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PSEUDOLIKELIHOOD FOR EXPONENTIAL FAMILY
MODELS OF SPATIAL POINT PROCESSES

By JENS LEDET JENSEN AND JESPER M@LLER

University of Aarhus

The pseudolikelihood for general spatial point processes including
marked point processes is derived, and some of its properties are investi-
gated. In particular, we prove consistency of the maximum pseudolikeli-
hood estimates for Markov processes of finite range.

1. Introduction. Many of the models used in spatial point processes have
a density of the form g(x, 0)/Z(8), where g(x, 8) is an explicitly given function
expressed in terms of interaction functions with x the data and 6 a parameter,
and Z(0) is a normalizing constant that cannot be evaluated explicitly. Since
Z(6) is not known, it is difficult to perform ordinary likelihood inference. In
the literature there are two ways of dealing with this problem. One considers
approximations to Z(#) either based on asymptotic arguments or based on
simulations [see, in particular, Ogata and Tanemura (1984), Moyeed and
Baddeley (1990) and the review given in Ripley (1988)]. In the other approach,
which is the one of interest in this article, one avoids the use of the likelihood
function and introduces instead a pseudolikelihood function for estimating 6.
The pseudolikelihood idea originates from lattice processes [Besag (1974)], but
was extended in the special case of a Strauss point process in Besag (1977).
The extension is essentially based on approximating the spatial point process
by a lattice process, and then using the pseudolikelihood for lattice processes.
A more detailed account of this approximation is given in Besag, Milne and
Zachary (1982), and based on these works Ripley (1988) states a general
version of the pseudolikelihood. If in the above approximation of the spatial
point process by a lattice process one does not go to the limit, it is possible to
obtain a logistic likelihood instead of the pseudolikelihood [see Clyde and
Strauss (1988)]. In Section 2 we derive the pseudolikelihood by a direct
argument for general spatial point processes including ordinary point pro-
cesses on bounded subsets of R? and marked point processes such as, for
example, random processes of balls. For the subclass of Markov point processes
of finite range, we show in Section 3 that the maximum pseudolikelihood
estimate is consistent. Three examples are briefly discussed in Section 4.

Consistency seems not to have been considered before for spatial point
processes, whereas the case of a lattice process has been treated by a number
of authors. Our proof resembles that of Geman and Graffigne (1986) in the
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446 J. L. JENSEN AND J. MJLLER

way the Markov property is used to give conditional independence. However,
the other parts of the proof are different since Geman and Graffigne’s proof
relies on the state space of the lattice variable being finite. Guyon (1986) and
Gidas (1988) also utilize strongly that the state space is compact. Quite a
different and general proof in the lattice case has been given by Comets (1989).
Comets uses large deviation bounds to obtain the consistency. The state space
of the lattice variable need not be compact and the main restriction seems to
be finiteness of a certain norm on the interaction. The underlying structure of
our proof is given in the Appendix. The results in the Appendix actually give
the known results for finite-range lattice processes with a finite state space in
an easy way (this derivation can be found in an unpublished report by the
authors).

2. Definition and first properties. In this section we give the basic
notation in the paper and introduce the pseudolikelihood.

We shall be studying a finite point process X living in a space S; that is, a
realization of X consists of a finite number of points in S. We let (S, %, A) be
a measure space with % containing all singletons and A a diffuse measure
with A(S) < . From (S, %) we can construct the exponential space (Qg, %)
consisting of all finite counting measures on S. Since we shall consider only
point processes X with no multiple points, we can equivalently think of Q¢ as
consisting of all finite point configurations x = {x,,...,x,} €S with n =
0,1,2,..., and thus our point process is a random element in Qg. For details
on the exponential space (Qg, Fg), see Carter and Prenter (1972). For x € Qg4
we let n(x) denote the cardinality, and the empty point configuration with
n(x) = 0 is denoted by x = &. Thinking of point configurations as subsets of
S, we use the obvious notation suchas x Cy, x Uy, x U ¢ and x, = x N A for
x,y €Qg, £€ 8 and A € &, and when £ € x we also use x \ ¢.

From A we define the Poisson measure on (Qg, %) by

* 1
us(F) = e-“S)[lF(@) + L [ [le((x o m))Md) - M)
n=1""

for F' € ;. Since we have assumed that A is a diffuse measure, realizations
under ug have almost surely no multiple points. The restriction of ug to Q4
for A € & is denoted 4.

