Estatítica Descritiva e Exploratória

Gledson Luiz Picharski e Wanderson Rodrigo Rocha

Universidade Federal do Paraná

3 de Abril de 2008

Estatística Descritiva e exploratória

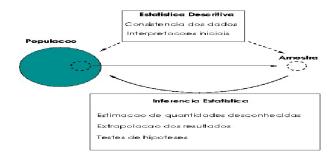
- Introdução à análise exploratória de dados
- Análise exploratória de dados: Medidas-resumo
- 3 Probabilidades

O que é Estatística?

A Estatística é um conjunto de métodos de coleta e descrição de dados, e então a verificação da força da evidência nos dados pró ou contra certas idéias científicas.

- Estatística descritiva: conjunto de técnicas destinadas a descrever e resumir dados.
- Probabilidade: teoria matemática utilizada para se estudar a incerteza oriunda de fenômenos de caráter aleatório.
- Inferência estatística: técnicas que possibilitam a extrapolação, a um grande conjunto de dados (população), dos resultados obtidos a partir de um subconjunto de valores (amostra). Note que se tivermos acesso a todos os elementos que desejamos estudar, não é necessário o uso de técnicas de inferência estatística.

População x amostra



Tipos de amostragem

 casual simples: Selecionamos ao acaso, com ou sem reposição, os itens da população que farão parte da amostra.

Se houver informações adicionais a respeito da população de interesse, podemos utilizar outros esquemas de amostragem mais sofisticados.

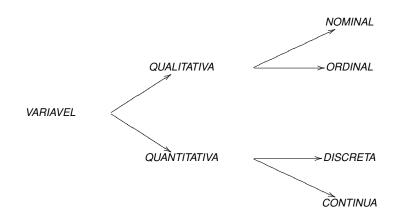
- Amostragem estratificada: Por exemplo, se numa cidade, tivermos mais mulheres do que homens, podemos selecionar um certo número de indivíduos entre as mulheres e outro número entre homens.
- Amostragem sistemática: Pode existir uma relação numerada dos itens da população (uma lista de referência) que nos permite selecionar os indivíduos de forma pré-determinada, por ex de 8 em 8 ou de 10 em 10.

Organização dos dados

Suponhamos que um questionário seja aplicado a alunos da Universidade fornecendo as seguintes informações:

ld	Turma	Sexo	Idade	Alt	Peso	Filhos	Fuma
1	Α	F	17	1.60	60.50	2	NAO
2	Α	F	18	1.69	55.00	1	NAO
3	Α	M	18	1.85	72.80	2	NAO
4	Α	M	25	1.85	80.90	2	NAO
5	Α	F	19	1.58	55.00	1	NAO
6	Α	M	19	1.76	60.00	3	NAO

Tipos de Variáveis



Exemplos de tabelas

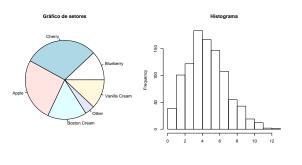
Idade	ni	fi	fac
17	9	0,18	0,18
18	22	0,44	0,62
19	7	0,14	0,76
20	4	0,08	0,84
21	3	0,06	0,90
22	0	0	0,90
23	2	0,04	0,94
24	1	0,02	0,96
25	2	0,04	1,00
total	n=50	1	

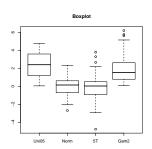
Tabela: Frequências para Idade

ni	fi	fac
8	0,16	0,16
22	0,44	0,60
8	0,16	0,76
6	0,12	0,88
5	0,10	0,98
1	0,02	1,00
50	1	
	8 22 8 6 5	8 0,16 22 0,44 8 0,16 6 0,12 5 0,10 1 0,02

Tabela: Freqüências para Peso

Exemplos de Gráficos





Estatística Descritiva e exploratória

- Introdução à análise exploratória de dados
- Análise exploratória de dados: Medidas-resumo
- 3 Probabilidades

Introdução

Medidas resumo são técnicas que nos auxiliam a sumarizar informações disponíveis sobre o comportamento de uma variável.

Medidas de Posição para um conjunto de dados

Média

$$\bar{x}_{obs} = \frac{x_1 + x_2 + \ldots + x_n}{n} = \frac{\sum_{i=1}^{n} x_i}{n}$$

Soma dos valores que a variável assume dividida pelo número de observações.

 Média para conjunto de dados organizados em tabela de Frequência

$$\bar{x}_{obs} = \frac{n_1 x_1 + n_2 x_2 + \ldots + n_k x_k}{n_1 + \ldots + n_k} = \frac{\sum_{i=1}^k n_i x_i}{n}$$

Média dos k diferentes valores ponderada pelas respectivas frequências de ocorrências.

Mediana

Representada por:

md_{obs}

É o valor que ocupa a posição central dos dados ordenados. Coloca-se os dados em ordem crescente, se o número de elementos no conjunto de dados é ímpar selecionamos o dado central. No caso em que o número de elementos for par a mediana será a média dos dois valores que ocupam a posição central.

Moda

Representada por:

 mo_{obs}

É dada pelo valor mais frequente do conjunto de dados.

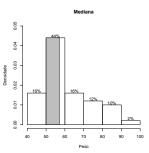
Quartis

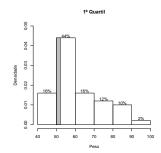
Definições:

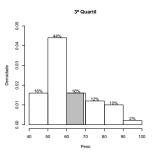
- Q₁: Valor que deixa 25% das observações ordenadas abaixo dele.
- Q₂: Valor coincidente com a mediana.
- Q₃: Valor que deixa 75% das observações ordenadas abaixo dele.
- Amplitude Interquartílica: É a diferença entre Q₃ Q₁.

