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Abstract

In texture analysis, the Gibbs sampler constitutes an important tool in the generation of synthetic textures. The
textures are modeled as distributions with specified parameters. In this paper, we study the estimation process of the
parameters in such distributions and compare Besags coding method with a pseudo-likelihood method. We also
compare simulated annealing with the Newton-Raphson method to find the global maximum of a likelihood or
pseudo-likelihood function. For some textures, the two methods differ but in most case there are no important dif-
ferences between them. The two maximization methods find the same maximum, but the Newton—-Raphson method is
much faster. However, the Newton—Raphson method cannot be applied in some cases when the location of the
maximum differs too much from the starting points. Here, it is often possible to find the global maximum using
simulated annealing. The methods have been used in an application with newsprint. © 2001 Published by Elsevier

Science B.V.
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1. Introduction

Distributions of Gibbs type have important
applications in texture analysis (Geman and Ge-
man, 1989; Winkler, 1995). Several natural and
technical textures can be well described by such
distributions. By means of digital image analyses,
they can be visualized as images, where the values
of points of the texture are given colors or a grey-
scale levels.

The background of this study originates in a
work concerning modelling the surface structure of

E-mail address: jan_olof johansson@ide.hh.se (J.-O. Johans-
son).

newsprint (Johansson, 2000). Fig. 1 is an example
of a grey-scale image of such a surface. In that
application, we used an auto-binomial model,
which is of Gibbs type with parameters that
characterize the local properties of the micro-
texture.

In this paper, we focus on the estimation of the
parameters. We have found that a common
method, “The coding method”, does not always
succeed in the estimation process. The failure may
depend on the use of the Newton—Raphson
method for finding the global maximum in the
likelihood function. We suggest the use of simu-
lated annealing for such structures as an alterna-
tive way and discuss and compare two estimation
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Fig. 1. An example of the surface structure of newsprint.

methods, the coding method with a pseudo-likeli-
hood method and compare Newton—-Raphson
with simulated annealing for finding the global
maximum.

We use simulated micro-textures or images, of
auto-binomial models with specified parameters
for evaluating the methods. These images consist
of first- to fourth-order models and are generated
using the Gibbs sampler (Cross and Jain, 1983). In
the application of newsprint, a fourth-order model
was the most proper one.

The paper is organized as follows. In Section 2,
we introduce the auto-models and define Gibbs
distribution and its relation to Markov random
fields. We also briefly describe the simulation of
the micro-textures. In Section 3 we give an over-
view of the coding method and a pseudo-likeli-
hood method for estimation of the parameters and
in the subsequent section, we describe two meth-
ods for finding the global maximum of a likelihood
or pseudo-likelihood function. Finally, in Section
5 we present the results from the experiments of
estimating auto-binomial models of first to and
including fourth-order.

2. Images, micro-textures and random fields

In the literature, there is no generally accepted
definition of micro-textures. Some authors use
attribute such as coarseness, line-likeness, con-
trast, directionality, regularity and roughness
(Haralick, 1984). Cross and Jain (1983), regard
micro-textures as random fields and we adopt that
point of view.

2.1. Definitions

We follow the notations and definitions given
by Besag (1974) and Dubes and Jain (1989). A
pixel is denoted with (i, j) or (k) where 1 <i< Ny,
1<j< N, and 1 <k<N; x N,. The intensity at a
pixel is denoted with X (i, j) or X;.

Definition 1. A lattice, %, is a square array of
pixels, {(i,7) : I <i< Ny, 1 <j< M}

Definition 2. A colouring of %, X = {X(i,j)},
with G levels, is a function from the pixels of . to
the finite set I' = {0,1,2,...G — 1}.

Definition 3. The configuration space of X is the
set ¢ = N2,

Definition 4. A pixel, (), is defined as a neighbour
to pixel (i) if it satisfies the symmetric, non-re-
flexive relation (j)Z(i).

Definition 5. The neighbourhood to pixel (i) is the
set {(/); () 2())}-

If (/)2 (i), then (i)#(j) and the pixels (i) and ())
are called neighbours. No pixel (j) is a neighbour
to itself. The order of a neighbour is defined as 1 if
r==1,4£2, as 2 if r = 3,44, as 3 if r = £5,+6
and as 4 if »r=47, 48, +£9,+10. Fig. 2 shows
neighbours to pixel (¢) of the first to and including
the fourth-order.

t: -9 |t:-=3t:—-2|¢t:+4(t:+10

t: —8|t:+6|¢t: +7

Fig. 2. The indices of the neighbours to pixel (¢).
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Definition 6. A clique is a set of pixels where all
pairs of pixels are mutual neighbours or consisting
of a single pixel.