The general setup above covers an ordinary finite point process, where S is
a bounded Borel set in R?, & is the Borel o-field and A is the Lebesgue
measure. We call this model (M1). Also covered is the model (M2) of a finite
marked point process, where S =S, X S,,, =%, X &, and A =1, X Q,,
with (S, %, 1,,) as in model (M1), and with the mark space (S,,, %,,,@,,) a
probability space where %, contains all singletons. Examples of marked point
processes can be found in Baddeley and Mgller (1989).

The statistical model is obtained by considering a class of probability
measures Py, § € 0, on (4 that are absolutely continuous with respect to ug.
We call the density f,(x) and assume the density to be hereditary and stable
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for all 8 € O; that is,

(2.1) fo(¥) > 0 whenever f,(x) >0and y Cx,
and almost surely under ug,
(2.2) fo(x) < ¢, K

for some constants c,, K, > 0. The conditional density of X, given Xg5. 5 =
Xg. o With respect to u, is given by
fo(xa YU xs a) .
(2.3) fo(xalxs a) = : if fo(xs\4) >0,
ffe(y Uxga)ta(dy)

and 0 otherwise. Now, let T' be a fixed set in # andlet A;; € 4,1 =1,2,...,
Jj=1,...,m,, be a nested division of T'; that is, T'= UT,A,;, where A;; N
A, =Qforj#j and A;; CA,_, ; for some j'. We assume that

(2.4) m; > o and m;8? >0 asi— o,
with 8, = max, _;_,. A(A;)). '

DEFINITION 2.1. For T € # and x € Qg we define the pseudolikelihood
on T by

(2.5) PL,(6) = exp(~A(T)) lim 1‘i1f9(xA”|xS\Al‘,).
l_)ooj=

We have only included the constant exp(—A(T)) in the right-hand side of
(2.4) for convenience as seen from the following derivation of the pseudolikeli-
hood.

TueoREM 2.2. For pga.a. x € Qg the pseudolikelihood on T is well
defined and given by

(2.6) PL7(8) = exp{—B,(x,T)} I by(x \ &, ),

E€EXD

where for £ € S,

(2.7) bo(x,&) =fo(x U E)/fo(x) if fo(x)>0
and 0 otherwise, and for A € %,
(2.8) By(x, A) = [ bu(x, )A(d¢).

Proor. Since from (2.4)
I. |
=1

J
1+0(m;87) > 1 fori— o,

/.LS({xIn(xAI‘I) < 1for all j}) {1 + A(Aij)} exp{—)u(Aij)}
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we may assume that n(xA'_I,) < 1 for all j for i sufficiently large. Also we only
need to consider the case f,(x) > 0 because otherwise both sides of (2.6) are 0.

When fy(x) > 0 we have from (2.1) and the finiteness of x that there exists
k(x) > 0 such that fy(xg. 4, ) > k(x) for all i and j. Using (2.2), we find

[fo(y Uxg. a)ma(dy)

= fo(xS\A)e_)‘(A) + fAfo(xS\A U f))\(d§)e‘)‘(m

(KA

n!

[ee}
+w) c, ML
2

with |o| < 1, and then from (2.3) we get when n(x,) < 1,

by(xs < a xA)n(xA)e)\(A)
(2.9) fo(xA|xs\A) = .

1 2
1+ B(,(xS\A,A) + 'k—(x—)O()\(A) )

When multiplying together terms of the form (2.8), to get the left-hand side of
(2.6), we obtain the right-hand side of (2.6) by a Taylor expansion of the
logarithm of the denominator of (2.8). The remainder term of the Taylor
expansion is handled by the use of (2.4) and the fact that By (xg. 4, A) =
k(x)"'0(AM(A)). O

When modeling spatial point processes, there is a choice between looking at
what happens inside a window T not taking account of what happens outside
T, or looking at the conditional density given the configuration outside T'. The
latter method is used to avoid edge effects [see, e.g., Ripley (1988)]. We note
here that the pseudolikelihood on T is unaltered whether based on f,(x) or
based on the conditional density fy(xrlxg. 1), as appears from (2.3) and (2.7).

The main advantage of the pseudolikelihood as compared to the ordinary
likelihood is that the latter usually involves a complicated normalizing con-
stant, which cancels out in b,(x,¢) and hence also in PL(6, x). Let us
consider the case where the density f,(x) belongs to an exponential family. We
write the density as

(2.10) fo(x) = E({o—)h(x)e"'”(’”, x€Qg,0€0,

where © is an open subset of R* and h: Qg — [0, ©) is hereditary so that (2.1)
is satisfied. Defining ’

v(x,é) =v(xU¢) —v(x) and I)z(x,f) =h(xVU¢&)/h(x)
for A(x) > 0 and 0 otherwise, we find from (2.7) that
(2.11) bo(x,£) = h(x,£)exp{0 - v(x,¢)},
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and the logarithm of the pseudolikelihood function (2.6) becomes

(2.12) plp(8,x) =6 ¥ v(x \N§§) - ]Th(x, £) exp{0 - v(x, )JA(dE).
(€xp
Thus the complicated function Z(8) from (2.10) has disappeared and pl (6, x)
can be evaluated fairly easily using numerical integration.
For the exponential family model (2.10), we now state two properties for the
pseudolikelihood function, which shows its resemblance to a true likelihood
function for an exponential model.

