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Abstract

Non-parametric maximum likelihood estimators of relative risk have been proposed as an
alternative to empirical Bayes or full Bayes approaches to disease mapping. They have the ad-
vantage of being relatively simple, the EM algorithm assures convergence and area classi5cation
is straightforward. However, they do not take into account spatial autocorrelation and have higher
mean square error when the true underlying risk pattern is strongly spatially structured. Further-
more, the EM algorithm is sensible to starting values and could converge to local maxima. We
review the transitional generalized linear models and propose a transitional non-parametric maxi-
mum pseudo-likelihood estimator for disease mapping. The usual kernel likelihood of the mixture
models is replaced by the conditional density of the observed response for a single area given
the values observed in adjacent areas. The estimation of the parameters is based on the EM algo-
rithm, appropriately modi5ed to handle the problem of local maxima and to estimate the number
of components of the mixture. A simulation study shows that the transitional non-parametric
maximum pseudo-likelihood estimator performs similarly to full Bayes estimators.
c© 2002 Elsevier Science B.V. All rights reserved.
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1. Introduction

Descriptive epidemiology focuses on the variation of disease occurrence among
populations, and has been applied in etiologic research, to screen for environmental
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exposures, and in health service research, to compare institutional performances or to
allocate resources.
Smoothed estimators of relative risk have been proposed in the context of descriptive

epidemiology studies in the mid-1970s by Efron and Morris (1975), speci5cally to
map prevalence rates of an infectious disease in El Salvador. In the 1980s, they have
been used to study hospital variation in death rates due to surgical procedures. The
literature in the last decades reported several examples of disease mapping at small
scale of geographical resolution. Most recent applications are based on a full Bayesian
approach. However, 5nite mixtures models appear to be very attractive for practical
applications.
Data (disease counts and population denominators) typically present substantial

overdispersion and James–Stein type estimators are used for that reason. The distri-
bution of rates or rate ratios depends not only on the true risk variation but also on
population size variation. Areas with small population size have small expected counts
(even less than one) and the estimated rate ratio would assume only discrete values.
Reporting rates or rate ratios produces a map which is dominated by the less populated
areas which rank at the extreme of the used scale.
A better solution would be to map a weighted average between the maximum like-

lihood estimator and a general mean:

EBMR = w SMR + (1− w)�;

where the weights w should be directly proportional to the precision of the SMR esti-
mate and to the extent of the variability of the true rate ratios. We can assume a given
distribution of the true rate ratios among areas, and focus the analysis on the estima-
tion of its mean and standard deviation. Several models of this kind are reported in
the literature: Gaussian–Gaussian empirical Bayes procedure (Efron and Morris, 1975);
parametric Poisson-Gamma (Manton et al., 1981); empirical Bayes approach based on
moments (McPherson et al., 1982); empirical Bayes and full Bayes approach using
non-conjugate priors (Tsutakawa, 1985); Poisson-Gamma and Poisson-logNormal, con-
ditionally autoregressive (CAR) priors and non-parametric maximum likelihood (Clay-
ton and Kaldor, 1987); full Bayes approach with structured and unstructured spatial
random eIects (BYM: Besag et al., 1991); mixture models (Schlattmann and B0ohning,
1993).
Few papers have addressed the evaluation of methods by simulation studies. Marshall

(1991) showed that CAR-type estimators are more biased than simpler overdispersion-
adjusted estimators. Lawson et al. (2000) concluded that the BYM model outperforms
other approaches; Militino et al. (2001) addressed speci5cally mixture models, showing
that they are valid but can give biased results with strongly spatially structured risk
patterns.
In the present paper we will focus on 5nite mixture models. A preliminary paper

gave some suggestions and real examples (Biggeri et al., 2000). Here we formalize
the proposed approaches and present a simulation study having the BYM full Bayesian
approach as benchmark.
Finite mixture models have the advantage of being less computer intensive, more

friendly for applied researchers, since convergence is assured, and not dependent on
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the speci5cation of the mixing distribution for the random eIects (Aitkin, 1999).
Inaccuracies in the estimation of the latent distribution have been claimed by Car-
lin and Louis (1996), but this is a minor point when the emphasis is on the posterior
estimates, as in disease mapping applications.
We propose a transitional non-parametric maximum pseudo-likelihood estimator for

disease mapping which takes into account the spatially structured random eIects. Sec-
tion 2 reviews transitional regression models and their extension to disease mapping,
Section 3 introduces transitional 5nite mixture models, Section 4 is dedicated to com-
putational aspects, Section 5 reports the results of a simulation study, discussion and
conclusions are presented in Section 6.

