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Abstract1

New sampling designs for the Autumn Portuguese bottom trawl survey (ptBTS) were investigated2

to explore alternative spatial configurations and possible increments on sample size. The currently3

used stratified random design and five proposals of systematic based designs were assessed by a4

simulation study, adopting a geostatistical approach based on likelihood methods of inference. The5

construction of the designs was based on “informal” method to reflect the practical constraints of6

bottom trawl surveys. The proposed designs were a regular design with 28 locations (S28), two7

regular designs with extra regular added locations with 44 (S44) and 47 (S47) locations, a design8

which overlaps the regular and stratified random design currently used with 45 locations (S45) and9

an high density regular design with 108 locations (S108), used just as a benchmark. The designs were10

assessed by computing bias, relative bias, mean square error and coverages of confidence intervals.11

Additionally a variance ratio statistic between each study designs and a corresponding random design12

with the same sample size was computed to separate out the effects of different sample sizes and13

spatial configurations. The best performance design was S45 with lower variance, higher coverage14

for confidence intervals and lower variance ratio. This result can be explained by the fact that this15

design combines good parameter estimation properties of the random designs with good prediction16

properties of regular designs. In general coverages of confidence intervals where lower than the17

nominal 95% level reflecting an underestimation of variance. Another interesting fact were the18

lower coverages of confidence intervals computed by sampling statistics for the random designs,19
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for increasing spatial correlation and sample size. This result illustrates that in the presence of20

spatial correlation, sampling statistics will underestimate variances according to the combined effect21

of spatial correlation and sampling density.22

Key-words: bottom trawl surveys, geostatistics, simulation, hake, horse mackerel, sampling design.23



1 Introduction24

Fisheries surveys are the most important sampling process to estimate fish abundance as they provide25

independent information on the number and weight of fish that exist on a specific area and period.26

Moreover this information can be disaggregated by several biological parameters like age, length, maturity27

status, etc. Like other sampling procedures the quality of the data obtained depends in part on the28

sampling design used to estimate the variables of interest.29

For the last 20 to 30 years, bottom trawl surveys (BTS) have been carried out in Western European30

waters using design-based strategies (Anon. 2002, 2003). However, if one assumes that the number of31

fish in a specific location is positively correlated with the number of fish in nearby locations, then a32

geostatistical model can be adopted for estimation and prediction and a model-based approach can be33

considered to define and assess the sampling design. On the other hand geostatistical principles are34

widely accepted and can be regarded as a natural choice for modelling fish abundance (see e.g. Rivoirard35

et al., 2000; Anon., 2004).36

Thompson (1992) contrasts design-based and model-based approaches considering that under the former37

one assumes the values of the variable of interest are fixed and the selection probabilities for inference38

are introduced by the design, whereas under the latter one consider the observed properties of interest39

as realisations of random variables and carries out inference based on their joint probability distribution.40

Hansen et al. (1983) points the key difference between the two strategies by stating that design-based41

inference does not need to assume a model for the population, the random selection of the sample provides42

the necessary randomisation, while the model-based inference is made on the basis of an assumed model43

for the population, and the randomisation supplied by nature is considered sufficient. If the model is44

appropriate for the problem at hand there will be an efficiency gain in inference and prediction with45

model-based approaches, however a model misspecification can produce inaccurate conclusions. In our46

context, with experience accumulated over 20 years of bottom trawls surveys within the study area, there47

is a fairly good idea of the characteristics of the population and the risk of assuming an unreasonable48

model should be small.49

Portuguese bottom trawl surveys (ptBTS) have been carried out on the Portuguese continental waters50

since June 1979 on board the R/V Noruega, twice a year in Summer and Autumn. The main objectives51

of these surveys are: (i) to estimate indices of abundance and biomass of the most important commer-52

cial species; (ii) to describe the spatial distribution of the most important commercial species, (iii) to53

collect individual biological parameters as maturity, sex-ratio, weight, food habits, etc. (SESITS 1999).54

The target species are hake (Merluccius merluccius), horse mackerel (Trachurus trachurus), mackerel55

(Scomber scombrus), blue whiting (Micromessistius poutassou), megrims (Lepidorhombus boscii and L.56

whiffiagonis), monkfish (Lophius budegassa and L. piscatorius) and Norway lobster (Nephrops norvegi-57



cus). A Norwegian Campbell Trawl 1800/96 (NCT) with a codend of 20 mm mesh size, mean vertical58

opening of 4.8 m and mean horizontal opening between wings of 15.6 m has been used (Anon. (2002)).59

Between 1979 and 1980, a stratified random sampling design with 15 strata was adopted. Those strata60

were designed using depth and geographical areas. In 1981 the number of strata were revised to 36. In61