ProrosITION 2.3. Let U= S \T. Then

(1) plp(8, x) is a concave function in 6,
(ii) the conditional mean E{pl(8, X; U x)|xy} under P, is strictly con-
cave in 0 with a maximum at 8, if and only if for all 6 € © \ {6}

(2.13) /U,T{lele[bo(xT U xy, £) # by (%7 Uxy, £)|A(dE) > o} > 0.
Proor. From (2.12) we find

92 2
—a{—plT(O,x)}a = jT{e~v(x,§)} h(x,£)

(2.14) 36 36*

xexp{6 - v(x,§)}A(dE)

for any a € R?, which immediately gives (i). Now (2.14) is strictly positive if
and only if

(2.15) le[a (g Uxy, &) # 0, h(xp Uy, £) > 0]A(dE) >0,

and h(x, &) > 0 implies A(x) > 0 and therefore from (2.3) and (2.10) that
folxrlxy) > 0. This gives that the conditional mean of (2.14) given x; is
strictly positive if and only if the set of x;’s satisfying (2.15) has positive pr
measure. This must hold for all « # 0 to get the strict concavity. Using (2.11)
and translating “for all « # 0" into “for all § # 6, we obtain (2.13) since ©
is open. That the maximum of the conditional mean is at 6, is seen by showing
that the derivative of the conditional mean is 0 at 6,. O

3. Consistency of maximum pseudolikelihood estimates. In this
section we prove consistency of the maximum pseudolikelihood estimate in the
exponential family model (2.10), under the further assumption that the model
is a Markov model of finite range. ‘

We start with the ordinary point process (M1), where S is a bounded subset
of R?. The Markov structure, in the sense of Ripley and Kelly (1977), is defined
through a symmetric translation-invariant rélation ~ on R<. The relation is
of finite range D = sup{||¢]l|¢é ~ 0} < «, and a set x C R? is a clique with
respect to ~ if x # & and ¢ ~ ¢ for all distinct &, { € x. The functions & and
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v in the density (2.10) are defined through translation-invariant interaction
functions ¢ and i,

(3.1) h(x) = T1e(y) and v(x) = X ¢(y),

yCx yox
with the properties

¢(x) 2 0,y(x) €R* and ¢(x) = 1,¢(x) =0
if x is not a clique.

With these definitions we find
(33) h(x,f) =<P1 ].—.[ ¢(yU§)’ v(x7§) =‘r[/1+ Z l/I(J/Ug)

D#+ycx D+ycx

(3.2)

and

(3:4) bo(x,€) = @re” l_IC e(y U ¢€)exp{f - y(y U é)},
y X

where ¢; = ¢({£}) and ; = ¢({£}), which are constants because of translation
invariance.

For a set A ¢ R? we w}ll use the notation dA = {¢ € R? \ A|3 { € A with
(~E,A=AUdA and A =(A°UIA)Y ={( € Alé ~ (V! &AL

We will prove consistency for n — », where now S = S(n) increases to R¢
as n - «. In the proof we use a codlng prlnc1ple and for this we assume

that S(n) is a disjoint union of Borel sets A, ni=1,. ,J=1...,m,;,
(3.5) S(n) = U UAm-j with m,;, > ©as n - =,
j=1j=1
such that
(36) 8= supr(A,;;)<x and d(A,;,A,;)>D forj+k.

n,i,J

Here d(-, - ) is the Euclidean distance between two sets. In (3.6) we have an
upper bound on the sizes of A,;;. We also need a lower bound related to the
identifiability condition (2.13). We assume that there exists a Borel set B such
that with 6, the true parameter point,

(3.7) VOO {8} []31[b0(x,§) # by (x,€)] dépp(dx) > 0
and
(3.8) Vn,ijléecR:B+ECA,;

We first study properties related to a typical set A among the A,;’s. Let
therefore A be a Borel set with A(A) < 6 and such that B + £ C A for some
¢ € R?. Because of the Markov property the conditional density of X, given
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Xs(n)~ A = X5(ny~ 4 depends on x,, only and is given by

[T TIT e(yvz)exp{t, v(yuz)}

3.9) fo(xslx,0) = ——"—
( ) 00( 4 (’A) Z(007 xaA) D#+yCxy 28X,

for A(x,,) > 0 and 0 otherwise.