2. Transitional models

Autoregressive models have been used in the context of time series and spatial
analysis. The basic idea is that a given observation yi of a response variable Yi (the
current observation in time, the observation in a given space location) is a function of
potential covariates Xi and other responses Hi={Yj}j∈Si ={Yj∼i} (where Si denotes the
set of observations considered to be “close” in space or time to the ith one). Usually,
attention is restricted to one class of automodels, Markov random chains or 5elds, for
which Yi |Hi are independent. The model order refers to the space or time proximities
considered in Hi (for time series, for example, f(Hi) =

∑q
j=1 �jYi−j represents an

autoregressive model of order q). In the following we will refer to models of order 1,
with a single interaction parameter �. This is justi5ed since we are interested in spatial
processes which could be represented as Markov random 5elds.
A transitional generalized linear model (TGLM) has conditional density

f(yi |Hi) = exp{[yi
i − b(
i)]=a(�) + c(yi; �)}
with known functions a(·) and b(·). The conditional mean and variance are

E(Yi |Hi) = �i =
@b
@
i

; Var(Yi |Hi) =
@2b
@
2i

a(�):

The linear predictor is related to the mean through the link function g(·):
g(�i) = x′i� +

∑
j

fj(Hi; �);

where fj(·) is an appropriate function for the autoregressive terms. These terms are
treated as additional explanatory variables. In case of linear models we have the im-
portant result of exact correspondence between a transitional model and a model with
autoregressive error terms. Actually the transitional linear model is

Yi = x′i� + �
∑
j

(Yj∼i − x′j�) + �i

with � ∼ Gaussian(0; a(�)), g(�i)=�i, @2b=@
2i =1, and it is equal to the autoregressive
linear model:

Yi = x′i� + �?i
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with �?i = �
∑

j �?j∼i + �i. Unfortunately, this is no more true with non-linear link
functions g(·).
In general a class of transitional regression models can be de5ned with two distinct

cases (Brumback et al., 2000): Generalized Linear Models with AutoRegressive error
terms (GLM-AR)

�i = g−1(x′i�) +
∑
j

fj(Hi; �)

and transitional generalized linear models

�i = g−1

[
x′i� +

∑
j

fj(Hi; �)

]
:

In the case of Poisson random variables the GLM-AR does not guarantee non-negativity
of expected values. Therefore, we restrict our attention only to transitional GLMs.
Several speci5cations of the function fj(Hi; �) have been proposed. Besag (1974)

introduced the AutoPoisson model on a two dimensional lattice

�i = exp

(
x′i� + �

∑
j

yj∼i

)

which has not been widely used since for positive autocorrelations the conditional
expectation grows in space or time and stationary processes imply only negative au-
tocorrelations. Simple modi5cations of this model use a diIerence (Brumback et al.,
2000) or a ratio (Biggeri et al., 2000) between the responses and the inverse link
function of the systematic component exp{x′i�}.
Zeger and Qaqish (1988) considered longitudinal data and proposed a transitional

log-linear model using the residual at time i − 1 in the scale of the link function:

�i = exp{x′i� + �[ln(yi−1)− x′i−1�]}:

2.1. Transitional models in disease mapping

We propose to model the conditional expectation of disease counts observed in a
given region as function of population denominators and observed responses in the
neighboring areas.
The general family of models of this form is the Gibbs distribution de5ned on

a 5nite lattice of locations. The area centroids are the nodes of the lattice and the
joint probability distribution of the observed counts is speci5ed from the conditional
probability f(Oi | {Oj}j∈Si) = f(Oi | {Oj∼i}). The model is

Oi | {Oj∼i} ∼ Poisson(Ei�i)

with

�i = exp

[
�0 + �1 ln Ei + � ln

(∑
j Oj∼i∑
j Ej∼i

)]
: (1)

The population denominator Ei is the number of person years at risk or the expected
count under indirect standardization. It is treated as an o7set 5xing �1=1. The adjacent
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areas are de5ned on the basis of some suitable distance function: e.g. two areas are
de5ned adjacent if they share the boundary (for other speci5cations see Cressie, 1993).
The adjacency matrix obtained is therefore symmetric having entries either 0 or 1.
Fitting transition models requires some considerations. First, the transitional GLM

is speci5ed using conditional distributions. In this case, the estimates maximize the
quantity

PL=
∏
i

f(Oi | {Oj∼i})

which represents the well-known pseudo-likelihood (PL) approximation to the full
likelihood (Besag, 1975).
Second, the function for the autoregressive terms contains both (�0; �1) and � param-

eters. In our case we model standardized mortality ratios with expected counts given
by internal standardization. Then �0 = 0 and �1 = 1, as previously said. We do not
need any speci5c iterative process between the estimation of the systematic component
and the autoregressive coeRcients (Brumback et al., 2000). In fact the autoregressive
component can be calculated before 5tting the model to the data, since it depends only
on the observed disease counts and the known population denominators. The model
then reduces to a standard GLM with an oIset and an additional covariate which can
be 5tted by IRLS.

