temporal
modeling, but this topic is beyond the scope of this article.

1.2. OUTLINE

Section 2 describes representations of an archetypal hierarchical model for time
series. The model is presented in three stages. A casual way to think about these
stages is:

Stage 1. [data|process, parameters].
Stage 2. [process|parameters].
Stage 3. [parameters].

In the time series context, the time evolution of the process of interest is primarily
modeled in Stage 2. Both discrete and continuous time models are considered.
The reader will note relationships between the models described and the so-called
Kalman filter formulation; see [5]. In Section 3 a very brief discussion of some
natural extensions of the basic models is given.

The purpose of this article is to present notions of modeling strategies useful in
time series. For the most part, I will present the models with no concern for com-
putational complexity. The models presented are indeed being developed today.
Modern research involving Markov chain Monte Carlo offers a general approach to
the approximation of Bayesian results in complex settings. See [6] for some discus-
sion. Also, I will focus on “time domain” modeling; discussion of Bayesian spectral
analysis may be found in [7]. Finally, this article is not intended to be a review of
Bayesian time series; the reader is referred to [8], [9], and [10] for discussions and
further references.

2. Hierarchical Models
2.1. DISCRETE TIME

Assume that a stochastic process, x,, 1, - - -, is under study. To allow for measure-
ment error, we allow that the process is observed indirectly as follows:

Stage 1. Distribution of the Observables. Assume that a set of n data values,
Ysys- -+ Ys, , are observed. The first stage describes the structure of the conditional
distribution of the data, given the underlying x process and any parameters of the
model. A common choice is of the form

[y517 sy Ysy |{mt}t20701] = H[ySi

i=1

5,61]. (5)

The subscripts are intended to allow for a wide variety of sampling procedures.
For example, in principle Bayesian analysis is unconcerned with issues of “equally
spaced” observations. Next, I have assumed that the modeler wishes to allow for
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model parameters, represented by 6;. A common example involves a regression
formulation in which

ys,-=G($s,-;77)+€z'+1;i=1;---,”7 (6)

where G is a regression function, n represents unknown regression coefficients,
and the errors, e; are uncorrelated, mean zero, random variables with some fixed
density. Let the variance of these variables be denoted by v2. In this context, we
have §; = (n,v?). Another useful error model is a mixture of two distributions,
one of which is comparatively longer tailed than the other, thereby presuming to
allow for “outliers.” The mixing probability can be incorporated into 6.

Stage 2. Structure of the x Process. A natural model for the evolution of the z
process is a dynamic, typically Markovian, model. For example, a one-step Markov
model involves the conditioning formula

[Ter1{Zo, - - -, T}, 02] = [Teg1]Te, 02], (7)

where 65 is a vector of parameters associated with the Stage 2 model. A common
structure for this stage involves an autoregressive model,

Ti41 = F(xtaﬂ) + zt+17t 2 07 (8)

where F' is a dynamical function, 8 represents unknown regression coefficients,
and the z; are mean zero, random variables. These variables are often suggested to
represent unmodeled environmental effects, “noise,” and uncertainty concerning
the functional form F. Mixture models for the distribution of the effects may
also be appropriate. In general, 6 is the vector of parameters composed of
and any parameters in the modeler’s specification of the distribution of the z;’s.
Finally, a prior for the initial condition is proposed: [z,]. (This distribution may
depend on the parameters.) Note that the one-step Markov model is merely an
example. Higher order time dependencies can of course be modeled. Also, a high
order Markovian model can often be written as a one-step, Markov model via state
space representation.

Stage 3. Prior on Parameters. As a final stage for the model, we construct a
distribution for the “parameters” introduced above: [01, 65].

Note that, the presentation of hierarchical models typically involves Markovian
like reasoning, but without explicit reference. For example, the Stage 1 distribution
described above is actually

[ors- -+ Ysa {22} 120,61, 02] = [ [[s: 25,61 ],
i=1

but the model is that, given the x process and 6, the distribution of the data does
not depend on 5. The specification of the components of these three stages yields
a bona fide joint distribution for all the quantities modeled.