LEMMA 3.1.  Assume that for 6 in an open neighborhood of 6, we have for
all finite point configurations x with n(x) > 2,

(3.10) p(x) <1 and 0 y(x) <O0.
Then

()
(3.11) ey e > 0 [U(x) ] = —cpf - ()
for 116 — 0,ll < ¢, and n(x) > 2;

(i)
(3.12) e™? < Z(0y,%,4) < exp{d[e, exp(b, - ¥1)]};

(iii)

52

(3.13) Jecg,c > 0: _‘X*{WPIA(OJA)}C“SQ

for 110 — 0,1l < c5 and for any a with |lall = 1,
(iv)
82
(3.14) 3Jcg,c6> 0: —a*{WE[pIA(O, X, U x{,A)Ix,.,A]}a > cq
for 16 — 8,ll < c5 and for any o with |lall = 1;
v)
e, cg, Co, 10 > 0: E{|pla(0, X, U x,0) %,
(3.15) 7> Cg5 Cg, C1o {lp a( A A4) | iA}
< cgef max(m ,(cyg), ke ")

for 110 — 6,ll <c, and k > 1, where m, is the kth moment of a Poisson
distribution with mean cy.

Proor. (i) Let (3.10) hold for [0 — 6,ll < e. If 6, = 0, then (3.10) implies
that ¢/(x) = 0 and (3.11) holds trivially. If §, # 0 we take £ < min(e, ||6,|) and
define cos @ = min,_,  _, (8/16l) - (6,/16y). Then (3.10) implies that
(8o/116,1D - (—t//(x)/llt/f(x)l‘) > sin a and therefore

(0/18l) - (—w(x) /() > sin(a/2) if (9,/16,l) - (0/16ll) > cos(a/2).

We thus obtain (3.11) by taking ¢, < & such that (6 /1|0l) - (6,/116,ID > cos(a/2)
for |16 — 6,ll < c; and ¢, = {(16,)l — ¢;) sin(a/2)} 1.
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(i1) The density (3.9) is with respect to u, and so

Z(89, %4) = pa{n(X,) = 0} = exp(—A(A4)) 2e™°.
Similarly from (3.10) we get

Z(89, %,4) < [ {1 exp(6, - 1)) a(dx)

= exp{A(A)[ ¢, exp(8, - ¥1) — 1]},
which gives (3.12).
(iii) Putting together (2.12), (3.3) and (3.4), we have

plA(e,xg>=e-{n(xA)¢1+Z > w(yu@}

§€xy TD#yCaz\€
(3.16)
—erexp(0-gn) [ TT e(yug)exp(o sy ue))ds.
FYCxg

The second derivative is then easily obtained, and for any « with ||all = 1 we
get

1 +
9699* © 4

_a*{a_ A((),x;)}a < ¢ exp(6 dll)'[Al

D+yCxg

X T1 e(yué)exp{o-y(yué)}dé.

D+yCxg

Then using the ¢-part of (3.10) and (3.11), we find the bound

erexp(@-0) [ (Wl - e, T w(we)-e)zexp{ L uue -

D+yCxg D+yCxg

< 4ciexplf - ¥y + llyll/cy — 2}8 < ¢4

for 16 — 6,ll < ¢; from (3.11).

(iv) We now again consider the second derivative of (3.16) and integrate
with respect to the conditional density (3.9). Replacing Z(6,, x,,) by the upper
bound in (3.12), to be denoted by k, and changing the integral over 1, X A to
an integral over Q4 X A, we get, using (3.2),

62
— a*{ FYRTE E[plA(0 xz)lx, ]}

(3.17) . _};l//l exp(6 ) [ [la v(x,6)® TT ¢(x)e(yU¢)
Qz/A D+ycCx

X exp{fy - () + 0 - Y(y U €)} dE pa(dr).

Now choose ¢ € R? such that B + ¢ C A. From the translation invariance
we can change the integral in (3.17) over Q4 X A to an integral over Q;_ ¢ X
(A — {), and then to an integral over Q5 X B giving a lower bound. Using also
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pa_(dx) = puy_(Qpluplde) = e °up(dx) for x € Qp, we get instead of (3.17)
-5
e

(3.18) & e exp(6 ) | fB{“'U(x’§)}2 [T e(»)e(yué)

D+ycCx

X exp{f - ¥(y) + 6 ¥(y U é)}dépup(dx).