3. Transitional �nite mixture models

In disease mapping we face the problem of overdispersion as a consequence of the
wide variability in population denominators among small areas. The distribution of the
observed disease counts is viewed as a marginal distribution and the true distribution
of relative risks is considered latent. This marginal distribution is the integral of the
likelihood function over the latent distribution, where i = 1; : : : ; n denotes the areas in
the region of interest:

f(Oi) =
n∏

i=1

∫
f(Oi | �i)f(�i) d�i:

Since the likelihood for the observed disease counts is Poisson, a very popular approach
assumes that �i, i=1; : : : ; n, are a sample from a Gamma prior. The use of the conjugate
distribution leads to the negative binomial marginal density.
There is no subject speci5c justi5cation for the choice of the Gamma distribution. To

avoid the arbitrariness in selecting the prior density we can approximate it by assuming
a discrete prior distribution with probability �k at mass points �k , k = 1; : : : ; K ; the
integrated likelihood contribution of the ith area becomes a sum and the full likelihood
takes the form

L=
n∏

i=1

K∑
k=1

f(Oi | �k)�k :

The rational is that the data contain information not only about the parameters of the
prior density but also on its form (Laird, 1978; Aitkin, 1999). The 5rst application to
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disease mapping can be found in Clayton and Kaldor (1987). Other simple examples
are provided by Aitkin (1996b, 1999).
B0ohning et al. (1992), Schlattmann and B0ohning (1993) gave a complete description

of this approach. Schlattmann et al. (1996) extended the model to include covariates.
In the speci5cation above, the kernel likelihood is given by a generalized linear

model. We instead propose to de5ne a pseudo-likelihood kernel based on the transitional
generalized linear model (1). The marginal likelihood is then approximated by a 5nite
mixture of transitional Poisson pseudo-likelihoods with autocorrelation parameter which
varies among the diIerent K components. The model is then de5ned in the following
way:

PL=
n∏

i=1

K∑
k=1

f[Oi | �i(�k ; �k)]�k

and substituting the Poisson kernel

PL=
n∏

i=1

K∑
k=1

[(�i(�k ; �k))Oie−Ei�i(�k ;�k )]�k (2)

with �i(�k ; �k) given by the formula

�i(�k ; �k) = exp

[
�k + ln Ei + �k ln

(∑
j Oj∼i∑
j Ej∼i

)]
:

This approach is close to the NPML for random eIects models of Aitkin (1999)
where the support points lie in the plane de5ned by the random intercept and the
random slope.
The main diIerence with the simpler NPML case is that we have de5ned only

a pseudo-likelihood approximation to the marginal likelihood. On the other side, the
model includes also a random slope for the autoregressive term that describes spatial
correlation of observed values. Moreover, it is assumed that the force of interaction
between adjacent areas is not necessarily independent from the area absolute level of
risk or rate ratio. Suppose we have only two components. In one case it could be that
low risk areas group each other showing high autocorrelation; while high risk areas
could appear isolated from each other being close to low risk areas, exhibiting zero
or negative autocorrelation. In a second case, the areas could cluster, high risk areas
close each other and low risk areas close each other, resulting in equal autocorrelation
parameter in the two components.
The transitional non-parametric maximum pseudo-likelihood (TNPMPL) estimates of

�k ; �k and �k can be obtained using the EM algorithm for 5xed number of components.
The smoothed relative risks {�i} are obtained from the 5tted model:

�̃i =
∑
k

ŵik�i(�̂k ; �̂k);

where ŵik is an estimate of the latent assignment variable wik (wik = 1 if the ith
observation belongs to component k and wik =0 otherwise), that represents the weight
of the kth component for the ith observation (details are given below).
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4. Computational aspects

