
Aust. N. Z. J. Statist. 42(3), 2000, 283–322

PRACTICAL MAXIMUM PSEUDOLIKELIHOOD
FOR SPATIAL POINT PATTERNS

(with Discussion)

ADRIAN BADDELEY1∗ AND ROLF TURNER2
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Summary

This paper describes a technique for computing approximate maximum pseudolikelihood
estimates of the parameters of a spatial point process. The method is an extension of
Berman & Turner’s (1992) device for maximizing the likelihoods of inhomogeneous spa-
tial Poisson processes. For a very wide class of spatial point process models the likelihood
is intractable, while the pseudolikelihood is known explicitly, except for the computation
of an integral over the sampling region. Approximation of this integral by a finite sum in
a special way yields an approximate pseudolikelihood which is formally equivalent to the
(weighted) likelihood of a loglinear model with Poisson responses. This can be maximized
using standard statistical software for generalized linear or additive models, provided the
conditional intensity of the process takes an ‘exponential family’ form. Using this approach
a wide variety of spatial point process models of Gibbs type can be fitted rapidly, incor-
porating spatial trends, interaction between points, dependence on spatial covariates, and
mark information.

Key words: area-interaction process; Berman–Turner device; Dirichlet tessellation; edge effects;
generalized additive models; generalized linear models; Gibbs point processes; GLIM; hard core
process; inhomogeneous point process; marked point processes; Markov spatial point processes;
Ord’s process; pairwise interaction; profile pseudolikelihood; spatial clustering; soft core process;
spatial trend; S-PLUS; Strauss process; Widom–Rowlinson model.

1. Introduction

This paper describes a computational device for rapidly fitting statistical models to spa-
tial point patterns. Applications are shown in Section 10. Datasets may consist of points in
two or three dimensions or in space–time; the points may be classified into different types or
carry auxiliary observations (‘marks’). Additionally there may be spatial covariates, such as
topography or another spatial pattern observed in the same region. Realistic models for such
data should incorporate both spatial inhomogeneity (‘trend’) and dependence between points
(‘interaction’ such as clustering or regularity). Ogata & Tanemura (1981, 1984, 1985, 1986)

Received August 1998; revised May 1999; accepted June 1999.
∗ Author to whom correspondence should be addressed.
1 Dept of Mathematics and Statistics, University of Western Australia, Nedlands, WA 6907.

e-mail: adrian@maths.uwa.edu.au
2 Dept of Mathematics and Statistics, University of New Brunswick, Fredericton, NB, Canada E3B 5A3.
Acknowledgments. The authors warmly thank an anonymous referee and Y.C. Chin, M. Tanemura, H. Wil-
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and Penttinen (1984) developed methods for maximum likelihood estimation for such models,
and applied them to real data. Recent advances have been made by Geyer & Møller (1994),
Geyer (1998) and others. However, maximum likelihood is computationally intensive, and
employs simulation algorithms that are specific to the chosen model. It is even more costly
for inhomogeneous spatial patterns because of increased parameter dimensionality and com-
plexity of simulation. This militates against the modern statistical practice of fitting several
alternative models to the same dataset and introducing smooth functions as model terms. Few
writers apart from Ogata & Tanemura (1986) have fitted inhomogeneous point process models,
other than the inhomogeneous Poisson process, to real spatial data.

Berman & Turner (1992) introduced a technique for maximizing the likelihoods of (a)
general point processes in time, and (b) inhomogeneous Poisson processes in d-dimensional
space. The intensity or conditional intensity of the process was assumed to be loglinear in the
parameters. They approximated the log-likelihood by a finite sum that had the same analytical
form as the (weighted) log-likelihood of a generalized linear model with Poisson responses.
The approximate likelihood could then be maximized using existing software for generalized
linear models. Related ideas have been explored by Lindsey (1992, 1995, 1996) and Lindsey
& Mersch (1992).

In this paper we extend the Berman–Turner device to a much larger class of spatial point
process models, namely Gibbs point processes with exponential family likelihoods. We ob-
tain an approximation to the pseudolikelihood (Besag, 1975; Besag, 1977; Jensen & Møller,
1991) rather than to the likelihood. The maximum pseudolikelihood estimator is a practical
alternative to the maximum likelihood estimator (MLE), satisfies unbiased estimating equa-
tions, and is consistent and asymptotically normal under suitable conditions. The MLE is not
necessarily optimal here because the usual asymptotic theory is not applicable. Under rea-
sonable assumptions (Diggle et al., 1994) the maximum pseudolikelihood normal equations
are a special case of the Takacs–Fiksel estimating equations, an application of the method
of moments (Fiksel, 1984; Takacs, 1986; Fiksel, 1988). Using the extended Berman–Turner
device and standard statistical software, we can rapidly fit quite complex spatial stochastic
models involving spatial trends and spatial covariates as well as interactions between points.

The plan of the paper is as follows. Sections 2 and 3 give definitions and background.
Section 4 presents our extension of the Berman–Turner computational device. Section 5 treats
a simple example. Section 6 develops applications of the method to specific models of spatial
interaction; Section 7 develops applications for spatial inhomogeneity, and Section 8 develops
applications for marked point patterns. Section 9 treats some issues in estimation and infer-
ence. The method is applied to real datasets in Section 10. Section 11 reports a simulation
study of the accuracy of the technique.

2. Background and definitions

2.1. Likelihoods

The data consist of a spatial point pattern x observed in a bounded region W of space.
Thus

x = {x1, . . . , xn},
where the number of points n ≥ 0 is not fixed, and each xi is a point in W. The region W is
a known, bounded subset of d-dimensional space R

d , where d ≥ 1. Sections 7.1–7.2 and 8

c© Australian Statistical Publishing Association Inc. 2000



PRACTICAL MAXIMUM PSEUDOLIKELIHOOD FOR SPATIAL POINT PATTERNS 285

discuss extensions of this basic setup to incorporate spatial covariates and marked points,
respectively.