" This is a continuous function of 8 and a, and as in the proof of Proposition 2.2
it is seen that (3.18) is strictly positive under condition (3.7). Thus for any cj
there exists cg > 0, which is a lower bound to (3.18) for all 16 — 0,ll < c5 and
llall = 1. The bound c, is independent of x,, except for the fact that we have
used the conditional density (3.9) corresponding to h(x,,) = 0. However,
h(x,,) = 0 implies that A(x) = 0 and so this event has probability 0.

(v) From (3.10) and (3.12) we have the bound

fo(%al2sa) < €270 exp{ Y X dyve)- 90}'

D#+yCxs 2E%oa

Using this and (3.10) again, it is easy to establish an upper bound to the
conditional kth-order moment of the term with n(x,) and the integral term in
(3.16) giving rise to the m,(c;,) term in (3.15). For the remaining term in
(3.16) we find, using (3.11), that for (8 — 6, < ¢4,

k
E{lY X dué-e |xaA}
teXy O+ycXg\¢
< (ll6oll + C1)kcgesf(¢1eoo‘wl)n(x){_"7(3“’ x34)} exp{n(x, x54) e a(dx),
with

n(%x,%4) = X )Y P(y Uz) -0,

D+yCx zCx,4: n(yUz)>2

Using (3.10), we obtain the bound
(18]l + ;)" che? [ (gre%71) " ke ™hp (dx),

which is finite and independent of 6 and x,,. Also, since A(A) < § we get an
upper bound independent of A and of the form given in (3.15). D

THEOREM 3.2. Assume the setup for the ordinary point process (M1) to be
as in (3.1), (3.2) and (3.5)—(3.8). Assume either the boundedness condition
(3.10) or that there exist constants N, K < o such that when n(x) > 2,

(8.19)  o(x) <K, |¢(x)| <Kandn(Xg, )<N, Vn,i,j,

the latter holding almost surely under pg. Then the consistency result (A.10)
holds for the maximum pseudolikelihood estimate obtained with Y, (6) =
Plg.\(8, X) and the estimate is unique with a probability tending to 1.
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Proor. With the notation from Theorem A.2, we let Y, (6) = pl, _ (6, X)
and then Y,(6) = plg, (8, X). With 7, generated by Xg,,,. a, where A, =
U7rA,,;, we get (A.1) from the Markov property, the finite- range assump-
tion and (3.6). We thus have to prove (A.12) and (A.9).

If (3.10) holds the upper bound in (A.12) follows from (3.13), the lower
bound follows from (3.14) and condition (A.9) follows from (3.15).

The uniqueness can be proved in the following way. From (2.14) it appears
that Y,(6) is either strictly concave at the point 6 for all §-values or for no
0- values Therefore if Y,(6) is not strictly concave in the direction a at the
maximum point 6,, the function Y,(f, + ta) will be linear in ¢, which contra-
dicts statement (A 8) Since (A.8) was proved to hold with a probability tending
to 1 in Theorem A.2, we get the uniqueness.

We then have to consider the case where (3.19) holds instead of (3.10). From
(3.16) we find, using (3.6),

(3.20)  |Y,.,(8)| < N6 -y, + N2V IK[[6] + p,e® K2 eIk,
with K in (3.19) chosen greater than 1. This immediately shows that (A.9)
holds. Similarly, we find

a2 N
—a{ YT ,”J(O)}a < e’ "(llyyll + 2NK) K2 elIK2"s

for |lall = 1, whereby the upper bound in (A.12) follows. Finally, we note that

for the conditional density (3.9), we have

Z(0y, %14) < oK exp{ Ny, - 0, + K2"110,ll} = £,

and the proof for the lower bound in (A.12) parallels that of (3.14) with %
replaced by k. The uniqueness is proved as above. O

ReEMARK. Condition (3.19) is of relevance in connection with hardcore
models. The proof above actually shows that we can replace (3.19) by the
weaker condition that in an open neighborhood of 6, we have for n(x) > 2,

(3.21) lw(2) || < K max{1, -6 - y(x)}.

An example where (3.20) holds but not (3.19) is a one-dimensional model with
0, >0, (¢, {P = 1€ — ¢l > &) for some & > 0, y({¢§, ¢} = g(l¢é — ¢I) with
g()<K and g(u)] — = for u |4, and finally ¢(x) =1 and (x) =0 if
n(x) > 2.