To obtain estimates of support points, probability masses and observation weights
we used the following algorithm (we will refer only to the transitional mixture model,
the same can be done also for the simpler NPML approach):
(1) Choose initial values of the number K of components (k=1; : : : ; K), of the support

points (�k ; �k) and of the probability masses �k of the mixing distribution according
to Gaussian quadrature (Aitkin, 1996a)

QK =
(
(�1; �1) : : : (�K ; �K)

�1 : : : �K

)
:

(2) Use the EM algorithm to estimate QK . The complete log-pseudo-likelihood is
n∑

i=1

K∑
k=1

wik{ln �k + lnf[Oi | �i(�k ; �k)]}; (3)

where wik are the weights previously de5ned. The E-step gives the unknown
weights estimates

ŵik = �̂kf[Oi | �i(�̂k ; �̂k)]

/∑
l

�̂lf[Oi | �i(�̂l; �̂l)]

and the M-step maximizes (3) (with wik replaced by ŵik) giving new estimates
(�̂k ; �̂k) of (�k ; �k) and{

�̂k =
n∑
i

ŵik =n

}
:

(3) Add one component, choose initial values as in step 1 and iterate with EM until
convergence. Compare the log-pseudo-likelihood with that previously obtained; if
no improvement is recorded then stop, take K − 1 component and go to step 4.
Otherwise repeat step 3.

(4) Evaluate the gradient function, i.e. the path derivative of the mixture log-pseudo-
likelihood ln(PL(Q))=

∑
i ln

∑
k �kfik(Oi | �i(�k ; �k)) in the direction of a single

component (Lindsay, 1995, Chapter 2), which is in our case

D(�; Q) =
1
n

∑
i

e−��Oi∑
k �ke−�i(�k ;�k )�i(�k ; �k)Oi

on a 5ne grid over [�∈ 0:5–3:0]. If the maximum of D(�; Q)6 1 + � then stop
(�=0:001), otherwise substitute the value corresponding to the maximum of D(�; q)
to the support point with lowest probability mass and perform step 2 (repeat utmost
ten times). If the gradient function criterion is not yet satis5ed add one more
component and repeat step 4.

The EM algorithm is easy to use and it gives the same estimates as by direct maxi-
mization of the score functions (see B0ohning, 2000, pp. 59–66). It has however two
drawbacks to be considered. First, the EM is based on a 5xed number K of compo-
nents, while in our approach K is one of the parameters to be estimated. The proposed
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algorithm follows a forward strategy, starting with a few components (e.g. K = 2) and
adding one more component at time. The stopping rule is based on the evaluation of the
gradient function, the directional derivative at Q of the mixture log-pseudo-likelihood
ln(L(Q)) on the path to Q′. Indeed, the general mixture maximum likelihood theorem
(Lindsay, 1983a, b) gives us an appropriate stopping rule (see step 4 of the algorithm).
The theorem states that Q̂ is NPMLE if and only if, for all �,

D(�; Q) =
1
n

∑
i

e−��Oi∑
k �ke−�k �Oi

k

6 1 ∀�:

Following Lindsay (1995, pp. 132–135) we set a tolerance of 0:001 and half-grid-width
of 0:005%� for n=341. The standard deviations for the four true situations chosen in the
simulation study were no greater than 0.5. We decided to use a 5xed half-grid-width
of 0.001.
The second point is that the EM algorithm does not guarantee convergence to a

global maximum. This is of particular concern since the 5nite component likelihood has
signi5cant multimodality (Lindsay, 1995, p. 65). Again, the general mixture maximum
likelihood theorem assures the convergence of our algorithm to a global maximum.
Moreover, the gradient function has been also used to identify good starting values for
the EM algorithm and therefore avoid local maxima. To achieve this goal, we used the
value of � with maximum gradient function as a new initial value when adding one
more component in step 4 or, alternatively, we exchanged “bad” with “good” estimated
support points (again in step 4). These ideas are adapted from the Vertex Exchange
Algorithm (B0ohning, 2000, p. 50).

5. Simulation study

To evaluate the proposed estimators we conducted a simulation study comparing
the non-parametric maximum likelihood (NPML) estimator (Schlattmann and B0ohning,
1993), the Transitional NPMPL presented in this paper, the simpler empirical Bayes
Poisson-Gamma (Clayton and Kaldor, 1987), the full Bayesian estimator of Besag et
al. (1991) and SMR (maximum likelihood estimator).
We used four diIerent true risk maps (each map with n = 341 areas) taken from

appropriate real examples (Biggeri et al., 2000):
(1) HET: high and low risk areas not spatially structured, intermediate-low average

number of events (heterogeneity);
(2) HET-CLUS: a mixed pattern with high and low risk areas not spatially and spa-

tially structured, intermediate-low average number of events (heterogeneity and
clustering);

(3) CLUS: high and low risk areas strongly spatially structured, high-intermediate
average number of events (clustering);

(4) MIXT: high and low risk areas from a four components mixture model, intermediate-
low average number of events (mixture).