The data x are assumed to be a realization of a random point process X in W. Typically
the null model (or the null hypothesis) is the homogeneous Poisson point process (Cox &
Isham, 1980; Kingman, 1993). Other models are specified by their likelihood with respect
to the Poisson process. Thus we assume X has a probability density f (x; θ) with respect
to the distribution of the Poisson process with intensity 1 on W. Additionally we assume
f (x; θ) > 0 implies f (y; θ) > 0 for all subsets y ⊂ x. This is the class of Gibbs processes
on W (see Preston, 1976; Ripley, 1989; Stoyan, Kendall & Mecke, 1995). The distribution
is governed by a vector parameter θ ranging over a set � ⊆ R

p, see Cox & Isham (1980),
Geyer (1998).

2.2. Basic models

Specific models are detailed in Sections 6–8, but it is instructive to list three important
examples. First, the homogeneous Poisson process with intensity λ > 0 has density

f (x; λ) = e−(λ−1)|W |λn(x),

where n(x) denotes the number of points in x and |W | is the volume of W. This yields the
maximum likelihood estimate λ̂ = n(x)/|W |.

Second, consider the inhomogeneous Poisson process on W with rate or intensity func-
tion λ : W → R; see Cox & Isham (1980), Kingman (1993). In statistical models, the
intensity λθ (u) will depend on θ to reflect ‘spatial trend’ (a change in intensity across the
region of observation) or dependence on a covariate. The density is

f (x ; θ) =
n(x)∏
i=1

λθ (xi) exp

(
−

∫
W

[λθ (u)− 1] du

)
. (1)

Maximization of (1) generally requires iterative optimization methods.
Third, the pairwise interaction process on W with trend or activity function bθ : W →

R+ and interaction function hθ : W ×W → R+ has density

f (x ; θ) = α(θ)

n(x)∏
i=1

bθ (xi)
∏
i<j

hθ (xi, xj ), (2)

where α(θ) > 0 is the normalizing constant. Conditions must be imposed on bθ and hθ to
ensure the density is well defined and integrable: in particular hθ (u, v) = hθ (v, u). Examples
are given in Section 6. See the excellent surveys by Ripley (1988, 1989). Pairwise interaction
models are suitable for the data in Figures 6 and 12, as shown by Ogata & Tanemura (1981,
1984, 1985, 1986), Särkkä (1993), and Takacs & Fiksel (1986). The terms bθ (xi) in (2)
influence the intensity of points and introduce a spatial trend if bθ (·) is not constant. The
terms hθ (xi, xj ) introduce dependence (‘interaction’) between different points of the process
X. If hθ ≡ 1 the model reduces to an inhomogeneous Poisson process with intensity function
bθ (u).

The normalizing constant α(θ) in (2) is generally an intractable function of θ. Methods
for approximating α(·) and maximizing likelihood include functional expansions of α(·),
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Monte Carlo integration, and analogues of E-M and stochastic approximation (Ogata & Tane-
mura, 1981, 1984, 1985, 1986; Penttinen, 1984; Moyeed & Baddeley, 1991; Geyer, 1998).

Most models considered in this paper are pairwise interaction processes, but we also
discuss the Widom–Rowlinson (‘area-interaction’) model (Section 6.2) and Ord’s model (Sec-
tion 6.3).

3. Pseudolikelihood

It is generally difficult to evaluate and maximize the likelihoods of point processes other
than the inhomogeneous Poisson process (1). Even simple exponential family models such as
the pairwise interaction processes (2) include a normalizing constant which is an intractable
function of θ. An alternative to the likelihood function is the pseudolikelihood (Besag, 1975,
1977; Besag, Milne & Zachary, 1982; Jensen & Møller, 1991) which we describe here; see
Fiksel (1984, 1988); Takacs (1986); Ripley (1988, 1989); Särkkä (1993); Diggle et al. (1994)
for other applications.

Originally Besag (1975, 1977) defined the pseudolikelihood of a finite set of random
variables X1, . . . , Xn as the product of the conditional likelihoods of each Xi given the other
variables {Xj , j �= i}. This was extended (Besag, 1977; Besag et al., 1982) to point processes,
for which it can be viewed as an infinite product of infinitesimal conditional probabilities.

3.1. Conditional intensity

To construct the pseudolikelihood we need the (Papangelou) conditional intensity λ(u; x)
of X at a location u ∈ W. This may be loosely interpreted as giving the conditional probability
that X has a point at u given that the rest of the process coincides with x. See Kallenberg
(1984) for an informal introduction, or Glötzl (1980a,b), Kallenberg (1983), Kozlov (1976)
for details.

For any Gibbs process on W (see Section 2) with density f, the conditional intensity at
a point u ∈ W is

λ(u; x) = f (x ∪ {u})
f (x)

(u �∈ x), (3)

λ(xi; x) = f (x)
f (x \ {xi}) (xi ∈ x). (4)

For example, the inhomogeneous Poisson process with intensity function λ(·) has conditional
intensity λ(u; x) = λ(u) at all points u. The fact that this does not depend on x is a con-
sequence of the independence properties of the Poisson process. For a general Gibbs point
process, λ(u; x) depends on x. The general pairwise interaction process (2) has conditional
intensity

λθ (u; x) = bθ (u)

n(x)∏
i=1
xi �=u

hθ (u, xi). (5)

Note that λθ (· ; x) is discontinuous at the data points xi, and that the intractable normalizing
constant in (2) has been eliminated in the conditional intensity.
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3.2. Definition of pseudolikelihood

Besag (1977) defined the pseudolikelihood of a point process with conditional intensity
λθ (u; x) over a subset A ⊆ W to be

PLA(θ; x) =
( ∏

xi∈A
λθ (xi; x)

)
exp

(
−

∫
A

λθ (u; x) du
)

(6)

and gave examples of the utility of maximum pseudolikelihood estimates. Further theory was
developed in Besag et al. (1982), Jensen & Møller (1991) and Jensen & Künsch (1994).

If the process is Poisson, the pseudolikelihood coincides with the likelihood (1) up to the
factor exp(|W |). For a pairwise interaction process (2), the pseudolikelihood is

PL(θ; x) =
( n(x)∏

i=1

bθ (xi)
∏
i �=j

hθ (xi, xj )

)
exp

(
−

∫
W

bθ (u)

n(x)∏
i=1

hθ (u, xi) du

)
; (7)

the intractable normalizing constant α(θ) appearing in the likelihood (2) has been replaced
by an exponential integral in (7) as if the process were Poisson. We give other examples in
Sections 6 and 7 below.