Direct computation, that is, probability theory, yield conditional distributions
of interesting quantities given the observed data. The main object is

[{$t}t20,61,02|y31,-- '7y3n]' (9)
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Filtering and interpolation (inference for the x process at times corresponding
to observation times and between observation times), backcasting or retrospection
(inference for the x process at times before the first observation time), and predic-
tion or forecasting (inference for the x process at times after the last observation
time), are based on

o} solysss ] = / / [{20}150,01,00gs, -, ys, JdB1 . (10)

(I wrote the above formula as if ; and 6, are continuous random variables. The
adjustments to the representation in cases involving discrete components are famil-
iar.) I repeatedly used the word “inference” rather than estimation to emphasize
the Bayesian view that the conditional distribution of the quantity of interest ought
to be the focus. Of course, practical limitations often force summaries of these dis-
tributions, though care, including consideration of decision theoretic issues, should
be taken.

2.2. CONTINUOUS TIME

A natural starting point for extending the hierarchical model to continuous time
is the replacement of (8) with a stochastic differential equation model. (I will not
discuss assumptions used to make sense of all the points raised here. See [11].) In
particular, consider the model

dz = f(z,B)dt + o(z,a)dW, (11)

where dW represents white noise and f and o are suitable functions, so that
solutions to the equation make (Itd) sense. Define 8 to be the collection 3 and a.

“Kolmogorov Forward” or “Fokker-Planck” analysis based on (11) can be re-
lated to Bayesian calculations. The Fokker-Planck analysis solves the following
problem: Assume that the initial value of the process described by (11) is a ran-
dom variable, z,, with specified density, [z,]. Find the density, p(x,t|62), of the
x process at time t. The result is that p(z,t|f2) is an appropriate solution to the
initial value problem

2
W = 5 (%)~ (), (12)
subject to the initial data p(z,0/62) = [z,].

Suppose we can solve the Fokker-Planck equation. Assuming data collection as
described in (5), the quantity p(x, s1|62) may be viewed as the (conditional on 65)
prior density for z(s;). Combining the model, [ys,|z(s1),61], and p(z, s1]62) via
Bayes’s Theorem, we can obtain the conditional posterior density

[2(51)[Ys1,61,02] o [ys,|2(s1),01]p(z(51), 5102). (13)

This object then serves as the initial data for the Fokker-Planck equation for the
conditional density of z(t),t > s;. We can proceed sequentially as more data is
collected. Let

D; ={ys, : 1 <k<i}
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Then, [zs,|D;, 61,02], serves as the initial data for finding the conditional density
of z(t),t > s;.

Example: The Langevin Equation and the Ornstein-Uhlenbeck Process. The spe-
cial case of (11),

dx = —fzdt + odW, (14)

is easily (It6) integrated. The parameters, 3 > 0 and o > 0 form 6, in this case.
Assume that the prior for the initial condition is a normal (Gaussian) distribution
with mean u(0) and variance 72(0). Under these assumptions this second stage
prior leads to a conditionally Gaussian process.

At the first stage, we assume that the n observations, (ys,,...,¥s,), are con-
ditionally independent, normal random variables with means z(s;),i = 1,...,n,
and variances, v7.

Next, the Fokker-Planck equation can be solved (or other methods can be called
upon) so that the sequential updating can be implemented. Specifically, consider
time s1. Analysis (see [11], pp. 358, 367-68) yields the prior on z(s;) is Gaussian,
with mean

w1(0) exp(—PBsy) (15)
and variance
o2
¢ = (0 exp(—2051) + (55) (1 ~ exp(~2851)) (16)

Next, we combine this with the data point ys,, as prescribed in (13). The required
calculation is familiar in Bayesian analysis ([1], pp. 129-30). The result is that
[2(51)|ys,, 01, 62] is a normal density, with mean

p(s1) = {6/ (vf + 6" }ys, + {vi/(vi + ¢°)}u(0) exp(—Bs1), (17)

and variance
m2(s1) = {07 ¢°}/{v} + ¢7}. (18)
We can then continue sequentially as more data is collected by recursing u(-)
and 72(-), being careful to remember to use lengths of time intervals, sx;1 — si,
appropriately, including the definition of the ¢? function at each iterate. O
Calculations for dealing with the parameters in the model are direct, in prin-
ciple. We would sequentially update the distributions, [61,602|D;] of the model
parameters via Bayes’s Theorem. Based on these distributions, we can compute
the quantity,

[o(s:)|Di] = / / [2(s:)|Ds, 61, 65][6r, 6| D;]d6r .