Definition 7. A neighbourhood system is the or-
dered class Q= {0,0,...,0u}, where M =
Ny x N, and Q; denotes the set of cliques con-
taining pixel (7).

2.1.1. The Gibbs distribution and the auto-binomial
model

The Gibbs distribution is defined by the prob-
ability mass function P(X = x) = e Y™ /Z, where
U(x) is the energy function, x is a colouring of the
lattice and Z is a normalizing constant, the parti-
tion function. A clique function, ¥.(x), for a given
image x, is associated with each clique and the
energy function is a sum of clique functions,

U(x) = 3 Vilw).

ceQ

We parameterize the Gibbs distribution by the
choice of clique functions.

An auto-model is a model where the energy
function for a pairwise interaction model can be
written:

U = 3 Felw)
= ZF(X,) + Z

t=1 r=—

H(xtvxtt+l‘)’ (1)

where K is the size of the neighbourhood, F and H
are potential functions. We focus our interest on
auto-binomial models (Besag, 1974; Winkler,
1995). In this case, the functions F(-) and H(,-)
can be written as

G-—1
F(x,)zocx,—ln( . > (2)
t
and
H(xi,X4r) = ﬁk,zxzxz:w; 3)

which is a global description. The indexing of f is
explained in (6)—(9). The local description is the
conditional distribution, X | X, given the neigh-
bourhood, d¢, to pixel (¢),

X | X5 € Bin(G —1,0(1)), 4)

where

__exp(T)
o) = 1 +exp(T) ©)
and

T =o+ B (xep1 +x021) + Bra(xesr +x022) (6)

for a first-order model.
For a second-, third- and fourth-order model,
we successively add to 7 the terms

Bai (Xt +x023) + oo (Xeta + Xima) (7)
B3 (Xets + Xi-5) + Bay (X6 + Xig) (8)
Bar (a7 +Xxe-7) + (Xps0 + X129))

+ Ban (x84 Xi—g) + (Xpg10 + Xi210))- 9)

The process is a Markov random field. This
relation between the Gibbs distribution and the
Markov random field is stated in the Hammersley—
Clifford theorem (Besag, 1974).

2.2. Generation of micro-textures, the Gibbs sam-
pler

To investigate the estimators we need stochastic
images with known parameters. Such images of
size M = 100 x 100 and with eight grey levels, are
generated using Gibbs sampler (Geman and Ge-
man, 1989). This sampler is a special case of the
single-component Metropolis—Hasting’s algorithm
and is widely used to generate stochastic images
(Winkler, 1995).

The parameters of a fourth-order model are

O‘vﬁlhﬂlbﬁllaﬁ217ﬁ22aﬁ317ﬁ327 ﬁ417ﬁ42'

The largest value of the first figure of the indices
is the order of the model. The S-parameters have
been set according to the desired local properties
and in a fourth-order model the parameter o
equals

= T7(Br1 + Bia+ By + Bay + Box + B3y + B
+2(Bar + Ba))-

For first to third-order models o is set analogous.

The special choice of the parameter o implies
the binomial parameter 6, in average, to be close to
0.5. This, in turn, gives images with the mean pixel
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value close to 3.5, i.e., in the middle of the grey
scale interval. The structure of such images are
more perceivable than those where the mean pixel
value is close to 0 or 7.

With infinitely many iterations these images can
be regarded as realizations of Gibbs sampler. We
have iterated only 200 times but this seems to be
sufficient for the images to stabilize.

3. Estimation

In this section, we discuss the estimation of the
parameters of Gibbs distributions. As in earlier
sections, we concentrate on auto-binomial models
up to and including the fourth-order.

At least four different estimators are known
from the literature, coding method (Besag, 1974),
“least squares error method” (Derin and Elliot,
1984), “logit model fit method” (Chen and Dubes,
1989) and ““minimum logit > method” (Dubes and
Jain, 1989). The last method is based on Berkson
procedure (Berkson, 1955), but is used only for
binary variables and cannot be applied here. The
least squares error method and logit model fit
method both solve a system of linear equations
where the number of equations is equal to the
number of grey scales raised to the number of
neighbours, in our case 8%, a too large number for
computations. Beside these methods also a pseu-
do-likelihood method can be used. In this study,
we investigate the coding method and a pseudo-
likelihood method and compare the Newton-
Raphson method and simulated annealing for
finding global maximum.