For processes with ‘weak interaction’ in the sense that λθ (u; x) can be approximated
well by a function of u only, the process is approximately Poisson and the pseudolikeli-
hood is an approximation to the likelihood. Hence the maximum pseudolikelihood estimator
(MPLE) should be efficient if interaction is weak. Folklore holds that it is inefficient for strong
interactions.

3.3. Loglinear case

In this paper we focus on Gibbs point process models for which the conditional intensity
is loglinear:

λθ (u; x) = exp
(
θTS(u; x)

)
, (8)

where S(u; x) is a vector of spatial covariates defined at each point u in W. This includes
exponential family likelihoods with canonical parameter θ.

Assume ‖S(u; x)‖ exp(θTS(u; x)) is uniformly bounded in u ∈ W and θ ∈ �, for
each fixed x. Then the maximum pseudolikelihood normal equations

∂

∂θ
log PLA(θ; x) = 0

become ∑
xi∈A

S(xi; x) =
∫
A

S(u; x) exp
(
θTS(u; x)

)
du. (9)

Numerical solution of (9) usually requires iterative algorithms.
Equation (9) is an unbiased estimating equation, i.e. the expectations of the left and right

sides of (9) under θ are equal. The proof is an application of a non-stationary form of the
Nguyen–Zessin formula (Nguyen & Zessin, 1976), namely

E

( ∑
xi∈X∩A

h(xi, X)

)
=

∫
A

E
(
λ(u;X)h(u,X)

)
du, (10)
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holding for all non-negative bounded measurable functions h(u, x). This extends a result of
Diggle et al. (1994) that, under reasonable conditions, the normal equations in the stationary
case are a special case of the Takacs–Fiksel estimating equations, themselves an application
of the method of moments (Fiksel, 1984, 1988; Takacs, 1986).

The MPLE is known to be consistent and asymptotically normal (Jensen & Møller, 1991;
Jensen & Künsch, 1994), at least for stationary pairwise interaction processes whose interac-
tion functions satisfy suitable regularity conditions.

If (8) holds, the pseudolikelihood is log-convex. If, moreover, the parameter space is a
convex set � ⊂ R

p, it follows that the maximum exists and occurs either at an interior point
of � where the normal equations are satisfied, or on the convex boundary ∂� of �.

4. Berman–Turner device for maximum pseudolikelihood

This section describes the computational device that we propose for computing approx-
imate maximum pseudolikelihood estimates. The method is an adaptation of an earlier tech-
nique of Berman & Turner (1992) for approximate maximum likelihood estimation for the
inhomogeneous Poisson point process. Related ideas have been explored by Lindsey (1992,
1995, 1996) and Lindsey & Mersch (1992).

4.1. Derivation

Let X be a Gibbs point process with conditional intensity λθ (u; x) and consider the
pseudolikelihood (6) for X, taking A = W for simplicity. Approximate the integral in (6)
by a finite sum using any quadrature rule,

∫
W

λθ(u ; x) du ≈
m∑

j=1

λθ (uj ; x) wj , (11)

where uj , j = 1, . . . , m, are points in W and wj > 0 are quadrature weights summing to
|W |. This yields an approximation to the log-pseudolikelihood,

log PL(θ; x) ≈
n(x)∑
i=1

log λθ (xi ; x)−
m∑

j=1

λθ (uj ; x) wj . (12)

Extending an observation of Berman and Turner, we note that if the list of points {uj , j =
1, . . . , m} includes all the data points {xi, i = 1, . . . , n}, we can rewrite (12) as

log PL(θ; x) ≈
m∑

j=1

(yj log λj − λj )wj , (13)

where λj = λθ (uj ) and yj = zj /wj , and

zj =
{

1 if uj is a data point, uj ∈ x,

0 if uj is a dummy point, uj �∈ x.
(14)

The right side of (13), for fixed x, is formally equivalent to the log-likelihood of independent
Poisson variables Yk with means λk taken with weights wk.
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The expression (13) can therefore be maximized using standard software for fitting gen-
eralized linear models (McCullagh & Nelder, 1989) provided that (a) the software handles
weighted likelihoods (with weights not necessarily summing to 1); (b) the software accepts
non-integer values of the responses yj in Poisson loglinear regression and correctly maxi-
mizes the log-likelihood expression; (c) the conditional intensity function λθ (· ; x), for fixed
x, is related to any explanatory variables by

g
(
λθ (u; x)

) = θTS(u, x), (15)

where g is a link function implemented in the software, and S(u, x) is a vector of spatial
covariates (possibly depending on x) defined at each point u in W.

Software packages satisfying these criteria include GLIM (Aitkin et al., 1989) and S-PLUS
(Becker, Chambers & Wilks, 1988; Chambers & Hastie, 1992; Venables & Ripley, 1994). The
only choice of g in (15) we consider is the log link, giving rise to the ‘loglinear model’ (8).

The key reason for adopting this approach is that the use of standard statistical pack-
ages rather than ad hoc software confers great advantages in applications. Modern statistical
packages have a convenient notation for statistical models (Aitkin et al., 1989; Chambers &
Hastie, 1992; Venables & Ripley, 1994) which makes it very easy to specify and fit a wide
variety of models of the type (8). Algorithms in the package may allow one to fit very flexible
model terms such as the smooth functions in a generalized additive model (Hastie & Tib-
shirani, 1990). Interactive software allows great freedom to re-analyse the data. The fitting
algorithms are typically more reliable and stable than in home-grown software.

4.2. Procedure

In summary, the procedure is as follows:

1. generate a set of dummy points, and combine it with the data points xi to form the set
of quadrature points uj ;

2. compute the quadrature weights wj ;
3. form the indicators zj as in (14) and calculate yj = zj /wj ;
4. compute the (possibly vector) values vj = S(uj , x) of the sufficient statistic at each

quadrature point;
5. invoke the model-fitting software, specifying that the model is a loglinear Poisson re-

gression
log λj = θTvj

to be fitted to the responses yj and covariate values vj , with weights wj .

The coefficient estimates returned by the software give the (approximate) MPLE θ̂ of θ.

