
Ann. Inst. Statist. Math. 
Vol. 46, No. 3, 475-486 (1994) 

ON ASYMPTOTIC NORMALITY OF PSEUDO LIKELIHOOD 
ESTIMATES FOR PAIRWISE INTERACTION PROCESSES 

JENS LEDET JENSEN 1 AND HANS R. KONSCH 2 

1Department of Theoretical Statistics, Institute of Mathematics, 
University of Aarhus, DK-8000 Aarhus C, Denmark 

2 Seminar fiir Statistik, ETH, CH-8092 Ziirich, Switzerland 

(Received February 22, 1993; revised August 26, 1993) 

A b s t r a c t .  We consider point processes defined through a pairwise interaction 
potential and admitting a two-dimensional sufficient statistic. It is shown that 
the pseudo maximum likelihood estimate can be stochastically normed so that 
the limiting distribution is a standard normal distribution. This result is true 
irrespectively of the possible existence of phase transitions. The work here is an 
extension of the work Guyon and Kiinsch (1992, Lecture Notes in Statist., 74, 
Springer, New York) and is based on viewing a point process interchangeably 
as a lattice field. 
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i .  Introduction 

In recent years there  has been considerable progress in fitt ing Gibbssian mod- 
els to spatial  point  pat terns.  Both  approximations to the max imum likelihood 
es t imator  and al ternatives like the pseudo max imum likelihood es t imator  which 
are easier to compute  have been developed, see e.g. Diggle et al. (1994) for a re- 
view and a comparison of the different est imators.  For another  discussion of the 
value of pseudo likelihood est imation we refer to the rejoinder to the discussion 
of Besag et al. (1991), from where we also have the following quote: " there are 
still many  open problems concerning the efficiency and asymptot ic  normal i ty  of 
maximum pseudo likelihood est imators" .  Actually, for all the est imators  there  is 
only little known about  their  d i s t r ibu t ion- -even  asymptot ical ly  as the observation 
window increases. Correspondingly, inference about  the unknown parameters  is 
difficult. Asymptot ic  normal i ty  has been proved for the subset of pa ramete r  val- 
ues satisfying the so-called Dobrushin conditions, see e.g. Guyon (1987), Jensen 
(1993) or Heinrich (1992). These conditions are sufficient, but  not  necessary for 
the uniqueness of the infinite volume Gibbs measure.  The  possible non-uniqueness 
of this infinite volume Gibbs measure (phase transi t ion) lies at the hear t  of all dif- 
ficulties. The  example of the Ising model for latt ice systems shows tha t  at the 
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transition from uniqueness to non-uniqueness long range dependence may occur. 
For this reason standard central limit theorems cannot be used. Recently how- 
ever Guyon and Kiinsch (1992) have shown for lattice processes that asymptotic 
normality can be obtained for all easily computable estimators without mixing 
conditions or other detailed properties of the Gibbs measure. Instead one exploits 
a property that resembles that  of a martingale difference sequence which holds for 
all values of the parameters. In this paper we extend the results of Guyon and 
Kiinsch (1992) to the pseudo maximum likelihood estimator for a large class of 
Gibbs point processes. 

The point processes X that  we will consider are given by their conditional 
density in a region A C Nd with respect to Poisson measure UA having unit inten- 
sity. Let xa be a point configuration in A and ya a point configuration in Nd\A. 
Then the measure p is defined by 

(1.1) 
d~h(.]y A) 

dPA 
(XA) = Z(4,/3; yh)~l~AI exp{--~VA(xA I yA)}, 

where/3 > 0, ( > 0, ]xal is the number of elements in XA, and 

1 
YA(~A I y ~) = ~ ~ ~(~ -~:) .  

zl Cz2 ,z~ ~x a UyA, { zl ,z2 } nx A ¢~ 

The potential ¢ will always be of finite range ~;, 

¢ ( z ) = 0  for Izl>~, 

and also ¢ ( - z )  = ¢(z). For this process the log pseudo likelihood function, as 
described in Jensen and M¢ller (1991), in the region A based on the outcome 
x = xa (3 yA is 

pIi(co,/3) = ~[XA[ -- ¢3 ~ V(Z\Z, Z) -- e ~ A exp{--/3v(x, ¢)}d~, 
Z~XA 

where w = log(C) and v(x ,  ~) = }-~zcz ¢(z - ~). Because of the finite range as- 
sumption we can calculate pIh(w,/3) on observing x~ only, where A = {x + y [ x C 
A, [vl < ~}. 