3.1. The coding method

This method, proposed by Besag, is probably
also the most common one, (Derin and Elliot,
1984). It is based on a coding scheme of the image
where the pixels are given different codes. The
coding depends on the the order of the system. For
a third- and fourth-order model the vertical and
horizontal directions between pixels of the same
code must be larger than two, which results con-
ditionally independent values of the pixels be-
longing to the same coding set. This is a

Fig. 3. Coding pattern for third- and fourth-order models.

consequence of the Markov property. Fig. 3 is an
example of the coding of a third- and fourth-order
model, which contain nine coding sets.

The estimator B is defined as

S A
lf:§;l)’,«7 (10)

where il,- is the parameter vector that maximizes
L(B;) in coding i.

L(B) = Z

lIlP()(, = xt|X¢5t = xér)

(t)€ coding i
(")
= Z In
()€ coding i Xt
+Tx, — (G- 1)In(1 +e7)). (11)

Besag uses the Newton—Raphson method to find
the maximum. We compare this method with
simulated annealing.

3.2. The pseudo-likelihood method

This method is computationally very similar to
the coding method. Instead of partitioning the
image into different codings all pixels are consid-
ered and the log pseudo-likelihood function is

G-1
InPL = Z <ln< )
(e Xi

+ Ty, — (G- 1)In(1 +eT)>, (12)
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where the summation is taken over the hole image,
& . The parameter values that maximizes the log-
pseudolikelihood function are the maximum
pseudo-likelihood estimates. This method was in-
troduced by Besag (1975).

4. Maximization
4.1. Newton—Raphson method

The maximum values of the cost function have
partial derivatives equal to zero. Therefore, we
seek the zero of the derivative of f(B,x) with
respect to f for a given image x. The Newton—
Raphson method implies solving a system of
non-linear equations of the partial derivatives,

of (B, x)
b,

for a fourth-order system.

In a neighbourhood of a solution, B,, each
partial derivative can be expanded in a Taylor
series, giving

df (B, +3p,x) _df (B,.x)

=0 1<i<4, 1</j<2, (13)

+J-0p+0(5p%), (14)

dp dp
where J is the Jacobian matrix
o’/ (B, x)
Ji' (i == —L e 15
405 =3, B (15)

for 1 <i, i’ <4, 1<j,j/<2.
If terms of order dp> and higher are neglected
and if

df (B, + 0B, x)
dp

is assumed to be zero, we obtain a system of linear
equations for the correction vector 4,

_ df(B,x)
J-op=— dp (16)
and a iterative scheme
ﬂnew = ﬂold + 5ﬁ (17)

The convergence of the method is certain if the
Jacobian, J, is non-singular, the second-order

derivatives are continuous in a neighbourhood of
the solutions and if the starting values are suffi-
ciently close to the solutions (Ostrowski, 1966).
The first two conditions are satisfied but the last
one is difficult to verify. There are, in fact,
problems involved with the convergence of the
method.

In our experiments, we have set the start vector
equal to 0 and used LU decomposition to solve the
system of linear equations (Strang, 1988). The it-
erative process is stopped when the sum of the
absolute values of the components of the correc-
tion vector are less than 0.000001.

4.2. Simulated annealing

Simulated annealing is a method based on
Monte Carlo techniques which can be used to find
global extremes (Aarst and Korst, 1989). We
specify our maximization problem by a set of
problem instances that are formalized as a pair
(S,f), where S is the space of possible solutions
and f = f(B,x) is the function,

f:S—R

that we want to maximize. A solution iy, € S
satisfies

fliow) = £(i), Vi€s. (18)
We apply the Metropolis algorithm to generate a
sequence of solutions to the maximization problem
and use the following algorithm.

Let i and j be two solutions to the problem
generated by the Metropolis algorithm and f(i)
and f(j) the associated functions. Accept j by the
probability

S [ if /() > /()
Fe(aceept j) = {e(f'(/)./(i)/q) if 7(j) < 1(0),

(19)
where {c¢;}; k=0,1,...,n is a sequence of de-
creasing real values.