The four patterns range from a pure heterogeneous Poisson map with sparse data to a
highly clustered one (Fig. 1).
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(a) (b)

(c) (d)

Fig. 1. Spatial distribution of relative risk for (a) HET, (b) HET-CLUS, (c) CLUS and (d) MIXT.

Table 1
Descriptive statistics of the four true patterns of relative risks (RR) used in the simulation

mean RR s.d. min median max

HET 0.87 0.105 0.66 0.84 1.61
HET-CLUS 0.89 0.142 0.37 0.90 1.44
CLUS 0.94 0.229 0.67 0.88 2.027
MIXT 0.98 0.133 0.80 0.90 1.20

One hundred data sets were generated from each pattern using a Poisson law and
population denominators as described (Table 1).
The estimates obtained using the four methods were compared using the average

bias, the average variance, the average mean square error (Table 2) and the correlation
coeRcients between average ranks based on the estimates given by each method and
the true ranks (Tables 3–6).

The average bias is
∑

i(
Ŵ�Mi − �i)=n, where �i is the true value of risk in the ith

area and Ŵ�Mi is the mean value of the estimates obtained with method M in the 100
simulated data sets. It was lower for the SMR, as expected, and both the non-parametric
estimators.
The average variance is

∑
i [
∑

j(�̂Mij − Ŵ�Mi)2=(J − 1)]=n, where j is a simulated

dataset (j = 1; : : : ; J ) and �̂Mij is the estimate of risk using method M , in the ith area
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Table 2
Mean bias, mean variance and mean square error (MSE), for the considered estimators: SMR,
Poisson-Gamma (PG), non-parametric maximum likelihood (NPML), transitional NPML (TNPML) and
Bayesian (BYM)

Estimators

Risk pattern SMR PG NPML TNPMPL BYM

Bias HET 0.04480 0.07090 0.03171 0.03084 0.04619
HET-CLUS 0.00994 0.05087 0.03213 0.02516 0.04682
CLUS −0.00032 0.01989 0.01025 −0.00200 0.01306
MIXT 0.00469 −0.00830 −0.01732 −0.01665 −0.00999

Variance HET 0.72771 0.00262 0.00530 0.01385 0.00790
HET-CLUS 0.29183 0.00193 0.00459 0.00988 0.00443
CLUS 0.11833 0.01004 0.00872 0.01154 0.00694
MIXT 0.34208 0.00301 0.00309 0.00789 0.00362

MSE HET 0.79307 0.01533 0.01231 0.02072 0.01536
HET-CLUS 0.29392 0.02156 0.02083 0.02079 0.01942
CLUS 0.11826 0.03350 0.03301 0.01915 0.01250
MIXT 0.34281 0.01723 0.01802 0.02238 0.01747

Table 3
Correlation matrix of mean ranks estimated with the considered estimators. Heterogeneous risk pattern (HET)

TRUE SMR PG NPML TNPMPL BYM

TRUE 1.000 0.566 0.571 0.503 0.534 0.542
SMR 0.566 1.000 0.718 0.564 0.642 0.661
PG 0.571 0.718 1.000 0.954 0.953 0.793
NPML 0.503 0.564 0.954 1.000 0.946 0.723
TNPMPL 0.534 0.642 0.953 0.946 1.000 0.728
BYM 0.542 0.662 0.793 0.723 0.728 1.000

for the jth dataset. The maximum value was always observed for SMR and, gener-
ally speaking, the average variance was greater for estimators based on autoregressive
models (TNPMPL and BYM). These 5ndings reXect the trade-oI between bias and
precision.
The average mean square error

∑
i [
∑

j(�̂ij − �i)2=J ]=n was lower for the Bayesian
estimator.
For the heterogeneity risk pattern the NPML behaves better than the other estimators,

for clustered risk patterns the TNPMPL was very similar to the BYM model, while for
the four component mixture the parametric Poisson-Gamma or BYM model appeared
slightly better than NPML. This could be attributed to the diRculties in estimating the
number of components in the mixture.
The correlation coeRcients between the average estimated ranks and true ranks were

consistent with the average bias: the SMR is generally better. The transitional NPMPL
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Table 4
Correlation matrix of mean ranks estimated with the considered estimators. Heterogeneous and clustered risk
pattern (HET-CLUS)