1989 the sampling design was reviewed and a new stratification was defined using 12 sectors along the62

Portuguese continental coast subdivided into 4 depth ranges: 20-100m, 101-200m, 201-500m and 501-75063

m, with a total of 48 strata. Due to constraints in the vessel time available the sample size was established64

in 97 locations, which were allocated equally splited to obtain 2 locations in each stratum. The locations’65

coordinates were selected randomly constraint by the historical records of clear tow positions and other66

information about the sea floor, avoiding places where the fishery engine was not able to trawl. This67

sampling plan was kept fixed over the years. The tow duration until 2001 was 60 minutes and since68

2002 was set in 30 minutes, based on an experiment that showed no significant differences in the mean69

abundance and length distribution between the two tow duration.70

The present work investigated proposals of new sampling designs for the Autumn Portuguese bottom71

trawl survey (ptBTS). We aimed at explore new spatial configurations and possible increases on sample72

size, which could be achieved by e.g. reducing the hauling time (from 1 hour to 1/2 hour). A simula-73

tion study was performed to compare the stratified random design which is currently used against five74

proposals of systematic based designs, which we called the study designs. A model based geostatisti-75

cal approach (Diggle and Ribeiro, 2006) was adopted using likelihood based methods of inference and76

conditional simulations to estimate fish abundance on the study area.77

Section 2 describes the framework for the simulation study starting with the model specifications followed78

by the description of the sampling designs and the setup for the simulation study, conducted in five steps79

as described in (Section 2.3). The results of the simulation study comparing the study designs are80

presented in Section 3 and the findings are discussed in Section 4.81

2 Methods82

The survey area considered for this work corresponds to the Southwest of the Portuguese Continental83

EEZ (between Setubal’s Canyon and S.Vicent Cape). Before any calculation the mercator projection84

was transformed into an orthonormal space by converting longitude by the cosine of the mean latitude85

(Rivoirard et al. 2000). At Portuguese latitude (38-42o) 1olat ≈ 60nm. The area has ≈ 1250nm2 and86

the maximum distance between two locations was ≈ 81nm(1.35olat).87



2.1 Geostatistical framework88

Fish in a certain area interact with each other looking for food, reproductive conditions, etc. Therefore89

it is natural to consider that the abundance of fish between spatial locations is positively correlated such90

that the correlation decays with increasing separation distances. This conjecture justifies adopting the91

spatial model as defined in geostatistics (see e.g. Cressie 1993, Part 1) to describe and obtain predictions92

of fish abundance over an area. This approach contrasts with the sampling theory (see e.g. Cochran93

1960) where the correlation between observations is not taken into account. Additionally, within the94

geostatistical approach it is possible to estimate the abundance variance from systematic designs and the95

parameters of the correlation function allows for the definition of different phenomena. Sampling theory96

estimates would be obtained as the particular case, in the absence spatial correlation. Possible concerns97

includes the extra complexity given by the model choice and eventual difficulties in estimating the model98

parameters.99

The spatial model assumed here is a log-Gaussian geostatistical model. This is a particular case of the100

Box-Cox Gaussian transformed class of models discussed in Christensen et al. (2001). The data consists101

of the pair of vectors (x, y) with elements (xi, yi) : i = 1, ..., n, where xi denote the coordinates of a spatial102

location within a study region A ⊂ R
2 and yi is the measurement of the abundance at this location.103

Denoting by zi the logarithm of this measurement, the Gaussian model for the vector of variables Z can104

be written as:105

Z(x) = S(x) + ε (1)

where S(x) is a stationary Gaussian process at locations x, with E[S(x)] = µ, V ar[S(x)] = σ2 and an106

isotropic correlation function ρ(h) = Corr[S(x), S(x′)], where h = ‖x− x′‖ is the Euclidean distance107

between the locations x and x′; and the terms ε are assumed to be mutually independent and identically108

distributed Gau(0, τ2). For the correlation function ρ(h) we adopted the exponential function with109

algebraic form ρ(h) = exp{−h/φ} where φ is the correlation range parameter such that ρ(h) � 0.05110

when h = 3φ. Within the usual geostatistical jargon (Isaaks and Srivastava 1989) τ2 + σ2 is the (total)111

sill, σ2 is the partial sill, τ2 is the nugget effect and 3φ is the practical range.112

Hereafter we use the notation [·] for the distribution of the quantity indicated within the brackets. The113

adopted model defines [log(Y )] ∼ MVGau(µ1,Σ), i.e [Y ] is multivariate log-Gaussian with covariance114

matrix Σ parametrised by (σ2, φ, τ2). Parameter estimates can be obtained by maximising the log-115

likelihood for this model, given by:116

l(µ, σ2, φ, τ2) = −
n∑

i=1

log(yi)− 0.5{n log(2π) + log |Σ|+ (zi − 1)′Σ−1(zi − 1)}. (2)