In our maximization problem S, is the space
spanned by the parameter vector  and the func-

tion f is defined as
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= n( () )

(")
Z In
(e Xi

LT — (G- 1)n(1 +eT)), (20)

where T'is defined in Egs. (6)—(9), G is the number
of grey levels, ¥ is the whole lattice and x; is the
observed grey level of pixel (7).

The expression

ZIH(G;1>
(i) !

is constant for a given image and can therefore be
eliminated. We finally have to maximize

> Txi— (G- 1)In(1 +¢). (21)
(e¥

We use an algorithm given in Aarst and Korst
(1989), with a starting value of ¢ large enough to
allow all transitions to be accepted. The decrement
of the control parameter, ¢, is slow and the final
value ¢, so small that the function f remains un-
changed for a number of consecutive chains.

In our applications we have set the initial value
of ¢ to 50,000 and used the formula

Ci-1

T 1+010In(c,_, +3)

(22)

¢

A large number of experiments have shown that
this gives a cooling scheme that works well. For
every ¢, we run the Markov chain 20 times and
change the parameters with steps equal to 0.001.
The number ¢ is a small number. We have chose
0.001 because differences in parameter values less
than this number does not seem to visually influ-
ence the images. The number of iterations for given
¢ is found by experiments. Our aim have been to
minimize computer time without loss of accuracy.
With 20 iteration for every value of ¢ we use about
30 min. of computer time for a SPARC-station 5 to
estimate a fourth-order model. We have tried to
increase the convergence speed by taking larger
jumps but then it is necessary to increase the

number of iterations at every jump to retain the
accuracy and it results only in small improvements.

5. Properties of the estimators

In this section, we discuss the properties of the
coding Method and the pseudo-likelihood method.
We also compare the two maximization methods,
simulated annealing and Newton—Raphson. All
images, except one, have been generated using the
Gibbs sampler and the algorithm described in
section 4. The exception is the first fourth-order
model in the experiments, which has been gener-
ated using the exchange algorithm, see Section
5.2.2 and Cross and Jain (1983).

For each parameter vector, we generate 25 im-
ages which we estimate with the coding method
and the pseudo-likelihood method using both
Newton—Raphson and simulated annealing for the
optimization. We calculate the means, biases and
standard deviations of the 25 estimated parameter
values and present the results in tables, grey scale
maps of images and in graphs of the biases and
standard deviations. For each estimation we have
used start values equal to zero.

5.1. First- and second-order models

First-order models do only take account of the
nearest neighbours in the horizontal and vertical
directions. This fact restricts the number of pos-
sible textures to those that are coarse in these two
directions. The second-order models also depend
on the nearest neighbours in the two diagonal di-
rections which increase the number of possible
textures. We have performed several experiments
with first- and second-order models but present
here, only the results for one first-order and one
second-order model. These examples therefore
represent the set of first- and second-order models
with small parameter values.

5.1.1. First-order model

The chosen first-order model can be described
as small-coarse with no line structures. The pa-
rameter f§;; and f,, are equal which gives a sym-
metrical image. The results from the estimations
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Table 1

Results from experiments with a first-order model
Parameter B Bz Bar B Bs1 Bz Ba Bi
Specified 0.100 0.100 0.000 0.000 0.000 0.000 0.000 0.000
values
Coding method using simulated annealing
Mean 0.099467 0.099200  —0.000644 0.000200 0.000022  —-0.002022  0.000622 0.000156
Bias —0.000533  —0.000800  —0.000644 0.000200 0.000022  —-0.002022  0.000622 0.000156
S.D. 0.000050 0.000043 0.000041 0.000041 0.000042 0.000031  0.000023 0.000006
Pseudo-likelihood using simulated annealing
Mean 0.100476 0.098858 0.000133 0.000791 -0.001102  -0.001027  0.000289 —0.000480
Bias 0.000476  —0.001142 0.000133 0.000791 —-0.001102  -0.001027  0.000289 —0.000480
S.D. 0.000053 0.000046 0.000045 0.000023 0.000041 0.000020  0.000013 0.000011
Coding method using Newton—Raphson
Mean 0.099921 0.099020  —0.000646 0.000238 —0.000528  —0.000921  0.000592 0.000489
Bias —0.000079  —0.000980  —0.000646 0.000238 —0.000528  —0.000921  0.000592 0.000489
S.D. 0.000044 0.000045 0.000048 0.000039 0.000036 0.000035  0.000026 0.000009
Pseudo-likelihood using Newton—Raphson
Mean 0.099726 0.098815  —0.000715 0.000232 —0.000566  —0.001063  0.000605 0.000440
Bias —-0.000274  -0.001185  —0.000715 0.000232 —0.000566  —0.001063  0.000605 0.000440
S.D. 0.000043 0.000045 0.000047 0.000038 0.000035 0.000032  0.000026 0.000010