The estimates of standard errors are not applicable, since they assume independent and iden-
tically distributed (iid) Poisson observations. The software also typically returns the deviance
D of the fitted model; this is related to the log-pseudolikelihood of the fitted model by

− log PL(θ̂; x) = 1
2D +

n(x)∑
i=1

logwi + n(x). (16)

Note that the sum is over data points only. Conveniently, the null model λj ≡ λ in the
loglinear Poisson regression corresponds to the uniform Poisson point process with inten-
sity λ. The MPLE is λ̂ = n(x)/

∑
j wj = n(x)/|W | with corresponding log-pseudolikelihood

log PL(λ̂; x) = n(x)(log n(x)− log |W | − 1).

c© Australian Statistical Publishing Association Inc. 2000
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Figure 1. Quadrature using the Dirichlet tessellation (Berman & Turner, 1992). Left: Illustrative
example of a point pattern dataset in the unit square W. Right: The Dirichlet tessellation of W

based on the data points and a 5 × 5 grid of dummy points. Data points are marked by filled dots.
The quadrature weight wj is the area of the Dirichlet tile.

This formulation assumes λ(u; x) is positive everywhere. Zero values are also permissi-
ble, provided the set of zeroes does not depend on θ. Thus we formally allow negative infinite
values for S(u; x). In the approximation (13) all points uj with λ(uj ; x) = 0 are dummy
points. Their contribution is zero and so they should be omitted in all contexts.

4.3. Quadrature schemes and their accuracy

Berman & Turner (1992) used the Dirichlet tessellation or Voronoi diagram (Okabe,
Boots & Sugihara, 1992) to generate quadrature weights for the analogue of (11). The data
points are augmented by a list of dummy points, then the Dirichlet tessellation of the combined
set of points is computed as sketched in Figure 1. The quadrature weight wj associated with
a (data or dummy) point uj is the area of the corresponding Dirichlet tile.

A computationally cheaper scheme is to partition W into tiles Tk of equal area, and in
each tile place exactly one dummy point, either systematically or randomly. Ascribe to each
dummy or data point uj a weight wj = a/nj where a is the area of each tile, and nj is the
number of (dummy or data) points in the same tile as uj . We call these the counting weights.

Note that for non-Poisson processes the conditional intensity λθ (u ; x) is typically a
discontinuous function of u at the data points xi, while generically the limit as u → xi
exists. Thus the approximation (11) involves a ‘discontinuity error’ of size

n(x)∑
i=1

(
λθ (xi ; x)− lim

u→xi
λθ (u ; x)

)
wi (17)

(a sum of contributions from data points only) in addition to the ‘quadrature error’ associated
with the finite approximation to the integral. The discontinuity error is controlled by reduc-
ing

∑
i wi, the total quadrature weight of the contributions from the data points, usually by

increasing the number m−n of dummy points. See further comments at the end of Section 5.
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5. Example: Strauss process

Next we illustrate the method as it applies to the simple Strauss process model (Strauss,
1975; Kelly & Ripley, 1976). This is a pairwise interaction process (2) in which bθ (u) ≡ β

is constant and hθ (u, v) = γ if ‖u− v‖ ≤ r, and hθ (u, v) = 1 otherwise. Here β > 0 and
0 ≤ γ ≤ 1 are parameters and r > 0 is a fixed ‘interaction distance’. Each pair of points
closer than r units apart contributes a penalty of γ to the likelihood,

lik(β, γ ; x) = αβn(x)γ s(x) (18)

(taking 00 = 1), where α = α(β, γ ) is the normalizing constant, and

s(x) = #{(i, j) : i < j, ‖xi − xj‖ ≤ r}

is the number of unordered pairs of points which lie closer than r units apart. The Strauss
process is well-defined for all γ ∈ [0, 1]. If γ = 1, it reduces to the homogeneous Poisson
process with intensity β. For γ = 0 it is a ‘hard core’ process in which no two points ever
lie closer than r units apart. For 0 < γ < 1 there is inhibition between close pairs of points.
The conditional intensity is

λβ,γ (u; x) = βγ t(u,x),

where
t (u, x) = #{xi ∈ x : 0 < ‖xi − u‖ ≤ r} (19)

is the number of points xi ∈ x which are close to u, other than u itself.
The pseudolikelihood is

PL(β, γ ; x) = βn(x)γ 2s(x) exp

(
− β

∫
W

γ t(u,x) du

)
, (20)

which is in the required loglinear form (8) with θ = (ln β, ln γ )T and S(u; x) = (1, t (u, x))T.

The MPLE normal equations (9) are

n(x) = β

∫
W

γ t(u,x) du (21)

2s(x)
∫
W

γ t(u,x) du = n(x)
∫
W

t(u, x)γ t(u,x) du. (22)

The maximum of the pseudolikelihood may occur either at a solution of these equations or at
γ = 0, 1. If r is less than the minimum interpoint distance, then s(x) = 0 and the pseudo-
likelihood is maximized when γ = 0. Otherwise γ̂ > 0. If the solution of (21)–(22) occurs
where γ > 1, then, since the log-pseudolikelihood is concave, γ̂ = 1. The maximized
log-pseudolikelihood is

log PL(β̂, γ̂ ; x) = n(x) log β̂ + 2s(x) log γ̂ − β̂p(γ̂ ). (23)

Consistency and asymptotic normality of the MPLE follow from Jensen & Künsch (1994) and
Jensen & Møller (1991).
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To compute the approximate MPLE using the Berman–Turner device we would follow
the procedure in Section 4.2, fitting the loglinear model

log λj = θ1 + θ2vj ,

where vj = t (uj , x), with t (u, x) as defined in (19). A suitable S-PLUS invocation would be

glm(y ∼ v, family = poisson, link = log, weights = w)

where y, v, w are S-PLUS vectors of equal length containing the responses yj , the ‘explanatory
variable’ values vj , and the weights wj , respectively, for each quadrature point uj . If glm()
yields a solution θ2 > 0, i.e. γ > 1, then the MPLE is γ̂ = 1, β̂ = n(x)/|W |.