Likelihood based methods for geostatistical models are discussed in detail in Diggle and Ribeiro (2006).117

For spatial prediction consider first the prediction target T (x0) = exp{S(x0)}, i.e. the value of the118

process in the original measurement scale at a vector of spatial locations x0. Typically xo defines a119

grid over the study area. From the properties of the model above the predictive distribution [T (x)|Y ] is120

log-Gaussian with mean µT and variance σ2
T given by:121

µT = exp{E[S(x0)] + 0.5 Var[S(x0)]}
σ2

T = exp{2 E[S(x0)] + Var[S(x0)]}(exp{V ar[S(x0)]} − 1)

with122

E[S(x0)] = µ+Σ′
0Σ

−1(Z − 1µ)

Cov[S(x0)] = Σ− Σ′
0Σ

−1Σ0

where Σ0 is a matrix of covariances between the the variables at prediction locations x0 and the data123

locations x and Var[S(x0)] is given by the diagonal elements of Cov[S(x0)]. In practice, we replace the124

model parameters in the expressions above are by their maximum likelihood estimates.125

Under the model assumptions, [T |Y ] is multivariate log-Gaussian and it is therefore possible to make126

inferences not only about prediction means and variances but also about other properties of interest.127

Although analytical expressions can be obtained for some particular properties of interest, in general, we128

use conditional simulations to compute them. Simulations from [T |Y ] are obtained by simulating from129

the multivariate Gaussian [S(x0)|Y ], and then exponentiating the simulated values. Possible prediction130

targets can be denoted as functional F(S), for which inferences are obtained by computing the quantity131

of interest on each of the conditional simulations. For instance, a functional of particular interest in the132

present work was the global mean of the particular realisation of the stochastic process over the area,133

which can be predicted by defining x0 as a grid over the area, obtaining the conditional simulations and134

computing the mean value for each conditional simulation. More generally other quantities of possible135

interest as, for instance, the percentage of the area for which the abundance is above a certain threshold,136

can be computed in a similar manner.137

2.2 Sampling designs138

In general, survey sampling design is about choosing the sample size n and the sample locations x139

from which data Y can be used to predict any functional of the process. In the case of the ptBTS some140

particularities must be taken into account: (i) the survey targets several species which may have different141



statistical and spatial behaviours; (ii) for each species several variables are collected (weight, length,142

number, etc.); (iii) the sampling is destructive and replicates can not be obtained; (iv) the variability143

of observed fish abundance is typically high, (v) the planned sampling design may be unattained in144

practice due to unpredictable commercial fishing activity at the sampling area, bad sea conditions and145

other possible operational constraints.146

Optimal designs can be obtained formally, by defining a criteria and finding the set of sampling locations147

which minimises some sort of loss function, as e.g. discussed in Diggle and Lophaven 2006. On the other148

hand, designs can be defined informally by arbitrarily defining locations which compromises between149

statistical principles and operational constraints. Both are valid for geostatiscal inference as described in150

Section 2.1 provided that the locations x are fixed and stochastically independent of the observed variable151

Y . The above characteristics of the ptBTS makes it very complex to set a suitable criteria to define152

a loss function to be minimized w.r.t. the designs. Additionally, costs of a ship at sea are mainly day153

based and not haul based and increasing the sample sizes has to consider groups of samples instead of the154

addition of individual points. Therefore, our approach was to construct the proposed designs informally155

trying to accommodate: (i) historical information about hake and horse mackerel abundance distribution156

(Anon. 2002; Jardim 2004), (ii) geostatistical principles about the estimation of correlation parameters157

(e.g. see Isaaks and Srivastava 1989; Cressie 1993; Muller 2001) and (iii) operational constraints like158

known trawlable grounds and minimum distance between hauls.159

The study designs included the design currently adopted for this survey, named “ACTUAL” with 20160

locations, and five systematic based sampling designs. The systematic based designs were defined based161

on two possible increments in the sample size: a ≈ 40% increment, which is expected to be achievable in162

practice by reducing haul time from 1 hour to 1/2 hour; and a ≈ 60% increment, which could be achieved163

in practice by adding to the previous increment an allocation of higher sampling density to this area164

in order to cover the highest density of hake recruits historically found within this zone. These designs165

are denoted by “S” followed by a number corresponding to the sample size. For the former increment a166

regular design named “S28”was proposed and three designs were proposed for the latter: “S45” overlaps167