Table 2

Results from experiments with a second-order model
Parameter B B> Ba B B3 B3 Ba B
Specified 0.100 —-0.100 0.150 0.000 0.000 0.000 0.000 0.000
values
Coding method using simulated annealing
Mean 0.100889 —-0.101733 0.149222 0.001800 —0.000511 —-0.002644 —0.000200  0.000556
Bias 0.000889 —-0.001733 —-0.000778 0.001800 —0.000511 —0.002644 —0.000200  0.000556
S.D. 0.000048 0.000036 0.000018 0.000057 0.000025 0.000027 0.000016  0.000009
Pseudo-likelihood using simulated annealing
Mean 0.100600 —-0.101000 0.148800 0.001200 —0.000600  —0.002200 —0.000200  0.000200
Bias 0.000600 —-0.001000 —0.001200 0.001200 —0.000600  —0.002200 —0.000200  0.000200
S.D. 0.000055 0.000042 0.000021 0.000055 0.000025 0.000024 0.000019 0.000007
Coding method using Newton—Raphson
Mean 0.101369 —-0.101766 0.149839 0.001836 —0.000648 —-0.002161 —0.000240  0.000526
Bias 0.001369 —-0.001766 —0.000161 0.001836 —0.000648 —-0.002161 —0.000240  0.000526
S.D. 0.000050 0.000042 0.000018 0.000056 0.000026 0.000026 0.000017 0.000008

Pseudo-likelihood using Newton—Raphson

Mean 0.101026 —-0.101399 0.149176 0.001802 —-0.0005%4 —-0.002219 -0.000206 0.000373
Bias 0.001026 —-0.001399 —-0.000824 0.001802 —-0.000594 —-0.002219 —0.000206 0.000373
S.D. 0.000049 0.000039 0.000018 0.000056 0.000025 0.000026 0.000015 0.000008
are shown in Tables 1 and 2 and the grey-scale using estimated parameter values from the pseudo-
images in Fig. 4. Graphs showing the behaviour of likelihood method procedure.
the biases and standard deviations are shown in As can be seen from the images, the structures
Fig. 9. are very similar and so are the numerical results.
We only show realizations of images with the There are no important differences among the four

specified parameter values and images generated methods concerning the numerical results or the
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Fig. 4. A first-order model. The left image is generated using specified parameter values, the image in the middle using parameters
obtained using pseudo-likelihood and Newton—Raphson maximization procedure and the right image with parameters obtained using

pseudo-likelihood and simulated annealing.

Fig. 5. A second-order model. The left image is generated using specified parameter values, the image in the middle with parameters
obtained using the coding method and Newton—Raphson maximization procedure and the right image with parameters obtained using

coding method and simulated annealing.

images. The biases and the standard deviations are
small for all methods. The computing time, how-
ever, differs much and Newton-Raphson is
roughly 50-100 times faster than simulated an-
nealing.

5.1.2. Second-order model

The chosen example of the second-order model
shows some coarse structures in the North—West
direction which is a consequence of the positive 5},
and f,, parameters, cf. Fig. 5.

The results and conclusions from the estimation
of the second-order models are very similar those
of the first-order model. We can note that the bi-
ases and the standard deviations are of the same
magnitudes and that the the biases have the same
sign for all four methods. The grey-scale plots of
the images are very similar.

5.2. Third- and fourth-order models

Third and fourth-order models take the nearest
and the next-nearest neighbours into account. This
gives further possibilities for modelling a texture.
We present the results from the estimation of one
third-order model and two fourth-order models.
One fourth-order model has been generated using
a different variant of the Gibbs sampler which
make it possible to decide the final marginal dis-
tribution of the intensities. The method is de-
scribed in section 5.2.2 We have also chosen one
fourth-order model with specified parameter val-
ues that differs much from zero, i.e., the starting
point for Newton—Raphson maximization. This is
an example of an image that gives singular Jaco-
bians and Newton-Raphson fails to find the
maximum.