The forward analysis described above yield sequential Bayesian predictive and
parameter inference analyses. However, for filtering, interpolation, and backcasting
based on the full data, one would need the conditional distributions of the x process
at all required time points of interest given the full data set.

Implementation of the above analyses is formidible from a computational view.
First, the Fokker-Planck equation is seldom tractable enough to be useful in the
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sense described above. Second, the application of Bayes’s Theorem is also typically
numerically intensive. Even in the Langevin/Ornstein-Uhlenbeck prior example,
updating with priors on 8 and o would be difficult. A variety of approximations
are available. If the Fokker-Planck analysis appears to be not useful, an interesting
possibility is to use a discrete time approximation to the continuous time model.
See [12] for an example.

Another issue involves the assertion that an observation is based precisely on
the exact value of the underlying process at a specified instant. In many settings
uncertainty in the times of observation arise, see [13]. Second, many data collection
techniques involve the observation (with error) of weighted time integrals and
transforms of the underlying process. In principle, such data can be modeled by
appropriate extensions of (6). Finally, in some circumstances it may be appropriate
to consider “analog” or continuously sampled data.

3. Extensions

A variety of extensions, including the use of additional stages in hierarchies, are
possible. I only allude to a few of these, primarily in the discrete time formulation,
but note that this is an active area of research.

An obvious extension to the models described permits time varying parameters,
01(t) and 65(t). Formally, this is no extension at all, since we could append 6 (t)
and 02(t) to the definition of the variable  modeled in Stage 2. Formalities aside,
it may often be sensible from a modeling viewpoint to separate out parameters
from process variables. For example, the parameters might be viewed as “slowly
varying,” compared to the z process.

A more general direction for modeling time varying structure is to suggest that
switching from one model paradigm to another occurs. A natural suggestion is to

introduce a process variable, say I, where I = 1,2,..., or K. Stage 2 is then
extended as follows:
[Ter1{@o, - s T}, {0y 5 It}, 02] = [Teg1|me, Iy, O] (19)

The variable I then indicates which of K models,
T4l = FI(wtan(I)) +zt1+17t > 07 (20)

and or parameters, 7(.), is in effect.

The indicator process’s evolution itself is then modeled. (The Bayesian use of
“mixture models” is of direct use in the sort of models described; see [13].) Two
basic approaches are common. First, a (typically, one-step) Markov chain, is used.
There is a growing literature on such hierarchical models under the name “Hidden
Markov Models.” (The “hidden” modifer refers to the fact that the indicators I
are in fact not typically observed.) A second main class of models involve a vari-
ety of “state-dependent” models for the evolution of the indicator process. A key
reference in this regard is [14]. In many settings it is natural to believe that the
modeling of the dynamics of the x process, say by (8), by defining the autore-
gressive function relating x;11 to x; locally depending on the value of z;. Further,
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the error process can too be modeled similarly. (H. Tong has been instrumental
in making such reasoning, called the “threshold principle,” popular in time series
analysis; See [15].) Note that we may use the notation of the hidden Markov model,
except that the indicator I; at time ¢ is a function of the state x;, rather than an
automonous process.

The reader may have detected the fact that many of the models described
above are not necessarily associated with Bayesian time series. The reader may
also have detected that the observation is irrelevant. Good, useful models can
be incorporated readily as stages of Bayesian models. Many of us would argue
that the hierarchical Bayesian approach therefore subsumes classical modeling in
a fashion that both extends the range and enhances the interpretability of time
series models.
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