A basic ingredient in the approach in this paper is that  a point process can 
be viewed interchangeably as a lattice field. Let Ai, i -- ( i l , . . . ,  id), be the cube 
{z E ~d I ~(ij -- ½) < zj < ~(ij + ½),j = 1 , . . . , d }  for any chosen ~ _> ~. Setting 

Xi = XA~, i C 774, this becomes a Gibbs lattice field. We will consider estimation 
of (w,/3) from _P/h(n), where A(n) = U~e~ A~ and where the process is observed in 
©i~i Ai,  wi th in  = { i + j  l i ~ In, IN[ <- 1} a n d t h e n o r m i s  [j] = max{[ j l [ , . . . ,  IJ~]}- 
We will assume throughout that  I~ increases to 7/d and [O[n]/lIn[ ~ O, where 
O I n =  {i  E In [ 3 j ~ I n : ] j - i [ = l } .  

One of the main obstacles in the proofs below will be to prove that  a certain 
covariance matrix is positive definite. To do this we will assume one of the following 
conditions on the potential ¢: 
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(C1) 0<_¢(z)  < o %  
(C2) O(z) = ¢(Izl) where ¢ ( - ) :  ~+ --+ ~ satisfies 
(i) ~)(r) _> - K  for some constant  K,  ~(r)  = oc for r < h for some constant  

h > 0, ~(-) is continuously differentiable except at a finite number of points; 
(ii) for all/3 > 0 the function O'(r)e -a¢(r) is bounded; 

(iii) either ¢( r )  --* a0 • 0 for r ~ ~ or ~'(r)  ~ a l ¢  0 for r ~ ~;. 
(C1) says tha t  the interaction is purely repulsive. (C2) allows an at tractive 

interaction, but  then we need a hard core. The other conditions in (C2) are 
technical. 

The result of the paper is as follows. 

THEOREM 1.1. Let #, defined through (1.1), be a stationary Gibbs point pro- 
cess satisfying either (C1) or (C2). Then 

(1.2) t In l -1 /2(~ jn  -- oJ, ~rt - - / ~ ) j n V n  -1/2 ~+ N2(0, I),  

where (&n,)n) is the estimate from PIA(n) and jn and Vn are given in Section 3. 

The important aspect of (1.2) is that everything can be calculated fairly easily 
from the data. In the set up here/~ is one-dimensional. This is only used in an 
essential way in the proof of Lemma 3.3 below, and it seems likely that generaliza- 
tions to the multi-dimensional case are possible. However, we do not pursue this 
here. 

In Section 2 we describe in a general form the underlying central limit theorem 
used in the paper. Section 3 contains the proof of Theorem i.i, and in Section 4 
we illustrate the results by a small simulation study. 

2. A central limit theorem for random fields 

Let Zi, i E 77 a, be a random field and let In C 7/a. We want to consider central 
limit theorems for the sum }-]-ic±~ Zi as In increases. This is a fairly recent subject,  
and the approach has been to impose conditions on the dependency structure 
through the mixing coefficients. Bolthausen (1982) seems to have obtained the 
minimal set of conditions needed on the strong mixing coefficient for a s ta t ionary 
field. Takahata  (1983) has a similar result where the s ta t ionar i ty  assumption has 
been relaxed. Unfortunately, it is often hard to obtain the necessary bounds on 
the mixing coefficients. Some results are known for Gibbs fields in the Dobrushin 
uniqueness region and this is exploited in Jensen (1993). Outside the Dobrushin 
uniqueness region very little is known. Often there is an ergodic decomposition of 
the measure under consideration, but  there seem to be no general bounds on the 
mixing coefficients for the ergodic components.  The example of the Ising model at 
the critical point shows tha t  the mixing coefficients are in general not summable. 