J.-O. Johansson | Pattern Recognition Letters 22 (2001) 1233—1246 1241

In Tables 3-5, we list the specified parameter
values and the results from the experiments. The

images are shown in Figs. 6 and 7.

5.2.1. Third-order model

The third-order model produces a coarse image
with faint directional structures in the two diago-

nal directions.

Both the biases and the standard deviations
are large for this third-order model compared
with the first- and second-order models. How-
ever, the four different estimation methods have
similar biases and standard deviations where the
parameters f3;; and f5;, have the largest bias. This
model is an example of an image with parameters

Table 3

Results from experiments with a third-order model
Parameter B Bz Bar B B3 Bz Ba Bi
Values 0.050 0.050 0.200 0.200 —-0.100 —-0.100 0.000 0.000
Coding method using simulated annealing
Mean 0.049489 0.045000 0.190178 0.191356 —0.091578 —0.090444 0.003822  0.003311
Bias —0.000511 —0.005000 —-0.00922 —-0.008644 0.008422. 0.009556 0.003822  0.003311
S.D. 0.000072 0.000067 0.000042 0.000026 0.000015 0.000034 0.000007  0.000008
Pseudo-likelihood using simulated annealing
Mean 0.050480 0.046120 0.189800 0.190640 —0.091000 —0.090240 —0.006280 —0.006640
Bias 0.000480 —0.003880 —-0.010200 0.009360 —0.009000 0.009760 —0.006280 —0.006640
S.D. 0.000078 0.000073 0.000043 0.000025 0.000017 0.000026 0.000005  0.000005
Coding method using Newton—Raphson
Mean 0.054639 0.048977 0.200390 0.199085 —0.082871 —0.081524 0.017989  0.018559
Bias 0.004639 —-0.001023 0.000390 —0.000915 0.017129 0.018476 0.017989  0.018559
S.D. 0.000072 0.000053 0.000076 0.000037 0.000038 0.000027 0.000071  0.000097
Pseudo-likelihood using Newton—Raphson
Mean 0.054639 0.048977 0.200390 0.199085 —0.082871 —-0.081524 0.017989  0.018559
Bias 0.004639 —-0.001023 0.000390 —0.000915 0.017129 0.018476 0.017989  0.018559
S.D. 0.000082 0.000067 0.000068 0.000036 0.000034 0.000026 0.000106  0.000106

Table 4

Results from experiments with a fourth-order model
Parameter Bu B Ba B B Bz Ba B
Values 0.070 0.070 0.070 0.070 0.050 0.000 0.030 0.000
Coding method using simulated annealing
Mean 0.066445 0.068044 0.067111 0.069289 0.044156 —0.009844 0.020956 —0.010467
Bias —0.003555 —-0.001956 —0.002889 —-0.000711 —0.005844 —0.009844 —0.009044 —-0.010467
S.D. 0.000034 0.000029 0.000050 0.000043 0.000037 0.000029 0.000015  0.000020
Pseudo-likelihood using simulated annealing
Mean 0.065600 0.068000 0.066600 0.069000 0.043800 —0.010400 0.021400 —0.010200
Bias —0.004400 —-0.002000 —0.003400 —0.001000 —-0.006200 —0.010400 —0.008600 —0.010200
S.D. 0.000041 0.000042 0.000057 0.000062 0.000045 0.000030 0.000019  0.000019
Coding method using Newton—Raphson
Mean 0.066971 0.068015 0.069997 0.073174 0.051910 —0.000408 0.031383  0.001722
Bias —-0.003029 —0.001985 —0.000003 0.003174 0.001910 —0.000408 0.001383  0.001722
S.D. 0.000030 0.000029 0.000040 0.000049 0.000038 0.000046 0.000101  0.000126
Pseudo-likelihood using Newton—Raphson
Mean 0.066999 0.068031 0.069921 0.072555 0.051729 —-0.000311 0.031139  0.001999
Bias —0.003001 —0.001969 —-0.000079 0.002555 0.001729 —-0.00031 0.001139  0.00199
S.D. 0.000032 0.000028 0.000040 0.000049 0.000040 0.000042 0.00009 0.000114
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Table 5