the designs ACTUAL and S28, allowing direct comparison with the previous designs; “S44” and “S47”168

are two infill designs (Diggle and Lophaven 2006) obtained by augmenting S28 with a set of locations169

positioned regularly at smaller distances, aiming to better estimate the correlation parameter and, in170

particular, the noise-to-signal ratio. S44 was built by defining a single denser sampling zone and S47171

by adding three areas with denser sampling. A sixth design “S108” was defined to be used as reference172

with twice the density of S28. A feature of these choices is the possible confounding between the effect173

of sample sizes and spatial configuration. We circunvect this problem by building six additional designs174

with the same sample size as the study designs and with locations randomly chosen within the study175

area. We denote these by “R” followed by the number of corresponding locations. Each random design176



contains all the locations of the previous one such that the results are comparable without effects of the177

random allocation of the sampling locations. The study and corresponding random designs are shown in178

Figure 1.179

2.3 Simulation study180

The simulation study was carried out in five steps as follows.181

Step 1 Define a set of study designs. The sampling designs described in Section 2.2 are denoted182

by Λd : d = 1, . . . , 12, with d = 1, . . . , 6 for the study designs and d = 7, . . . , 12 for the183

corresponding random designs, respectively.184

Step 2 Define a set of correlation parameters. Based on the analysis of historical data of hake185

and horse mackerel spatial distribution and defining τ2
REL = τ2/(τ2 +σ2), a set of model pa-186

rameters θp : p = 1, ..., P was defined by all combinations of φ = {0.05, 0.1, 0.15, 0.2, 0.25, 0.3, 0.35, 0.4}olat187

and τ2
REL = {0, 0.1, 0.2, 0.3, 0.4, 0.5}. The values of σ2 are given by setting σ2 + τ2 = 1.188

Step 3 Simulate data. For each parameter set θp we obtained S=200 simulations Yps : s = 1, . . . , S189

from [Y ] on a regular grid of 8781 locations under the model described in Section 2.1. Each190

simulation Yps approximates a possible realisation of the process within the study area from191

which we computed the mean value µps. For each Yps we extracted the data Ypds at the192

locations of the sampling designs Λd.193

Step 4 Estimate correlation parameters. For each Ypds obtain maximum likelihood estimates194

(MLE’s) θ̃pds of the model parameter.195

Step 5 Simulating from the predictive distribution. A prediction grid x0 with 1105 locations196

and the estimates θ̃psd were used to obtain C=150 simulations Ỹpdsc : c = 1, . . . , C of the197

conditional distribution [T (x0)|Y ] which were averaged to produce ¯̃Ypdsc.198

2.4 Analysis of simulation results199

The simulation study requires maximum likelihood estimates for the model parameters which are obtained200

numerically. Therefore a set of summary statistics was computed in order to check the consistency of201

the results. We have recorded rates of non-convergence of the minimization algorithm; estimates which202

coincides with the limiting values imposed to the minimization algorithm (φ = 3 and τ2
REL = 0.91);203

absence of spatial correlation (φ = 0) and values of the parameter estimates which are considered204

atypical for the problem at hand (φ > 0.7 and τ2
REL > 0.67).205



The 48 parameters set (θp), 12 sampling designs (∆d), 200 data simulations (Ypsd) and 150 conditional206

simulations (Ỹpsdc) produced 17.28 million estimates of abundance which were used to compare the207

designs. For each design we have computed the estimator µ̃psd = C−1
∑

c
¯̃Ypdsc of mean abundance µps208

which has variance Var(µ̃psd) = ¯̃ρAA +
∑n

i

∑n
j wiwj ρ̃ij − 2

∑n
i wi

¯̃ρiA, where ¯̃ρAA is the mean covariance209

within the area, estimated by the average covariance between the prediction grid locations (x0); w are210

kriging weights; ρ̃ij is the covariance between a pair of data locations; and ¯̃ρiA is the average covariance211

between each data locations and the area discretized by the prediction grid x0 (Isaaks and Srivastava212

1989).213

We used bias, relative bias, mean square error (MSE), confidence intervals coverage and ratio of variances214

to assess the simulation results, comparing the estimates of the abundance provided by the study designs.215