We now turn to the marked point process (M2) with the points in S,(n), a
bounded Borel set increasing with n, and the marks in the space §,,, which
does not depend on n. The relation ~ -is now a symmetric relation on
R x S,,, the interaction functions ¢ and ¢ satisfy (3.2), and ~ , ¢ and ¢ are
invariant under translations in R%. The relation ~ is of finite range in the
sense D = sup(ll¢)l|3 r,s € S,,: (&,7r) ~(0,8)) <». For AcCR? we define
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IA={¢eRINAF (€A, rseS,,: (§r)~(s), and A and A is then
defined as before. We let S(n) = S,(n) X S,, and assume

(3.22) S,(n)=U UA.,
i=1j=1
where the A, ’s are disjoint sets satisfying (3.5) and (3.6). The identifiability

condition (3.7) becomes

(3.23) ffB{fS 1[by(x, (£,7)) * boo(x,@,r))]Qm(dr)} dé s, (%)

>0
for all 6 € O \ {8,).

THEOREM 3.3. Let the marked point process satisfy (3.2) and assume that
(8.22) together with (3.5) and (3.6) and (3.23) hold. Assume that either the
boundedness condition (3.10) or (3.19) holds, then the consistency result
(A.10) holds for the maximum pseudolikelihood estimate obtained with
Y,(6) = plg, (6, X).

Proor. The proof is analogous to the proof of Theorem 3.2. O

REMARK (Strong consistency). Strong consistency can be proved by using
Theorem A.3 instead of Theorem A.2, in the case where the point process
considered is the restriction to S(n) of an infinite-volume point process.
Condition (A.11) can be established from (3.15) under condition (3.10) and
from (3.20) under condition (3.19).

4. Examples.

ExamPLE 1 (Approximation by lattice processes). In applications it may be
useful to approximate the pseudolikelihood as follows. Consider the model
(M1) and suppose f,(-) is pg-a.s. continuous in the sense that fy({x,,...,x,})
is continuous at (x,,...,x,) € R" for ug-aa. {x,...,x,} € Qg with n > 0.
Let ¢, € A;; be a fixed point where A,j=1...,m;1=12,..., are sets
as in Definition 2.1 such that max; diam(A;;) » 0 as ¢ — «, where “diam”
denotes the diameter of a set. Define

) b({flk¢l,n{k=1}"§t)
41)  PLY(0,x) - T ]
(4.1) (6, %) j:lil:[eT 1+ by({€x: & # s ni = 1}, &) A(As)

for i = 1,2,..., where n;; = n(x, ). Taylor-expanding the logarithm of the

denominator in (4.2) and using the continuity of fo(+), we get

(4.2) PLy(6,%) = lim PL{(6, x).




456 J. L. JENSEN AND J. MOULLER

This can be interpreted as a limit of pseudolikelihoods for processes X,
i =1,2,..., which essentially are lattice processes that converge weakly to X
[cf., e.g., Ripley (1988) and Sarkka (1989)]. The process X is constructed
such that n(XX)) < 1for all j and the density f;*’ with respect to g is given
by

(4.3) f82(x) /f52(D) = fo({€i5: niy = 1}) /fo(D).
Hence
(i) - ) = 5. ) = p. i )

PL{(6, x) j:gETPe(n(XAU) nln(X9) = ns b #5)/A(A)"™,
where the product of the numerator corresponds to Besag’s pseudolikelihood
for the binary lattice process {n(XX’) Jj=1,...,m}. It follows immediately
from (4.3) that
(4.4) fo(x) = lim f{(x) forpgaa.x € Qg.

1 — o

Finally, let us briefly consider the model (M2) under the following condi-
tions. Suppose S = S, X S,, is a metric space such that max; diam(A,;;) - 0
as i » », where A,; = B;; X C;; are sets as in Definition 2.1 with B;; € %,
and C;; € #,,. Suppose also that @,, is absolutely continuous with respect to
some finite measure A,, on &, and let g¢,, denote the density. Now, define

. [b,({€: k #J,nis = 1), 6,)an(r )]
PLY(0, x) =
(6, %) j:fli_[jeT 1+ by({&: bk #j, = 1}, 6)MA)

where r;; is the mark of x, . Then, if the process X @ is constructed as before
and f,(-) and q,(-) are pug-a.s. continuous, (4.2) and (4.4) remain true.