In the theorem below we replace the bounds on the mixing coefficients with 
an ergodicity assumption and the assumption tha t  the conditional mean of Zi, 
given the a-field of events outside site i, is zero. The latter condition reminds one 
of martingale differences, al though it is not clear how to bring out clearly such a 
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comparison. The condition fits in naturally with the pseudo likelihood function, 
which, loosely speaking, is a product of conditional likelihood functions. 

THEOREM 2.1. Let Xi ,  i E ~_d, be a stationary and ergodic random field with 
X i  E S for  some measurable space S, and let f : S I° ~ ~k,  where Io = { j  E Z d I 
IJl -< 1}. Define Zj  = f ( X i + j , i  E I0), j E 2~ d, and A = E(}-~IjI_<I Z~Zj) ,  where a 

* denotes the transposed vector. For a region In C T_ d we let Sn = ~-~-icI~ Zi.  I f  

(i) E ( Z i  l X j , j  ¢ i) = O, i E 7/d, 
(ii) EIz I 3 < and 

IOI~l (iii) In increases to 7/d with -[y£- --+ O, 
then 

IInl-~/2Sn ~ N~(O, A) as n ~ oe. 

PROOF. From (i) we find the variance 

iEIn Ij-il<_l,jEIn 

= A -  [Inl-1 E E ( Z *  
iEOI~ Ij--il<_l,j~I~ 

A, 

where the convergence follows from (ii) and (iii). If A is not positive definite some 
direction of [I~f-1/2S~ will have a variance tending to zero, and the conclusion of 
the theorem will trivially be correct for those directions. We can therefore assume 
tha t  A is positive definite. 

Let e E Nk with ]e I -- 1 and define 

Ij-il<_l 
jEI~ 

and 

According to Lemma 2 in Bolthausen (1982) we must prove that  

(2.1) E{(i,~ - Sn)exp(i /~Sn)}  --+ 0 g/~ E 0~. 

Following Bolthausen (1982) we write (2.1) as E{A1 - A2 - A3} with 

A1 = i,~exp(iAS~) [1 -lint -1/2 ~ Y j S j , n  , 
In 

A2 = Iln1-1/2 exp(iASn) E Y j [ 1  - exp(-i /~Sj,n) - i)~Sj,n] 
In 

and 
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A3 = l/~1-1/2 Z Y j  exp[i~(& - sj,~)]. 

From (i) we get directly tha t  EA3 = 0. For A2 we find 

1 13j2 { ( )2} 
lEA21 ~ ~ ~ E  IDI ~ ~Yk 

I~ Ik-jl<l,kE/~ 

< eA2[I~1-1/2 ---+ O, 

on using the moment  assumption (ii). 
For the last term A1 we write, using (ii) again 

IE&I ~ IAIE 

= I A I E  

1-1i~1 -~ ~ D R j  +clAI Io/~l 

[fn[ - 1  g ( } z j l r ~ j  -- E ( Y j J ~ j ) )  -}- c[,~ t -  

In 

10z~] 
lz~t ' 

where R i = ~-~-Ik-jl<_l Yk and EYjRj  = 1. The condition (iii) gives tha t  the last 

term here goes to zero, and the first term is seen to go to zero from the Ll-version 
of the ergodic theorem (Georgii (1988), Section 14.A). [] 

3. Proof of Theorem 1.1 

We prove Theorem 1.1 through a series of lemmas. Since plA(~) = ~-~-icI,~ plA~ 
we find tha t  the two first derivatives of the log pseudo likelihood function can be 
wri t ten as 