For each design these statistics were averaged over all the simulations (s) and parameter sets (p) or groups216

of parameters sets. Considering the difference between the abundance estimates µ̃psd and simulated217

means µps, bias was computed by the difference, relative bias was computed by the difference over the218

estimate µ̃ps and MSE was computed by the square of the difference. For each estimate µ̃pds a 95\%219

confidence interval for µps, given by CI(µ̃psd) = µ̃psd±1.96
√
V ar(µ̃psd), was constructed and the coverage220

of the confidence intervals δ were computed by the proportion of the intervals which contained the value221

of µps over all the simulations. This statistic was introduced to help assessing the quality of the variance222

estimates. At least, we called ratio of variances a statistic ξ obtained by dividing the variance V ar(µ̃psd)223

of each study design by the random design with the same size. Notice that the single difference among224

each pair of designs with the same size was the spatial configuration of the locations and ξ isolated this225

effect. Finally we used the results from the six random designs to contrast sampling design based and226

geostatistical based estimates.227

All the analysis were performed with the R software (R Development Core Team 2005) and the add-on228

packages geoR (Ribeiro Jr. and Diggle 2001) and RandomFields (Schlather 2001).229

3 Results230

Table 1 summarises the analysis of historical data showing parameter estimates for a sequence of years.231

This aims to gather information on reasonable values for the model parameters. Notice that units for φ232

are given in degrees and, for the adopted exponential correlation model, the practical range is given by233

3φ and also included in the Table (r) with units in nautical miles. The values of τ2
REL = 1 estimated234

in some years indicates an uncorrelated spatial process and for such cases estimates of φ equals to zero.235

For most of the cases τ2
REL was estimated as zero due to the lack of nearby locations in the sampling236

plan and the behaviour of the exponential correlation function at short distances. Given that there is no237



information in the data about the spatial correlation at distances smaller than the smallest separation238

distance between a pair of location, this parameter can not be estimated properly and the results depend239

on the behaviour of the correlation function near the origin.240

Table 2 summarizes the checks of the results of the parameter estimates which were considered satisfactory241

and coherent. The highest rate of lack of convergence was 0.6% for the designs ACTUAL and R20.242

Estimates of φ equals to the upper limit imposed to the algorithm were, in the worst case, 0.9% for243

R28 and R47 and for τ2
REL it was 1.2% for R28 . In general there was a slight worst performance of244

the random designs but this is irrelevant for the objectives of this study. Those simulations were not245

considered for subsequent analysis. Lack or weak spatial correlation given by φ = 0 and/or τ2
REL > 0.67246

was found in about 35% of the simulations for the designs with fewer number of locations, and this rate247

decreases as the sample size increases, down to below 10% for the largest designs. For both statistics248

the study designs showed slightly higher values than the corresponding random designs. Identification249

of weakly correlated spatial processes in part of the simulations was indeed expected to occur given the250

low values of φ (0.05 and 0.1) used in the simulations. The number of cases that presented atypical251

estimates for φ were slightly higher for random designs, with a maximum of 2.6% for R44 and R45, but252

were considered to be within an acceptable range given the high variability of the estimator.253

Figure 2 shows square bias, variance and MSE obtained from the estimates of correlation parameters φ254

and τ2
REL. For τ

2
REL the majority of the designs presented similar patterns with a small contribution of255

bias to the MSE and increasing values of MSE for higher true parameter values. The designs ACTUAL,256

S28 and R20 behaved differently with higher values of bias at low values of τ2
REL that pushed MSE to257

higher values. As an effect of the sample sizes, the absolute values of MSE defines 3 groups composed by258

designs with 20 and 28 locations, designs with 44, 45 and 47 locations, and designs with 108 locations;259

with decreasing values of MSE among them, respectively. MSE increases with the increase of the true260

value of φ and its absolute value decreases slightly with the increasing sample sizes. All designs presented261

a similar pattern with the variance contributing more than bias to the MSE. The study designs showed262

a slightly higher relative contribution of the variance to MSE compared with the random designs.263

Table 3 shows geostatistical abundance estimates (µ̃) and their bias, relative bias, variance, MSE and 95%264

confidence interval coverage for both sets of designs. Additionally the table also shows statistics based on265

sampling theory obtained for random designs. For subsequent analysis the designs S108 and R108 were266

regarded just as benchmarks since they are unrealistic for practical implementation. Bias were quite small267

in all situations and can be considered negligible with higher relative bias of 0.014 for S28. All random268

designs showed a negative bias whereas all study designs showed a positive one. Variances estimated269

by study designs were lower than the ones for the corresponding random designs. For random designs270

the variance decays with increasing sample sizes, whereas study designs behaved differently with S45271



presenting the lowest variance with greater differences between S44, S45 and S47 and R44, R45 and R47.272

The same is valid for MSE, since the bias were small, however with higher absolute values supporting our273

claim that bias were not relevant for the purpose of this work. The coverages of confidence intervals (δ)274

were lower than the nominal level of 95% excepted for S108 and R108, reflecting an underestimation of the275

variance. Considering the designs individually it can be seen that ACTUAL, S28 and S45 showed a lower276

underestimation than the equivalent random designs. To better investigate this Figure 3 presents values277

of δ splitted by three levels of correlation (low={0.05, 0.1}, med={0.15, 0.20, 0.25}, high={0.3, 0.35,278