Results from experiments with a fourth-order model
Parameter Bu B B B B B3 Ba B
Values 0.450 0.450 0.450 0.450 —-0.450 —0.450 —-0.450 —0.450
Coding method using simulated annealing
Mean 0.456066 0.458133 0.456511 0.452622 —0.455200 —0.455889 —0.455466  —0.455155
Bias 0.006066 0.008133 0.006511 0.002622 —0.005200 —0.005889 —0.005466  —0.005155
S.D. 0.000637 0.000767 0.000405 0.000221 0.000498 0.000305 0.000142 0.000068
Pseudo-likelihood using simulated annealing
Mean 0.448600 0.447200 0.449800 0.447400 —0.448400 —0.448000  —0.448400  —0.448600
Bias —0.001400  —0.002800  —0.000200 —0.002600 0.001600 0.002000 0.001600 0.001400
S.D. 0.000465 0.000430 0.000369 0.000186 0.000299 0.000182 0.000111 0.000075

Fig. 6. A third-order model. The left image using specified parameters, the image in the middle with parameters obtained with the
coding method and Newton-Raphson maximization procedure and the right image with parameters obtained using the coding method

and simulated annealing.

Fig. 7. A fourth-order model generated using a binomial marginal density of the intensities. The left image using specified parameters,
the image in the middle with parameters obtained using the pseudo-likelihood method with Newton—Raphson maximization and the
right image with parameters obtained using the coding method and simulated annealing.

that are very difficult to estimate and where the
values of the parameters are critical for the tex-
ture. The estimates obtained using the coding
method with Newton—Raphson maximization
exhibit a phase transition phenomenon. This is a

state where the short-term correlation develops
into long-term correlation, see Pickard (1987) and
the corresponding image loses its fine texture
structure, cf. Fig. 6. The image corresponding to
the estimates obtained using the coding method
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and maximization using simulated annealing does
not degenerate but it is darker than the original
image. It has, however, a similar texture struc-
ture.

5.2.2. A fourth-order model with constaint

We have generated a fourth-order model using
a different Gibbs sampler where the given marginal
distribution of the intensities remains unchanged
during the simulation process. Instead of assigning
a pixel a value according to the values of its
neighbours, two pixels are chosen and their values
are exchanged according to the values of their
neighbours. In our experiments, we have chosen
the initial distribution of the intensities binomial,
Bin (8, 0.25). As in earlier subsections, we show
only three images due to the very similar numerical
estimates using the coding method and the pseudo-
likelihood method. The images have large clusters
but no directions and the mean value of the in-
tensities is equal to 2.0.

The bias is of the same magnitude as for the
third-order model for most parameters. However,
parameter f;,, ,, and f5,, are rather large with the
maximization using simulated annealing and the
bias are of magnitude 0.01. Newton—-Raphson
maximization method gives bias of magnitude
0.001 for these parameters. The grey-scale plots
are similar the original image, cf. Fig.7.

5.2.3. A fourth-order model with large specified
parameter values

The second fourth-order model is chosen with
parameter values far from zero. This is an example
of an image where the Newton—Raphson method
fails to find the maxima. The image corresponding
to the parameter values has short line segments in
the two diagonal directions and looks like a lab-
yrinth, cf. Fig. 8.

The numerical maximum obtained using simu-
lated annealing is close to the specified value and
the standard deviation is small. The biases are
systematically positive for the coding method
where the pseudo-likelihood method produces
negative biases and vice versa. We also note that
for this example the biases are smaller for New-
ton—Raphson than for simulated annealing.

Fig. 8. A fourth-order model with parameter values far from
zero. The left image is generated using specified parameter
values and the right image using parameters estimated using the
coding method and maximization with simulated annealing.

6. An application

The surface structure of newsprint can be re-
garded as an engineered stochastic structure (Deng
and Dodson, 1994). The quality of the print on the
surface depends highly on this structure and
therefore it is important to describe different
newsprint qualities in terms of numbers. A para-
metric model where the parameters can be related
to the quality of the newsprint can be a solution to
this problem.

There are different ways to measure the surface
of newsprint. Much depends on which property is
in focus of interest. Is the physical variation on the
surface the interesting property, a small needle can
be used to sample the surface. Optical measure-
ments are often used. In our applications an op-
tical instrument has been used to measure the
reflected light from a laser illuminating small areas
on a rectangular lattice.The results from such
measurements are recorded in two-dimensional
arrays and can be visualized as grey-scale images
showing the texture of the surface. These images
have been modelled as an fourth-order auto-
binomial model.