OpIA(n) -- Z (go o Oi, gl o Oi), 
u~(~,9) -  o(~,~) ~ 

--02pIA('~) = Z e~ ( fo o Oi 
A(~,  ~) : o(~, ~)*o(~, ~) - f l  o o~ 

iEfn 

- f l  o 0i "~ 
f2 o0, ] ' 

where 

g o ( X )  =- I X A o l -  e a ; f o ( X ) ,  g l ( X )  =-- - 

f k (X)  = fa  v(X, ~)k exp{- f l v (X ,  ~)}d~, 
o 

Z 
zEXA o 

v (X \ z ,  z) -F e ~ f l ( X) ,  

and Oi is the t ranslat ion operator. 
We are going to apply Theorem 2.1 to Zi = (go o Oi, gl o Oi). Note tha t  9k, 

k = 0, 1, depends on XA~, [i[ _< 1, only. The first lemma will be used to check 
assumption (ii) in this theorem. 
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LEMMA 3.1. Under the assumption (C1) or (C2) all moments of go(X), 
g l (X)  and f k (X )  exist. 

PROOF. This is shown in Jensen (1993). [] 

The next lemma will give (i) of Theorem 2.1. 

LEMMA 3.2. The conditional means of go and gl given X A° are zero, 

E(go(X) IX A°) = F,(gl(X) I X A°) = O. 

PROOF. This appears from Jensen and Moller (1991). [] 

We now turn to the variance of Un = Un(w,/3). We find as in the proof of 
Theorem 2.1 

where we denote the latter quantity by E(U) in the following. 

LEMMA 3.3. Under either (C1) or (C2) the limiting variance E(U) is posi- 
tive definite. 

PROOF. We must show that  for any (a, b) ¢i (0, 0) there exists c > 0 and no 
such that  for n > no, V((a, b). U~) > clIn]. We bound this variance from below 
by a conditional independence argument. Let L = 377 d, then the Xaz, 1 C L, are 
conditionally independent given XAz, l ~ L, and each gk o 0j depends on exactly 
one Xaz, 1 E L. Hence 

(3.1) 

V((a,b) . U~) >_ E{V[(a,b) . Un [ X & , l  ¢ L]} 

-> E 
iELn(I~\aI~) LIJI_<I 

1_< ,11 < 2] },  

where we use that conditionally the variance is a sum of variances and due to 
the stationarity the terms with i E L N (In\OIn) in the sum are equal. Since 
IL A (In\OIn)I >_ Cl]]nl for n large we must show that the mean value in (3.1) is 
positive. This will be done by showing that the conditional variance is positive for 

the case XA, = 0 for 1 _< Ill _ 2. Let in this latter case h(XAo) = ~lj1<l(ag0o0j + 

bgl o Oj), so that we must show that h(.) is not almost surely a constant, which we 
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will do by  a coun t e r  a r g u m e n t .  For  XA0 = 0 we find h(0)  = --ae"~3dlAo I. I f  h is a 
cons t an t ,  we find for a l m o s t  all z l ,  • . . ,  z~ C Ao t h a t  

(3.2) 0 = h({zl , . . . ,  z~}) - h(0) 

w h e r e / k  = {Jlil_<lAi. 

Case 1. (C1) is satisfied: In  p a r t i c u l a r  for n = 1 we can  change  the  va r i ab le  
of  i n t e g r a t i o n  in (3.2) f r o m  ~ to  zl - ~ and  use t h a t  ¢(~) = 0 if ~ ~ A0 to  o b t a i n  

1 + e w fAo [1 -- e x p ( - / 3 ¢ ( ~ ) ) ] d ~  
b = - a  = - h e 2 ,  

e~ fAo ¢(~) e x p ( - / 3 ¢ ( ~ ) ) d ~  

whe re  c2 > 0. I n s e r t i n g  this  in (3.2) and  le t t ing  n --+ cc  we see f r o m  the  p o s i t i v i t y  
of  ¢ t h a t  a m u s t  be  zero a n d  so also b = -ac2 is zero. 

Case 2. (C2) satisfied: F r o m  (3.2) w i th  x = zl ,  x + y = z2, lY[ > h, we have  
for a l m o s t  all x, y t h a t  

(3.3) a { 2 + e~ f~ [1-exp( - /3C(x-~)  - /3C(x + y - ~ )  )]d~ } 

./x [¢(x - ~) + ¢ ( x  + y - ~)] e x p ( - / 3 ¢ ( x  - ~) - / 3 ¢ ( x  + y - ~))d~ + be .~ 

= 2 b e ( v ) .  