Note that the integrals in (20)–(22) are polynomials in γ :

p(γ ) =
∫
W

γ t(u,x) du = a0 + a1γ + · · · + aKγK, (24)

say, where ak = |Ak| is the area of the region Ak = {u ∈ W : t (u, x) = k}. Thus (21)–(22)
can be rewritten

βp(γ ) = n(x) (25)
γp′(γ )
p(γ )

= 2s(x)
n(x)

. (26)

In this simple case, the MPLE can be computed by solving (25)–(26) directly, although this
still requires evaluation of the coefficients aj , which calls for numerical integration or com-
putational geometry. We use this ‘polynomial’ approach to check the accuracy of our method
in Section 10.

The quadrature approximation (11) consists of replacing p(γ ) by

q(γ ) =
m∑

j=1

γ t(uj ,x)wj =
K∑

k=1

bkγ
k,

where bk = ∑
uj∈Ak

wj are approximations to the areas of the sets Ak. The approximation
includes discontinuity error (17) arising because the weight wi for a data point xi, with
t (xi; x) = k but limu→xi t (u; x) = k + 1, is ascribed to bk rather than to bk+1.

The total error in approximating p(γ ) by q(γ ) is bounded by E1 = ∑K
k=1 |ak − bk|,

the sum of the errors in approximating the area ak by bk. The error in approximating γp′(γ )
by γ q ′(γ ) is bounded by E2 = ∑K

k=1 k|ak−bk|. To control both E1 and E2, dummy points
must be sufficiently dense throughout W and sufficiently dense where t (u; x) is high; that is,
near the data points.

6. Spatial interaction terms

Sections 6–8 present further examples of point processes, and examine the computa-
tional requirements for applying our method. The present section concerns point processes
with various kinds of interpoint interaction (pairwise interaction and other). Inhomogeneous
models are discussed in Section 7 and marked point processes in Section 8.
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6.1. Pairwise interaction models

6.1.1. General loglinear form

Consider first the general pairwise interaction process (2) and assume

bθ (u) = exp
(
θTB(u)

)
, (27)

hθ (u, v) = exp
(
θTH(u, v)

)
, (28)

where B(u) and H(u, v) are vectors defined for every u, v ∈ W. Note H(u, v) should be a
symmetric function of u and v. The conditional intensity (5) becomes

λθ (u; x) = exp

(
θTB(u)+ θT

n(x)∑
i=1

H(u, xi)

)
. (29)

This is of the loglinear form (8) required for our approximation, with

S(u, x) = B(u)+
n(x)∑
i=1
xi �=u

H(u, xi), (30)

and the procedure of Section 4.2 may be applied. The log-pseudolikelihood is concave in θ

so the MPLE values form a non-empty convex set. Consistency of the MPLE is not guaranteed
in this generality.

In the rest of this section we assume B(u) is constant; Section 7 discusses models for
spatial inhomogeneity. Here it is important to note that the general form (27) assumed for
bθ embraces not only parametric models but also generalized additive models (GAM; Hastie
& Tibshirani, 1990) in which B(u) would be a vector of spline basis functions. However,
this apparently does not extend to GAM type models for hθ , since the sufficient statistic (30)
is a sum of a variable number of terms which is beyond the scope of current GAM fitting
algorithms. Hence we are currently forced to consider only parametric models for interpoint
interaction, such as the Strauss process.

6.1.2. Soft core process

The ‘soft core’ model discussed by Ogata & Tanemura (1981) is a pairwise interaction
process (2) with b(u) ≡ β and

h(u, v) = exp
(
−

( σ

‖u− v‖
)2/κ)

(u �= v),

where β > 0 and 0 ≤ σ < ∞ are parameters and 0 < κ < 1 is an irregular parameter which
we assume known for the moment. The limit as κ → 0 is the hard core process (Strauss with
γ = 0, r = σ); the density is not integrable for κ ≥ 1. Thus log λθ (u; x) = exp(θTS(u, x))
where S(u, x) = (1, V (u, x))T and θ = (logβ, σ 2/κ )T with

V (u, x) = −
n∑

i=1
xi �=u

‖u− xi‖−2/κ . (31)
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The log-pseudolikelihood is concave in θ and the MPLE is well defined, consistent and asymp-
totically normal (Jensen & Künsch, 1994).

The conditional intensity is loglinear in θ. To estimate β and σ (given a value of κ)

one would execute the S-PLUS command

glm(y ∼ v, family = poisson, weights = w)

where y, v, w are S-PLUS vectors containing the responses yj = zj /wj , explanatory variable

vj = V (uj , x), and weights wj respectively. Then β̂ = exp θ̂1 and σ̂ = θ̂
κ/2
2 where θ̂1 and

θ̂2 are the estimates of the linear coefficients returned by the glm() function of S-PLUS.

6.1.3. Step function interaction

In the absence of non-parametric estimators of hθ , there is much interest (Fiksel, 1984,
1988; Penttinen, 1984; Takacs, 1986) in fitting a stationary pairwise interaction process with a
piecewise constant interaction function hθ . Thus bθ (u) ≡ β and hθ (u, v) is a step function of
‖u−v‖, say loghθ (u, v) = θ4 if r4−1 < ‖u−v‖ ≤ r4, and loghθ (u, v) = 0 if ‖u−v‖ > rk,

where 0 = r0 < r1 < r2 < · · · < rk are parameters. This is a special case of (27)–(28) with
θ = (logβ, θ1, θ2, . . . , θk)

T, say, and

B(u) = (1, 0, 0, . . . , 0), H(u, v) = (
0, I1(‖u− v‖), . . . , Ik(‖u− v‖)),

where I4(d) = 1 {r4−1 < d ≤ r4} for 4 = 1, 2, . . . , k. Thus

S(u, x) = (
1, t1(u, x), . . . , tk(u, x)

)T
,

where t4(u, x) = #{xi ∈ x : r4−1 < ‖xi − u‖ ≤ r4} (4 = 1, 2, . . . , k),

is the number of points xi ∈ x whose distance from u lies in the interval (r4−1, r4]. The MPLE
is consistent by Jensen & Møller (1991 Theorem 3.1) if either θ4 ≤ 0 for all 4 = 1, . . . , k,
or the θ4 are uniformly bounded from above and θ1 = −∞ (the process has a hard core).