Exemplo

Calcular Q_1 , md_{obs} e Q_3 a seguir:







Assim Q_1 seria dado por: $\frac{Q_1-50}{0.09} = \frac{60-50}{0.44} \Rightarrow = Q_1 = 52,05$.

Medidas de posição para variáveia aleatórias Discretas

Valor Esperado Valor Esperado de uma variável aleatória X é dada pela expressão:

$$E(X) = \sum_{i=1}^k x_i p_i$$

Outra notação possível seria μ_X

- Mediana
 - A mediana é o valor Md que satisfaz ás seguintes condições: $P(X \ge Md) >= \frac{1}{2}$ e $P(X \le Md) >= \frac{1}{2}$ Em algumas situações, as desigualdades serão satisfeitas por qualquer valor num intervalo.
- Moda A moda Mo será dada pelo valor que apresentar a maior probabilidade de ocorrência.

Exemplo aplicado a uma Variável Aleatória X discreta

Função densidade:

Analizando a variável teremos:

$$\mu = 10, 3$$
; Md = 8; Mo = 5.

Medidas de dispersão

Apesar de muitas vezes as medidas de tendência central nos fornecerem uma idéia do comportamento da variável, precisamos de ferramentas que quantifiquem a dispersão dos valores que a variável assume. Esse é o papel das medidas de dispersão.

- Amplitude dos dados A amplitude dos dados será dada pela diferença entre o maior e o menor valor do conjunto de dados, representada por Δ.
- Desvio Médio Calcula-se o somatório dos desvios dos valores absolutos em relação á média.

$$\frac{1}{n}\sum_{i=1}^{n}|x_i-\bar{x}_{obs}|$$

Embora seja muito útil, torna-se complicada pelas propriedades da função módulo.

Variância e desvio-padrão em um conjunto de dados.
 A variância referente a uma variável aleatória X em um conjunto de dados é dada por:

$$var_{obs} = \frac{1}{n} \sum_{i=1}^{n} (x_i - \bar{x}_{obs})^2$$

ou pela expressão alternativa:

$$var_{obs} = \frac{1}{n} \sum_{i=1}^{n} x_i^2 - \bar{x}_{obs}^2$$

 Desvio-padrão Usado para representar a variabilidade nas mesmas unidades de medida dos nossos dados. É dado pela raiz quadrada da variância: √var_{obs}

Variância de uma va. Discreta

Se X é uma variável aleatória com $P(X_i = x_i)$ i = 1, 2, ..., k e média μ . Então sua variância é dada pela expressão:

$$Var(X) = \sum_{i=1}^{k} (x_i - \mu)^2 p_i$$

Ou pela expressão:

$$Var(X) = E(X^2) - \mu^2$$

Exemplo de cálculo da Variância de va. Discreta

Admita que X possua a seguinte função de probabilidade:

Então teremos $\mu = 5$, $E(X^2) = 25.6$ e $\mu^2 = 25$. A partir daí concluiremos que $var_{obs} = 0.6$

Estatística Descritiva e exploratória

- 1 Introdução à análise exploratória de dados
- Análise exploratória de dados: Medidas-resumo
- 3 Probabilidades

Fenômeno Aleatório São fenômenos não deterministicos, eventos que não podem ser previstos com absoluta certeza.

- Fenômeno Aleatório
 São fenômenos não deterministicos, eventos que não podem ser previstos com absoluta certeza.
- Espaço amostral Ω
 Conjunto de todos os eventos possiveis para um determinado experimento.

Axiomas de Probabilidade

i)
$$0 \le P(A) \le \forall A \subset \Omega$$
;

Axiomas de Probabilidade

i)
$$0 \le P(A) \le \forall A \subset \Omega$$
;

ii)
$$P(\Omega) = 1$$
;

Axiomas de Probabilidade

i)
$$0 \leq P(A) \leq \forall A \subset \Omega$$
;

ii)
$$P(\Omega) = 1$$
;

iii)
$$P(\bigcup_{j=1}^{n} A_j) = \sum_{j=1}^{n} P(A_j)$$
, com os $A_{j's}$ disjuntos.

•
$$P(A \cup B) = P(A) + P(B) - P(A \cap B)$$
.

- $P(A \cup B) = P(A) + P(B) P(A \cap B)$.
- $P(A \cap B) = P(A).P(B)$ (Para eventos independentes).

- $P(A \cup B) = P(A) + P(B) P(A \cap B)$.
- $P(A \cap B) = P(A).P(B)$ (Para eventos independentes).
- $P(A \cup A^c) = P(A) + P(A^c)$.

- $P(A \cup B) = P(A) + P(B) P(A \cap B)$.
- $P(A \cap B) = P(A).P(B)$ (Para eventos independentes).
- $P(A \cup A^c) = P(A) + P(A^c)$.
- $P(A|B) = \frac{P(A \cap B)}{P(B)}, \ P(B) > 0.$

- $P(A \cup B) = P(A) + P(B) P(A \cap B)$.
- $P(A \cap B) = P(A).P(B)$ (Para eventos independentes).
- $P(A \cup A^c) = P(A) + P(A^c)$.
- $P(A|B) = \frac{P(A \cap B)}{P(B)}, \ P(B) > 0.$
- $P(A) = P(A \cap B) + P(A \cap B^c).$

Teorema de Bayes

$$P(C_j|A) = \frac{P(A|C_j)P(C_j)}{\sum_{i=1}^k P(A|C_i)P(C_i)},$$

$$j = 1, 2, \ldots, k$$
.

BOA PROVA