ExampLE 2 (Pairwise interaction model). The special case of a Markov
model (3.1) with ¢(x) =1 and #(x) =0 for n(x) > 3 is called a pairwise
interaction process. If we let ¢; = 1, ¢; = (1,0) and ¢({¢, D) = (0, y({&, 7)),
we get the exponential family of order 2

f9<x)=ﬁ{{xn ol(x %))}

i x}Cx

(4.5)
Xexp{eln(x) +0, Y ll'({ i ,})}

{x;, x;}cx
The log pseudolikelihood from (3.4) and (2.12) becomes
plp(0,x) = 0;n(xp) + Y, {In t(xT NEE) 4 0,8(xp N E,8))

(exp

- eelth(xT, ¢) exp(0,y5(xr, £)} d¢,
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where #(x, &) = T1, c .¢({n, &€} and s(x, £) = X, . .¥({n, £). Setting the deriva-
tive of pl; equal to 0, the two equations for determining 6, and 6, can be
separated as

Jrs(xp, E)t(xp, &) expl{Oys(xp, £)} dE 1
O o O expllas(ar, O] dE n(ar) o STV EE)

and

6, = ln{n(xT)/th(xT,g) exp{0,s(x7, §)}d§}.

We note that (4.6) can be interpreted as the likelihood equation for an
exponential family on T with canonical statistic s(x, - ).

Alternatively, under (M1) the pseudolikelihood can be approximated by (4.2)
which yields

PL(0.x) = TI exp[n,, (6, + Oo5({€4: k%4, n = 1), 6)))]
T\Y> _j:f,,ET]_ +)\(A,j)exp[91+028({§ik:k#j, n;, = 1},§ij)} .

This can be interpreted as the likelihood function for a logistic dose response
model if the A, ’s have the same size A(A,;) = a; for all j.

The Strauss process [Strauss (1975) and Kelly and Ripley (1976)] is obtained
when ¢o({£, ¢} = 1 and ¢({£, ¢ = 1(J|¢€ — £l < D) for a fixed number D. This
process is defined for 8, € R and 6, < 0, where 6, = 0 corresponds to the
Poisson process, and is a Markov model of finite range D. If we take B to be a
ball of radius greater than 0, it is trivial to see that the identifiability condition
(38.7) is satisfied by looking at those x with n(x) = 1. Since 6, < 0 we have
that (3.10) holds and we obtain the consistency from Theorem 3.2.

For the modified Strauss process with hardcore 0 < § < D, we have (-) as
above and furthermore ¢({¢,¢)) = 1(I¢€ — £|l = 8). This is again a Markov
model of finite range D, and the model is defined for 8, € R and 6, € R. The
identifiability condition holds as above when B is a ball of radius greater than
8, and the consistency is obtained from Theorem 3.2 since condition (3.19)
holds.

ExamMpPLE 3 (Strauss-like marked point process). We consider a marked
point process where the mark space is S,, = [0, L] for some fixed number L.
We think of (£,r) €S, XS, as a ball with center at ¢ and radius r.
Restricting ourselves to pairwise interacting models (4.1), we take
e({(&,r), (L, s =1 and ¢({(&r), (L9 = 1§ —¢ll<r+s). This is a
Markov model with respect to the relation (£,r) ~({,s) @ || —{ll<r + s,
which is of finite range D = 2L. Note that the canonical statistic that goes
with 6, in the density (4.5) is the number of pairs of balls that intersect one
another.
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The density is defined for 6; € R and 6, < 0, and so (3.10) holds trivially.
The identifiability (3.23) holds as in Example 1 when B is a ball of radius
greater than 0. The consistency is then established from Theorem 3.3.

APPENDIX

When proving consistency a standard method is to impose conditions that
ensure uniform convergence of the second derivative of the likelihood function.
The idea of the proof here is to use concavity to obtain uniform convergence of
the pseudolikelihood function itself. Also the coding idea is used; that is, we
impose a certain conditional independence structure.

Let (E,, &,, P,) be a measure space and let Y, (6) = Y,,;(6, ¢) be random
functions concave in 8 € ®, where ® C R* is open and i=1,...,v, j =
1,...,m,;,withm,, > ®asn — ». Let &, beasub-o-field of &, and define

Z,./(0)=2,0,e) = E(Y,, (0)|.%,). We will assume that
(A1) Y,4(0),...,Y,;, (0)areconditionally independent given &,

nim, ny

and for some fixed 6, € ® there exist constants c¢;, ¢, and c; such that almost
surely
—cyll6 - 90”2 <Z,;(0) —Z,;;(8,) < —cyllo — 00”2

(A.2)
for [16 — 6,ll < c5.