In our approach it is easy to fit this model, analogously to the Strauss process. The
associated loglinear model is

log λj = logβ + θ1v1j + · · · + θkvkj , where v4j = t4(uj , x).

6.2. Area-interaction process

The Widom–Rowlinson ‘penetrable sphere model’ of liquid–vapour equilibrium (Widom
& Rowlinson, 1970; Hammersley, Lewis & Rowlinson, 1975; Rowlinson, 1980) also known
as the ‘area-interaction process’ (Baddeley & van Lieshout, 1995), has probability density (in
the simplest case)

p(x) = αβn(x)γ−A(x), (32)

where A(x) is the area of the union of discs of radius r centred at xi. Here β, γ, r > 0
are parameters and α = α(β, γ, r) is the normalizing constant. Generalizations are given
in Baddeley & van Lieshout (1995). The process is well defined, i.e. (32) is integrable, for
all values of γ > 0 and for all compact W ⊂ R

2. It reduces to a Poisson process when
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γ = 1, exhibits ordered patterns for 0 < γ < 1 and produces clustering when γ > 1. Other
properties and maximum likelihood estimation are being investigated.

The conditional intensity is of the desired form log λθ (u; x) = θTS(u; x) putting θ =
(logβ, log γ )T and S(u; x) = (1, A(x ∪ {u})− A(x))T. Results in Jensen & Møller (1991)
imply that if r is known, the MPLE of (β, γ ) is consistent. We do not know whether a central
limit theorem is available; the results of Jensen & Künsch (1994) do not apply.

Another advantage of the Berman–Turner approach here is the reduction in the compu-
tational cost because the values of D(u; x) = A(x ∪ {u}) − A(x) are only required for a
relatively small number of points, i.e. the quadrature points uj .

6.3. Ord’s process

Ord (Ripley, 1977 Discussion) suggested a model for regular patterns of points represent-
ing entities which compete for resources, such as trees or towns. The Dirichlet tile associated
with a point can be interpreted as the territory from which it draws resources. Ord suggested
densities of the form

f (x; θ) ∝
n∏

i=1

gθ
(
A(xi, x)

)
, (33)

where A(xi, x) denotes the area of the Dirichlet tile associated with xi in the pattern x, and
gθ : R → [0,∞) is a function combining the roles of the spatial interaction and intensity
terms in other models. The special case gθ (v) ≡ λ is the uniform Poisson process with
intensity λ. Typically gθ (·) would be an increasing function, so that small tiles are penalized.

Ripley (1981 p .175) concludes his analysis of the Swedish pines data (Section 10.1)
with a comment that fitting Ord’s process would be an interesting alternative analysis. To
our knowledge, this has not been attempted and Ord’s model has not been investigated or
mentioned further, except in Baddeley & Møller (1989).

The process (33) exists (i.e. f is integrable) under reasonable conditions: for example,
whenever gθ (·) is uniformly bounded. The conditional intensity is

λθ (u, x) = gθ
(
A(u, x ∪ {u})) ∏

xi∼ u

gθ
(
A(xi, x ∪ {u}))
gθ

(
A(xi, x)

) ,

where the product is over all points xi that are Dirichlet neighbours of u in the pattern x∪{u},
and A(u, x ∪ {u}) is the area of the Dirichlet tile with centre u in this pattern. Explicit
analytic expressions for A(u, x ∪ {u}), the pseudolikelihood, or the MPLE are not available.
Geometric computation of A(u, x) is time-consuming, so a discrete approximation to the
pseudolikelihood becomes a necessity.

The Berman–Turner device (Section 4) can be applied if the kernel is modelled in log-
linear form gθ (v) = exp(θTG(v)). Then log λ(u, x) = θTV (u, x), where

V (u, x) = G
(
A(u, x ∪ {u})) + ∑

xi∼ u

[
G

(
A(xi, x ∪ {u})) −G(A(xi, x)

)]

is the regression variable. Evaluating vj = V (uj , x) for all j requires computation of m+ 1
different Dirichlet tessellations.

7. Inhomogeneous models

Few writers to date, apart from Ogata & Tanemura (1986), have fitted explicit models
to point pattern data that incorporate both spatial inhomogeneity and interpoint interactions.
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In the context of our method, it is easy to introduce a spatial trend or dependence on spatial
covariates. This is simply a matter of adding more terms to the linear predictor S(u; x) in the
associated Poisson loglinear regression model.

7.1. Spatial trend

A straightforward model of spatial trend in a pairwise interaction process (2) is the log-
linear form bθ (u) = exp(θTB(u)) and hθ (u, v) = hθ (u − v) = exp(θTH(u − v)) as in
(27)–(28), but with the assumption that H(u, v) = H(u− v) depends only on u− v.

The spatial trend is expressed by the dependence of bθ (u) on location u, while the inter-
point interaction does not exhibit trend. Typically H would be one of the pairwise interaction
functions considered in Sections 5–6, while B(u) = (B1(u), . . . , Bk(u))

T would be a vector
of convenient scalar functions of location, such as polynomials or orthonormal functions of
the coordinates. It is also possible to use the GAM approach (Hastie & Tibshirani, 1990) to
model each B4(u) by a smooth function of one coordinate.

By (29) we may fit these models using the method of Section 4.2 by adding the term
θTB(u) to the linear predictor in one of the models discussed in previous subsections.

Ogata & Tanemura (1981) developed maximum likelihood estimation techniques for
models of this form, in particular combining a spatial trend with the soft core interaction of
Section 6.1.2. The trend term θTB(u) was a polynomial in the Cartesian coordinates. Details
are given in Section 10.3.

More generally, the spatial interaction can also depend on location. Loglinearity is usu-
ally lost, however, and we cannot apply the method of Section 4 directly.

An effective alternative way to fit models with spatially-varying interaction range is
proposed by Nielsen & Jensen (1998).

7.2. Spatial covariates

The data may include spatial covariates such as topographic elevation, soil pH, or another
observed spatial pattern. Covariates may serve to eliminate spurious trend, explain variation
in intensity, or make inferences conditional upon another spatial pattern. For our purposes
the spatial covariate must be incorporated as a function Z(u), u ∈ W, observed at each of
the quadrature points uj . We add terms in Z(uj ) to the linear predictor. The covariate value
Z(u) may be simply an observation such as pH or elevation, but often the covariate data can
be transformed to yield Z(u). For example in spatial epidemiology Z(u) could be a kernel
smoothed estimate of the density of the population at risk (Cuzick & Edwards, 1990).