F r o m  (C2-i)  t he  1.h.s. of  (3.3) is con t inuous  in x, y. I f  the re fo re  a0 ~ 0 in (C2-iii)  
t he  e q u a t i o n  (3.3) can  hold  w i t h  lYl ~ n f rom be low and  f r o m  a b o v e  on ly  if b = 0. 
I f  a0 = 0 so t h a t  a~ ~ 0 in (C2-iii)  we use  (C2-i,  ii) to  show t h a t  t h e  1.h.s. of  (3.3) 
is con t i nuous ly  di f ferent iable ,  and  aga in  (3.3) can  hold  on ly  if b = 0. W h e n  b = 0 
we use  (3.3) and  (3.2) w i th  n = 1, 

(3.4) O=a { l  +e~ f £ [ l - e x p ( - ~ ¢ ( z - ~ ) ) ] d ~ } .  

S u b t r a c t i n g  (3.4) twice  f r o m  ( 3 . 3 ) - - o n c e  w i th  z = x and  once w i th  z = x + y - - w e  
find 

(3.5) 0 = a f [ 1  - e x p ( - / 3 ¢ ( x  - ~))][1 - e x p ( - / 3 ¢ ( x  + Y J£ 
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If we take y such that  2 n - e  < [Yl < 2n the only points contributing to the integral 
in (3.5) are such that  ] x - ~ l  > n - e  and I x + y - ~ l  > ~;-e .  Hence if c is sufficiently 
small we have from (C2-iii) tha t  the integrand in (3.5) is either strictly positive 
or strictly negative. This implies that  a = 0. Since the cube A0 has side length k 
only, we actually cannot take lYl > 2n - e unless ~ > 2d-1/2ec. However, taking 
the sides of the cubes Ai twice as large changes E(U)  only by a factor 2 d. [] 

LEMMA 3.4. Let # be an ergodic measure. Then under (C1) or (C2) we have 

1I,~I-1/2U~E(U) -1/2 ~+ _~½(0, I). 

PROOF. This follows from Theorem 2.1 using Lemma 3.1 to Lemma 3.3. [] 

We next turn  to the second derivative j~ = Jn (a;,/3). If # is an ergodic measure, 
the ergodic theorem shows that  

II,~[-lj~ ~ 2 ( j )  = e ~ [ #(fo)  ~ ( - f ,~ ) l  
 (f2) j 

almost surely. 

LEMMA 3.5. The limit E( j )  is positive definite. 

PROOF. We have that  

(a, b)E(j)(a,  b)* = e'~ p(a2 fo - 2abfl  + b2f2) 

= e" P { f A [ a -  bv(X,~)]2 e x p ( - / 3 v ( X , ~ ) ) d ~ }  , 
o 

and since v (X ,  ~) is not almost surely constant this term is positive. [] 

We now indicate the dependence on/3 in fk by writing f~,  and prove a uniform 
convergence of jn.  

LEMMA 3.6. Let p be ergodic and let (C1) or (C2) hold. For any c > 0 and 
any sequence en ~ 0 there exists a sequence 5~ ~ 0 such that for  any sequence 
(cu~,/3n), with [can - cJ I < ce~, t/3~ -/31 < cen, we have 

( e  - o < 

i E I n  

almost surely. 

PROOF. If [/3~ --/3t < 1/3 we can, from the conditions (C1) or (C2), find a 

constant  ak such that  f~n is bounded  by ak. Then, we also have for [/3n -/31 -< ½/3 

that  If~ ~ - f;~ k l < I/3~ - /31ak+l ,  and therefore 

i C I n  
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since cn ~ 0. [] 

LEMMA 3.7. Let # be ergodic and let (C1) or (C2) hold. Then the maximum 
pseudo likelihood estimate (&~, fl~) converges in probability to (w,/3). Furthermore, 

I_r~l-~/2g~ and 1I~l-1/2(~n - w, ~ -/~)jn 

are asymptotically equivalent. 