0.4}). For geostatistical estimates the coverages δ increases with higher true values of φ and larger sample279

sizes, whereas sampling statistics showed a different pattern, with maximum values for R44 for low and280

medium correlation levels and for R28 for high correlation levels. This behaviour is more noticeable for281

stronger spatial correlation, in particular, the largest designs showed lower confidence interval coverage282

pointing for a more pronounced underestimation of the variance.283

Logarithms of the variance ratios between corresponding “S” and “R” designs are presented in Table 3.284

Without considering S108 for the reasons stated before, the best result was found for S45 (−0.208)285

and the worst for S28 (−0.108). This must be balanced by the fact that S45 showed a lower variance286

underestimation than R45, with the opposite happening for S44/R44 and S47/R47, so, in reality, value287

of ξ is smaller for S45 than for S44 and S47.288

4 Discussion289

The choice of sampling designs for BTS is subject to several practical constraints and this has motivated290

the adoption of informally defined designs which accommodated several sources of information like fishing291

grounds, haul duration, previous knowledge of the spatial distribution of hake and horse mackerel, among292

others, which could not be incorporated into a design criteria in an objective way. The fact that this293

can generate designs with different sample sizes is a drawback of this approach. However, implementing294

a systematic design on an irregular spatial domain is also likely to provide designs with different sample295

sizes, depending on the starting location. Costs of hauling are relatively small when compared with the296

fixed costs associated with a vessel’s working day and increasing sample sizes for a BTS must consider297

sets of locations which can be sampled in one working day. For these reasons the different sample sizes298

of each design are not just a feature of the adopted approach but also a result of the BTS particularities.299

The confounding effects of sample size and spatial configuration of the proposed designs jeopardized the300

comparison of their ability in estimating the abundance. To circunvect this limitation a methodology301

to compare designs with different sample sizes and spatial configurations was required. To deal with302

this issue we’ve introduced a mean abundance variance ratio statistic, between the study designs and a303

corresponding simulated random design with the same sample size.304



In fisheries science the main objective for the spatial analysis usually lies in predicting the distribution305

of the marine resource, aiming, for instance, to define marine protected areas and to compute abundance306

indices for stock assessment models (Anon. (2004)). For such situations the model parameters are not307

the focus of the study, but just a device to better predict the abundance. Muller (2001) points that the308

optimality of spatial sampling designs depends on the objectives, showing that ideal designs to estimate309

covariance parameters of the stochastic process are not the same to predict the value of the stochastic310

process in a specific location and/or to estimate global abundance. We have not compared the study311

designs with respect to the estimation of the covariance parameters provided that our main concern was312

spatial prediction of abundance.313

The choice of the parameter estimation method was a relevant issue in the context of this work. The314

absence of a formal criteria to identify the “best” design naturally led to the use of geostatistical simula-315

tions to compare the proposed designs. To carry out a simulation study it is useful to have an objective316

method capable of producing single estimates of the model parameters. Within traditional geostatistical317

methods (e.g. Isaaks and Srivastava 1989; Cressie 1993; Rivoirard et al. 2000, Goovaerts (1997)), the318

estimation entangles subjective analyst’s intervention to define some empirical variogram parameters319

such as lag interval, lag tolerance and estimator for the empirical variogram. Likelihood based inference320

produces estimates of the covariance parameters without a subjective intervention of the data analyst,321

allowing for automatization of the estimation process, which is suitable for simulation studies. For the322

current work we have also used other methods such restricted maximum likelihood (REML) and weighted323

least squares, but they have produced worse rates of convergence in the simulation study. In particular324

the REML presented an high instability with a high frequency of atypical results for φ. An aspect of325

parameter estimation for geostatistical models which is highlighted when using likelihood based methods326

is regarded to parameter identification due to over-parametrized or poorly identifiable models (see e.g.327

Zhang (2004)). To avoid over parametrization we used a log-transformation and the process was con-328

sidered isotropic, avoiding the inclusion of three parameters on the model: the box-cox transformation329

parameter (Box and Cox 1964) and the two anisotropy parameters, angle and ratio. The choice of the log330

transformation was supported by the analysis of historical data and does not impact the comparison of331

the designs, given that the relative performance of each design will not be affected by the transformation.332

A point of concern with the log transformation was the existence of zero values which, in the analysis333

of the historical data, were treated as measurement error and included in the analysis with a translation334

of the observed values, by adding a small amount to all observations. However, it must be noted this335

is not always recommended and, in particular, if the stock is concentrated on small schools that cause336

discontinuities on the spatial distribution, these transformations will not produce satisfactory results.337