Another observed spatial pattern can be included as a spatial covariate by computing
a suitable function Z(u) associated with the pattern. Berman (1986) proposed modelling
the dependence of a point process X on a line segment process Y by conditioning on Y

and testing whether X is inhomogeneous Poisson with an intensity λ(u) depending on the
minimum distance Z(u) from location u to the nearest line segment.

8. Marked point patterns

8.1. General

The observed points may also carry ‘marks’, i.e. observations mi associated with each
point xi of the pattern. The full dataset is a list

v = {(x1,m1), . . . , (xn,mn)} (xi ∈ W and mi ∈ M),
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where M is the space of possible marks. The marks may be observations of any kind; com-
monly M is either a discrete set of ‘labels’ M = {1, 2, . . . , c} or the positive real line
M = [0,∞). In the discrete case, the data points are effectively classified into m different
types or colours, and the mark attached to each point indicates its type. In the continuous
case mi is usually a physical measurement such as the height or diameter of a tree whose
location is xi. See Diggle (1983 Chapters 6, 7), Cressie (1991 Sections 8.6–8.7), Baddeley
& Møller (1989), Frey & Schmidt (1998), Stoyan et al. (1995). Jensen & Møller (1991)
formally treat the pseudolikelihood of a marked point process and prove consistency of the
MPLE; Goulard, Särkkä & Grabarnik (1996) investigate further statistical properties. See also
Särkkä & Högmander (1998).

The reference process for likelihoods is the Poisson marked point process constructed
by attaching iid random marks to the points of a Poisson point process on W with unit inten-
sity (Kingman, 1993). The distribution of the marks in this reference process is an arbitrary
probability distribution Q on M.

The inhomogeneous Poisson marked point process with intensity function bθ : W ×
M → R+ , is the analogue of (1), with density

f (v; θ) = α

n(x)∏
i=1

bθ (xi,mi),

where α = α(θ) = exp(− ∫
W×M(bθ (u,m)− 1) dQ(m) du) is the normalizing constant.

The pairwise interaction marked point process is the analogue of (2), with density

f (v; θ) = α

( n(x)∏
i=1

bθ (xi,mi)

)( ∏
i<j

hθ

(
(xi,mi), (xj ,mj )

))
, (34)

where α = α(θ) is the normalizing constant, bθ : W × M → R+ is the activity/trend
function and hθ : (W ×M)2 → R+ the interaction function. The function hθ is symmetric
in the sense that hθ ((u,m), (u′,m′)) = hθ ((u

′,m′), (u,m)) for u, u′ ∈ W and m,m′ ∈ M.

Conditions must be imposed on bθ , hθ to ensure the density is integrable.

8.2. Pseudolikelihood

The conditional intensity of a Gibbs marked point process, analogous to (3)–(4), is a
function λ((u,m); v) of the marked pattern v and of a marked point (u,m) with u ∈ W and
m ∈ M. For example the pairwise interaction marked point process (34) has

λθ

(
(u,m), v

) = bθ (u,m)

n(x)∏
i=1

(u,m)�=(xi ,mi )

hθ

(
(u,m), (xi,mi)

)
.

The pseudolikelihood of a Gibbs marked point process is (Jensen & Møller, 1991; Goulard et
al., 1996)

PL(θ; v) =
( n(x)∏

i=1

λθ

(
(xi,mi); v

))
exp

(
−

∫
W

∫
M

λθ

(
(u,m); v

)
dQ(m) du.

)
(35)
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In the case of a multitype point process with c different types, we have M = {1, 2, . . . , c}
and the pseudolikelihood is usually defined by

PL(θ; v) =
( n(x)∏

i=1

λθ

(
(xi,mi); v

))
exp

(
−

c∑
m=1

∫
W

λθ

(
(u,m); v

)
du

)
. (36)

8.3. Berman–Turner device

To apply our approximation method to (35) we create a set of marked points (uj , kj ),

j = 1, . . . ,M, which include the data (xi,mi), i = 1, . . . , n, and form a good quadrature
rule for W × M. It is usually convenient to take the Cartesian product of a set of quadrature
points in W and a set of elements of M. We assume this and write the marked points as
(uj , k4) for j = 1, . . . , J and 4 = 1, . . . , L where uj ∈ W, k4 ∈ M. Then we define the
indicator zj4 to equal 1 if (uj , k4) is a data point and 0 if it is a dummy point. Let wj4 be
the corresponding weights for a linear quadrature rule in W ×M. Then the pseudolikelihood
is approximated by

log PL(θ; v) ≈
L∑

4=1

J∑
j=1

(yj4 log λj4 − λj4)wj4 ,

where λj4 = λθ ((uj , k4); v) and yj4 = zj4/wj4. For discrete marks as in (36), the weights
may simply be those for a quadrature rule in W corresponding to the points uj .

8.4. Example: 2-type Strauss process

This is the special case of the pairwise interaction marked point process (34) in which
M = {1, 2}, i.e. points belong to one of two types, and bθ (u,m) = βm,

hθ

(
(u,m), (u′,m′)

) =
{
γm,m′ if 0 < ‖u− u′‖ < rm,m′ ,

1 otherwise,

where β1, β2 > 0 are intensity parameters, γ11, γ22, γ12, γ21 ∈ [0, 1] are interaction param-
eters, and r11, r22, r12, r21 > 0 are interaction distances, with γ12 = γ21 and r12 = r21. The
density may be expressed analogously to (18) as

f (v; θ) = αβ
n1(v)
1 β

n2(v)
2 γ

s11(v)
11 γ

s12(v)
12 γ

s22(v)
22 ,

where n1(v), n2(v) are the numbers of points of type 1 and 2 respectively, and sm,m′(v) is the
number of pairs of distinct marked points of types m and m′ respectively within a distance
rm,m′ of each other. The conditional intensity is