6.1. Estimating the model parameters

The parameters of the model have been esti-
mated with both the coding method and the
pseudo-likelihood method. We have also used
both Newton-Raphson and simulated annealing
for the optimization. The results are given in
Table 6. The size of the measured piece of
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Fig. 9. Graphs showing bias and standard deviations of first,
second, third and fourth-order models. The solid lines with the
circles are used for the coding method and simulated annealing,
the dashed lines with the pluses for the pseudo-likelihood and
simulated annealing, the dotted lines with the stars for the
coding method and Newton-Raphson and the dot-dashed lines
with the squares for pseudo-likelihood and Newton—Raphson.
The upper four figures show the biases and the lower four show
the standard deviations. Note the different scales.

newsprint is 5 x 5 cm? and 100 x 100 samples are
taken on a regular quadratic lattice.

Based on the value of these estimates, 25 images
have simulated and a goodness-of-fit test have
been performed.

6.2. Testing goodness-of-fit

To evaluate the appropriateness of the model to
the given image we consider goodness-of-fit tests.
The null hypothesis is

Hy: The image x is a realization of a fourth-
order auto-binomial model.

A ranking test for testing goodness-of-fit of
spatial point processes was proposed by Diggle
(1979). This test is based on a vector formed by
spatial features of the image. From n realizations
of the model » different feature vectors vy, ..., v,
are obtained. From these feature vectors and the
feature vector of the given image, v,, averages of
the vectors, excluding the jth vector, are defined by

1
ﬁj:; Z v;

0<i<n
i#j
for j=0,1,...,n The distance between the vector
v; and the average omitting v; is u; = ||v; — 7|,
where || - || denotes Euclidean norm. Finally, these
distances are ranked in ascending order
ue) <umy < -+ <u. The hypothesis that the gi-
ven images comes from the same model as the n
realizations is rejected at the significance level
100(1 —¢/(n+ 1)) if ug > ug.
Based on the (unnormed) covariances

€= Z (xi = %) (xip1 —X) = Z Xi(i41 = %),

()ez ez
C) = Z xi(xi:+2 —)_C),
(leg
Cy = Z xi(xi:+3 _X‘)a
(Nez
Cy = Z x[(-xi:+4 - )_C)7
(nez
Ccs = Z Xi(xi:+5 _X)>
(leg
Ce = Z xi(xi:+6 - )_C)7
(nez
c7 = Z x,«(x,-;+7 + Xip9 — 2)?)
(eg
and cg = Z X[(xi;+g +-xi:+10 - 22)7
(e
(for x= Z x;/M),
(e
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Table 6
Parameter-estimates of newsprint using four different approaches
Parameter B B Bar B B3 B3 B B
Coding method using simulated annealing 0.17 0.21 0.07 0.01 —-0.02 -0.02 -0.02 -0.01
Pseudo-likelihood using simulated annealing 0.19 0.22 0.07 0.03 0.00 —-0.03 —-0.03 0.00
Coding method using Newton-Raphson 0.19 0.21 0.05 0.02 -0.01 —-0.03 -0.02 -0.02
Pseudo-likelihood using Newton-Raphson 0.18 0.20 0.06 0.03 0.01 -0.01 —-0.02 0.00

where M is the number of pixels, correlations are
formed by dividing with the (unnormed) variance

co = Z (x; — X)*.

(le2

The feature vectors considered in the present case
are

(Cl ,C2,C3,C4,Cs5,C6, C7, Cg)t/C().

The test is based on 25 different realizations of the
model and the given image.

The test has been performed for the four dif-
ferent methods of the images and none of them
resulted in rejection of the null hypothesis at the
5% significance level.

7. Conclusions

In most cases, there are no important differ-
ences between the coding method and the pseudo-
likelihood method. They produce similar estimates
and use the about the same computing time.
However, some parameter-vectors are difficult to
estimate and only small differences among the
parameter values can result in phenomenon similar
to those of phase transition. For such images it is
very difficult to chose the best method.

The main differences between the two methods
to find the global maximum, Newton—-Raphson
and simulated annealing, are the computing time
and the fact that simulated annealing is able to
find global maximum in some cases where New-
ton—-Raphson fails.

In applications where auto-binomial models
have been assumed but the order of the model not
is known or specified, an appropriate method for
estimating the parameter is to start with the coding
method or pseudo-likelihood method, with New-

ton—-Raphson for the optimization. If no solution
is found optimization with simulated annealing
should be tried.
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