Concerning anisotropy, a complete simulation procedure was carried out considering a fixed anisotropy338

angle on the north-south direction and an anisotropy ratio of 1, 1.5 or 2. As expected, the absolute339



values obtained were different but the overall relative performance the designs was the same, supporting340

our decision to report results only for the isotropic model.341

Overall, maximum likelihood estimation of the model parameters was considered satisfactory and checks342

of the consistence of simulation analysis did not reveal major problems with the parameters estimates343

showing the designs performed equally well and with similar patterns on bias and MSE.344

A major motivation for performing a simulation study was the possibility to use a wide range of covari-345

ance parameters, reflecting different possible spatial behaviours which implicitly evaluates robustness.346

Furthermore, the results can be retained for all species with a spatial behaviour covered by these param-347

eters.348

From a space-time modeling perspective, one of the most interesting analysis for fisheries science is the349

fluctuation of the stochastic process over time contrasted with the specific realization in a particular time.350

Therefore the comparison with the mean of the realisations (µps) was considered more relevant then to351

the mean of the underlying process (µ) for the computation of bias and variability. The results showed352

higher bias for study designs when compared with random designs, but in both cases showing low values353

which were considered negligible for the purposes of this work. This conclusion was also supported by354

the fact that MSE showed a similar relative behaviour as variance.355

Apart from the design S108, which was introduced as a benchmark and not suitable for implementation,356

the design that performed better was S45 with lower variance, confidence interval coverage closer to the357

nominal level of 95% and lower variance ratio (Table 3). One possible reason is the balance between358

good estimation properties given by the random locations and good predictive properties given by the359

systematic locations, however the complexity of the BTS objectives makes it impossible to find a full360

explanation for this results. A possible indicator of the predictive properties is the average distance361

between the designs and the prediction grid locations, which reflects the extrapolation needed to predict362

over a grid. We found that S45 had an average of 2.61nm whereas for S47 the value is 2.72nm, explaining363

in part the S45 performance.364

These results are in agreement with Diggle and Lophaven (2006) who showed that lattice plus closed pairs365

designs (similar to S45) performed better than lattice plus in-fill designs (similar to S44 and S47) for366

accurate prediction of the underlying spatial phenomenon. The combination of random and systematic367

designs like S45 is seldom considered in practice and we are not aware of recommendations of such designs368

for BTS.369

It was interesting to notice that most designs presented a coverage of confidence intervals below the370

nominal level of 95% revealing the variances were underestimated. It was not fully clear how to use371

such results to correct variance estimation and further investigation is needed on the subject. Care must372

be taken when looking at variance ratios since underestimated denominators will produce higher ratios373



which can mask the results. This was the case of S45 when comparing to S47 and S44, supporting our374

conclusions about S45.375

Another result of our work was the assessment of abundance estimates from random designs by sampling376

statistics, the most common procedure for fisheries surveys (Anon. 2004), under the presence of spatial377

correlation. In such conditions an increase in sample size may not provide a proportional increase378

in the quantity of information due to the partial redundancy of information under spatial correlation.379

Results obtained for coverages of confidence intervals illustrated this (Table 3 and Figure 3), with smaller380

coverages for larger sample sizes and higher spatial correlation, reflecting an over estimation of the degrees381

of freedom. The overestimation of the degrees of freedom led to an underestimation of prediction standart382

errors producing the smaller coverages. These fundings support claims to consider geostatistical methods383

to estimate fish abundance, such that correlation between locations is explicitly considered in the analysis,384

and highlighting the importance of verifying the assumptions behing sampling theory before computing385

the uncertainty of abundance estimates.386
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Table 1: Exponential covariance function parameters (φ, τ2
REL) and the geostatistical range (r) estimated

yearly (1990-2004) for hake and horse mackerel abundance. The values of φ are presented in degrees of
latitude and range in nautical miles. The maximum distance between pairs of locations was 63nm.