PROOF. This follows in a s tandard  fashion from Lemmas 3.4 and 3.6, see e.g. 
Sweeting (1980). Consistency has also been proved by Jensen and M011er (1991). [] 

From Lemmas 3.7 and 3.4 we get immediate ly  tha t  

(3.6) ]I~]-l/2(~n - w, ~n - ~)jn~(U) -1/2 ~-~ N2(O, I ) ,  

but  this is not of much pract ical  value since E(U) cannot  be explicitly calculated. 
We therefore need to es t imate  E(U).  Define 

(3.7) Vn = IZ~l -~ ~ g~ 
ieI~ Ijl_<l 

then  if # is an ergodic measure we have 

(3.8) V~ ~ E(U)  

almost surely. 

PROOF OF THEOREM i.i. If # is an ergodic measure the result follows from 

(3.6) and (3.8). 
If there  is more than  one s ta t ionary  Gibbs measure, then  automat ica l ly  there  

are nonergodic Gibbs measures because the set of all Gibbs measures is convex. 
But  any s ta t ionary  Gibbs measure can be represented as a mixture  of ergodic 
measures (Georgii (1988), Theorem 14.10). Let  us write this in the way 

/ f(x)dp(x)= / { / f(x)dp,(x) } dm(e), 

for any funct ion f ,  where #¢ is an ergodic measure and the outer  integral is over 
the set of ergodic measures. Then  for any bounded  and continuous function h on 
R 2 we find 

lirn f h{]In]-U2(&n - w, ~ -/3)jnv~l/2}d# 

= f { f h(x,y)~e-x2/~-~2/2dxdy}d.~(e) 
= f h(x,y)le-x2/2-Y2/2dxdy • [] 
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4. S imula t ions  

We have simulated the process (1.1) with ¢(x) = l(Ixl < 0.05) in the re- 

gion A = [0,2] × [0,2] with y£ -- 0 and then observed the process in A = 
[0.5, 1.5] × [0.5, 1.5]. The process is obtained as the limit of a birth and death  
process start ing from a Poisson point configuration, see M¢ller (1989). We ini- 
tially simulated 100.000 births and deaths and then for every new 100.000 births 
and deaths sampled the process 100 times. We used the parameter  values w = 4.8 
and/3  = 0.2. 

To obtain a symmetric  version ll~ of V~ in (3.7) we restricted the sum over j in 
(3.7) to j E In. When looking at the results of the simulations it was noticed tha t  
there was a systematic difference between (&~ - w,/~n - /3 )  and the approximation 
U~j~ 1. This remained true when using )n instead of j~. For tha t  reason we 
considered (1.2) with jn replaced by Jn = (J~ + )~)/2.  In Fig. 1 we have plotted 
the hundred values of the statistic 

(4.1) 

~ o 

._¢ 

-2 0 2 

linearized variable one 

Fig. 1. The hundred simulated values of the normalized estimates (4.1). The circles 
give the 90% and 95% bounds from a X2(2)-distribution. 

where I)~ -112 was taken to be an upper triangular matrix. Four points in the upper 

left hand corner are somewhat extreme. Of these three are associated with the 
lowest values of the numbers of points in the observation window. Included in the 
figure are also the 90~ and 95% confidence circles. 
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ez" 
I 

• ,I//I 

-2 0 2 

standardized estimate of beta 

Fig. 2. The orderd values of the statistic (4.2) plotted against the quantiles of a stan- 
dard normal distribution. 

In Theorem 1.1 we have given the asymptotic normality for (&n,/)n). We can 
also formulate an equivalent statement for/3~ only, i.e. 

(4.2) ~:--1 * - " : - -1  --1/2 N(0, 1), IInl-1/2( n--9){(;n )2} 

where A2 indicate the second column of a two by two matrix A. In Fig. 2 we 
have compared the hundred values of the statistic in (4.2) with the quantiles of 
a standard normal distribution. As can be seen the normal approximation is a 
satisfactory approximation. 
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