LEmMMA A.1.  Assume that (A.2) holds and define

1 Mu

Gni(o) = m— _EI(Ynij(a) - Znij(eo))
ne j=

(0) replaced by Z

and g, (6) similarly with Y, (). Then for any ¢ > 0 and

ij nij
0 < 8 < cg, there exist s < @ and 0,,...,0, with |6, — 6,ll < cg such that
(A3) sup Ian(a) - gnz(a)l =¢
10— 6,ll <5

holds on N3;_yA,(6,), where
(A.4) A,(0) = {e € E,|]G,(0) — g,,(0)| <e/2}.

ProoF. First we take 6,,...,60, with & <6, — 6,| < c; such that {9]/|6 —
8yl < 8} is contained in the convex hull of {6, ..., 6, }. Since (A.2) implies
(AB) = cllo — 6,l1> < g,,(0) < —cyllf — 6,lI> for [16 — 6,ll < c3,

it is possible, from the concavity, to obtain that
€
(A.6) —cc2 - 3 < G, (0) <cici+e forllo—0,<s

on the set N ¢ ,A,;(6,). The upper bound is established with the help of the
lower bound and using that e € A,;(6,). According to the proof of Theorem
10.4 in Rockafeller (1970), there exists a, which depends on the bounds in
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(A.6) only, such that
(A.7) |G,.:(6,) — G,i(8,)] < alld, — 6,

for all 6,, 6, with [|§; — 6,|l < 6. Using the same argument, this inequality also
holds with G,,,(+) replaced by g,,;(*).

Now take 6, ,,,...,0, with [6, — 6,ll <& such that for all 16 — 6,/ <6
there exists a 6, ,, with 1§ — 6, ..l < &/(4a). Then on N;_,A,;(6,) we have,
according to (A.4) and (A.7), that

IGM(B) - gnz(0)| S’G"nz(e) - Gni(esl+r) +|Gni(031+r) _gni(esl+r)
+‘gni(asl+r) - gnt(e)’

£ £
<2a— + — =¢
4a 2

for all [0 — 6,1l < 6. O

If (A.3) holds with & < 1c,6% and & < c;, we get from (A.5) and the

concavity that

m,;G,;(0) <m,;G,(8,) forll6 —6,l> 4.
If this holds for i = 1,...,v, we get with Y,(8) = L, Y, (6),
(A.8) Y, (0) <Y,(6,) forlle— 6,l>5
and therefore M, c {616 — 6, < 6}, where

M, = {0 € 0lY,(0) = sup Yn(é)}.
00

It is now easy to establish the following two theorems.

THEOREM A.2. Assume (A.1) and (A.2) and that there exists a constant c,
such that foralln =i =1,...,v,

1 mlll
ni j=1
Then for any ¢ > 0,
(A.10) Pn( sup 16 — 6, > s) -0 asn — o,
oM,

Proor. We must prove that the probability that (A.3) holds tends to 1.
From (A.1), (A.9) and Markov’s inequality, we get

1
Pn(Ian(O) - gnz(e)l > glg;”) =< _rn——‘C4/82 for ”0 - 90“ <cg.

ni

Since this tends to 0 we have P,(A,,(6,)) = 1 and thus P(N;_,A,(6,)) — 1,
and the result follows from Lemma A.1. O
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We now turn to almost sure convergence and assume E, = E and P, is the
restriction of a fixed probability measure P to &,.

THEOREM A.3. Assume (A.1) and (A.2) and that there exist positive con-
stants ¢, and ¢y such that forallnandi=1,...,v,

my,

(A.11) ‘=1E<exp[t(YniJ-(0) = 2, ()1 %} < exp(cym, t?)

for |t| < c5 and 10 — 6|l < cs. Let 6, € M,. Then

6, — 6, almost surely.

Proor. We must now prove that (A.3) holds as n — « almost surely. From
Lemma A.1 we only have to show that G,;(8) — g,,(8) = 0 almost surely for
t=1,...,v and a fixed number of #-values. From (A.11) we get

Eexp[tmni(Gni(O) - gnz(e))] < exp(c4mlllt2)
and the usual exponential estimate [Révész (1967)] then gives that for any
€ > 0 there exist ¢; > 0 and p, < 1 such that
P(lan(O) - gni(a)l > E) < ct‘p:‘nm‘
Finally, we conclude from the Borel-Cantelli lemma that
G,.(0) — g,:,(0) » 0 almost surely. O

If Z,,(6) is twice differentiable in 6 and (9/30)Z,, (6,) = 0, condition (A.2)
will of course be satisfied if
92 2
Z,;j(8)a <x and inf—a*

(A.12) sup — a* Z,,(0)a <0,

00 06* 460 00*

where the supremum and the infimum are over all (n,i, j), « and 6 with
lall = 1 and (16 — 6,ll < cg.
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