Hake Horse mackerel
φ(olat) r(nm) τ2

REL φ(olat) r(nm) τ2
REL

1990 0.05 9.1 0.01 0.42 76.4 0.00
1991 0.14 24.4 0.63 0.49 88.9 0.43
1992 0.00 0.0 1.00 0.22 39.3 0.05
1993 0.05 9.3 0.00 0.00 0.0 1.00
1995 0.05 8.8 0.00 0.08 14.4 0.00
1997 0.14 24.8 0.00 0.21 38.6 0.42
1998 0.02 3.4 0.00 0.09 16.5 0.00
1999 0.10 17.8 0.00 0.09 16.0 0.00
2000 0.03 4.6 0.00 0.16 29.5 0.00
2001 0.07 12.9 0.00 0.42 75.7 0.06
2002 0.00 0.0 1.00 0.05 8.9 0.00
2003 0.33 59.0 0.00 0.34 62.0 0.00
2004 0.09 15.4 0.00 0.09 17.0 0.00



Table 2: Statistics to provide simulation quality assessment (in percentages) for both design sets and all
sample sizes: non-convergence of the minimization algorithm (non-conv); cases truncated by the limits
imposed to the minimization algorithm (φ = 3 and τ2

REL = 0.91); uncorrelated cases (φ = 0); and atypical
values of the correlation parameters (φ > 0.7 and τ2

REL > 0.67).

statistic design sample size
20 28 44 45 47 108

non-conv study 0.6 0.5 0.2 0.2 0.2 0.1
random 0.6 0.4 0.2 0.2 0.2 0.1

φ = 3 study 0.7 0.5 0.7 0.7 0.5 0.2
random 0.6 0.9 0.8 0.8 0.9 0.1

τ2
REL = 0.91 study 0.7 0.7 1.0 0.9 0.8 0.4

random 0.8 1.2 1.1 1.1 1.1 0.2
φ = 0 study 36.3 33.0 20.7 20.6 18.0 5.3

random 32.8 28.5 18.1 17.2 16.2 3.3
φ > 0.7 study 1.3 1.6 1.9 1.9 1.8 1.4

random 1.8 2.2 2.6 2.6 2.4 1.7
τ2
REL > 0.67 study 38.5 35.8 24.2 24.7 21.8 10.0

random 35.0 31.6 22.1 21.1 20.3 7.6



Table 3: Summary statistics per sets of sampling designs and sample size. Geostatistical abundance
estimates (µ̃), bias (bias(µ̃)), relative bias (biasr(µ̃)), variance (var(µ̃)), mean square error (MSE) and
95% confidence interval coverage (δ(µ̃)). Mean log variance ratios per sampling design type (ξ) measures
the relative log effect of the systematic based designs configuration with relation to the random designs.
The last six rows present the same statistics estimated for random designs by sampling statistics.

method statistic design number of locations
20 28 44 45 47 108

geostatistics µ̃ study 1.658 1.662 1.649 1.657 1.651 1.641
random 1.631 1.624 1.625 1.624 1.625 1.625

bias(µ̃) study 0.025 0.030 0.016 0.026 0.019 0.008
random -0.001 -0.008 -0.007 -0.009 -0.008 -0.007

biasr(µ̃) study 0.012 0.014 0.003 0.012 0.005 0.001
random -0.004 -0.008 -0.005 -0.006 -0.005 -0.005

var(µ̃) study 0.136 0.108 0.092 0.086 0.089 0.081
random 0.168 0.129 0.113 0.112 0.112 0.097

MSE(µ̃) study 0.272 0.196 0.164 0.144 0.154 0.104
random 0.321 0.230 0.173 0.171 0.171 0.124

δ(µ̃) study 0.908 0.922 0.907 0.939 0.920 0.960
random 0.895 0.909 0.937 0.934 0.934 0.954

ξ stu/rnd -0.128 -0.107 -0.150 -0.208 -0.179 -0.228
sampling statistics Ȳ random 1.615 1.619 1.618 1.616 1.618 1.622

bias(Ȳ ) random -0.017 -0.014 -0.014 -0.017 -0.015 -0.010
biasr(Ȳ ) random -0.017 -0.014 -0.013 -0.014 -0.014 -0.006
var(Ȳ ) random 0.197 0.146 0.091 0.088 0.085 0.037
MSE(µ̃) random 4.133 4.238 4.109 4.083 4.090 4.073
δ(Ȳ ) random 0.900 0.910 0.908 0.900 0.896 0.840



Figure 1: Sampling designs and the study area (southwest of Portugal). Each plot shows the sample
locations, the bathimetric isoline of 500m and 20m and the coast line. The sampling design name is
presented on the top left corner of the plots. The top row shows the study designs and the bottom row
the random designs.

Figure 2: Summary statistics for the covariance parameters estimation by sampling design as a function
of the true parameter values. bias2 (◦), variance (�) and mean square error (+). Top figure presents
τ2
REL results and bottom figure φ.

Figure 3: Coverage of the confidence intervals (δ) for different φ levels (low = {0.05, 0.1},
med{0.15, 0.20, 0.25} high = {0.30, 0.35, 0.40}) for estimates of abundance by sampling statistics for
the random designs (+) and by geostatistics for the study (o) and random designs (∗).
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