TRUE SMR PG NPML TNPMPL BYM

TRUE 1.000 0.851 0.714 0.731 0.814 0.710
SMR 0.851 1.000 0.828 0.853 0.843 0.718
PG 0.714 0.828 1.000 0.997 0.783 0.744
NPML 0.731 0.853 0.997 1.000 0.802 0.746
TNPMPL 0.814 0.843 0.783 0.802 1.000 0.797
BYM 0.710 0.718 0.744 0.746 0.796 1.000

Table 5
Correlation matrix of mean ranks estimated with the considered estimators. Clustered risk pattern (CLUS)

TRUE SMR PG NPML TNPMPL BYM

TRUE 1.000 0.913 0.854 0.833 0.912 0.930
SMR 0.913 1.000 0.956 0.937 0.913 0.921
PG 0.854 0.956 1.000 0.996 0.852 0.872
NPML 0.833 0.937 0.996 1.000 0.829 0.852
TNPMPL 0.912 0.913 0.852 0.829 1.000 0.962
BYM 0.930 0.921 0.872 0.852 0.962 1.000

Table 6
Correlation matrix of mean ranks estimated with the considered estimators. Mixture pattern (MIXT)

TRUE SMR PG NPML TNPMPL BYM

TRUE 1.000 0.887 0.773 0.769 0.744 0.714
SMR 0.887 1.000 0.828 0.808 0.795 0.750
PG 0.773 0.828 1.000 0.995 0.975 0.922
NPML 0.769 0.808 0.995 1.000 0.973 0.917
TNPMPL 0.744 0.795 0.975 0.973 1.000 0.900
BYM 0.714 0.750 0.922 0.918 0.900 1.000

is highly correlated with the Bayesian estimator when the underlying true risk pattern
is spatially structured. The Poisson-Gamma estimator has a good performance with
heterogeneous risk and mixture patterns.

6. Discussion and conclusions

Clayton and Kaldor (1987) stated: “[The NPML approaches] ignore any spatial cor-
relation and assume [that the relative risks are] iid random variables with density of
unknown parametric form. (: : :) for mapping diseases in very small areas (: : :) clearly
it will be necessary to allow for spatial autocorrelation.” Also Aitkin (1999) remarked:
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“A limitation of the NPML in [the disease mapping example] is that it does not
allow for spatial dependence between neighboring units.” B0ohning (2000) noted the
diRculties of including an adjacency matrix into mixture models.
All these claims are even more important since Militino et al. (2001) reported that

NPML performs worse than other methods when spatial autocorrelation is present. In
the present paper we con5rmed these 5ndings by a simulation study.
We used a pseudo-likelihood approach to derive a transitional NPMPL estimator.

The method proposed includes spatial neighbourhood dependence but assumes that the
observed data are independent. The pseudo-likelihood is likely to be valid only under
weak correlation.
A simulation study which covered a broad range of realistic models is then conducted

to evaluate the performance of the Transitional NPMPL estimator: overall it provides
estimates that are close to those obtained by Bayesian autocorrelated models.
However, the user should be warned against the possibility of local maxima and the

diRculty in detecting the optimal number of components. Actually we encountered this
kind of problem in 9% of the simulated datasets using TNPMPL and NPML for HET,
7% and 9%, respectively, for HET-CLUS, 5% and 17%, respectively, for CLUS and
16% and 22%, respectively, for MIXT. Special software (such as CAMAN, B0ohning
et al., 1992, B0ohning et al., 1998) has been developed and should be recommended
mainly to inexperienced users.
Another drawback of the non-parametric methods is that it is very diRcult to evaluate

the standard errors of estimates, that are not provided by the EM algorithm.
Moreover, for the transitional approach, standard likelihood theory is not applicable,

since it uses a pseudo-likelihood approximation.
Extension to ecological regression is not straightforward, since the autoregressive

term is pre-computed when it clearly must be estimated when other covariates than an
oIset term are to be considered (Brumback et al., 2000).
In conclusion we reviewed the proposed non-parametric maximum likelihood esti-

mators for disease mapping and presented a transitional NPMPL approach. The perfor-
mance of non-parametric estimators was compared with that of the Bayesian hierarchi-
cal estimator using a simulation study. Overall, the transitional NPMPL estimates were
closer to the Bayesian estimates than exchangeable NPML estimates. This formulation
addresses the point raised by Aitkin (1999) and Militino et al. (2001).
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