λθ

(
(u,m), v

) = βmγ
t1((u,m),v)
m1 γ

t2((u,m),v)
m2 (u ∈ W,m ∈ M, )

where tm′
(
(u,m), v

) = #{i : 0 < ‖u− xi‖ ≤ rm,m′ , mi = m′}

is the number of type m′ points within the required distance rm,m′ of a point u with type m.

c© Australian Statistical Publishing Association Inc. 2000



PRACTICAL MAXIMUM PSEUDOLIKELIHOOD FOR SPATIAL POINT PATTERNS 299

This model may be cast in the loglinear form (8) with parameter vector θ = (logβ1,

logβ2, log γ11, log γ12, log γ22) and five ‘explanatory variables’, namely I1(m), I2(m),

I1(m)t1((u,m), v), I1(m)t2((u,m), v)+I2(m)t1((u,m), v) and I2(m)t2((u,m), v), respec-
tively, where Ik(m) = 1 {m = k} . Equivalently it may be described as a nested model with
one factor and two covariates, one of which is nested within the factor.

The pseudolikelihood estimate of θ is consistent (Jensen & Møller, 1991). The central
limit theorem of Jensen & Künsch (1994) does not strictly apply here because there are more
than two parameters, but Jensen and Künsch conjecture (1994 p .477) that a generalization
does hold.

9. Estimation and inference issues

9.1. Edge effects

For inferential purposes it matters whether we assume the data x are a realization of a
finite point process X defined only inside W (‘bounded case’) or a partially observed real-
ization y ∩W of a point process Y extending throughout R

d only through the ‘window’ W

(‘unbounded case’). In the unbounded case we have an ‘edge effect’ problem: the conditional
intensity λθ (u; y) of Y may not be observable from the data x = y ∩W, since the required
information may involve points outside the observation window W. Ripley (1988), Stoyan et
al. (1995) and Baddeley (1998) survey remedies for edge effects. Following are some possible
strategies.

9.1.1. Periodic boundary conditions

If the window W is rectangular one may apply ‘periodic boundary conditions’ (Ripley,
1977) by identifying opposite sides of W so that points near the right edge (say) have neigh-
bours near the left edge. This is also called the ‘torus correction’. It typically reduces bias
but inflates variance, and is only applicable to certain shapes of W. It seems inadvisable for
inhomogeneous patterns.

9.1.2. Border method

The border method applies (Ripley, 1988) to any process with finite interaction range r,

in the sense that λ(u; x) depends only on data points xi lying within a distance r of u. An
example is the Strauss process with fixed r. Form the pseudolikelihood over the subregion
W�r = {u ∈ W : b(u, r) ⊂ W } of all points of W lying at least r units from the boundary.
For u ∈ W�r the conditional intensity is observable, λθ (u; y) = λθ (u; y∩W), so the pseudo-
likelihood over W�r can be calculated from the data. This applies both to stationary and
non-stationary processes.

The main drawback is that the method discards appreciable amounts of data. Also, if
r is unknown, one must be wary of comparing pseudolikelihoods based on different subsets
W�r . One strategy is to compute all pseudolikelihoods over the same domain W�R where R

is the maximum r value contemplated.

9.1.3. Ripley’s hybrid method

Edge correction weights (Ripley, 1988; Stoyan et al., 1995; Baddeley, 1998) are widely
used for estimation in stationary models. Ripley (1988 p .67) and Venables & Ripley (1994
p .396) extended this to maximum pseudolikelihood estimation for the Strauss process. Ripley
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proposed that the right side of (26), which cannot be observed due to edge effects, be estimated
by n(x)K̂(r)/|W |, a quantity which has approximately the same expectation. Here K̂(r) is
the estimate of K(r), the second moment function K of the process (Ripley, 1988),

K̂(r) = |W |
n(x)2

∑
i �=i′

1 {‖xi − xi′ ‖ ≤ r} e(xi, xi′ ,W),

where e(u, v,W) is an edge effect correction factor ensuring unbiased estimation of λ2K(r)

if the point process is stationary and isotropic. The left side of (26) is also subject to edge
effects, and is modified by using the eroded domain W�r instead of W in (24). This is a
‘hybrid’ of the border method and the edge correction weights strategies.

9.1.4. Edge corrected pseudolikelihood

An alternative, that may be new, is to introduce edge correction weights into the pseudo-
likelihood itself. Consider a stationary pairwise interaction process with bθ (u) ≡ β and
hθ (u, v) = exp(θTH(u− v)). Modify the model, replacing the pairwise interaction function
by

hE
θ (u, v) = exp

(
e(u, v,W)θTH(u− v)

)
,

where e(u, v,W) is an edge correction weight as in Ripley (1988), Stoyan et al. (1995) and
Baddeley (1998) which must be symmetric in u and v. This modified model has conditional
intensity λE

θ (u; x) = β exp(θTSE(u; x)), where

SE(u; x) =
n(x)∑
i=1

e(u, xi,W)H(u− xi)

is a ‘plug-in’ estimator of the unobservable potential S(u; y) for the original model. Forming
the pseudolikelihood for the modified model and deriving the normal equations, we obtain
(9) with S(u; x) replaced by SE(u; x) throughout. By (10), this is an unbiased estimating
equation for the modified model. It is approximately unbiased for the original model, when
‖θ‖ is small. This model can be fitted by our method.

9.1.5. Data augmentation

The unobserved points of y outside the window which affect the value of λθ (u; y) for
u ∈ W can alternatively be regarded as missing data. One approach is data augmentation
Tanner (1996 Chapter 5) which has been applied to maximum likelihood inference for point
processes by Geyer (1998). This can also be applied in our context.

9.2. Irregular parameters and profile pseudolikelihood

The point process models considered above contain ‘irregular’ parameters which do not
enter in the loglinear form (8) required for our method. A possible approach to estimation is
by analogy with profile likelihood. Write θ = (ϕ, ψ) where ψ are the irregular parameters,
so that we assume

λθ (u; x) = exp
(
ϕTS(u, x, ψ)

)
instead of (8). For each fixed value of ψ the model is loglinear in ϕ, so we can apply our
approximation method to maximize the pseudolikelihood over ϕ, yielding an MPLE ϕ̂(ψ)
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for fixed ψ. Computing the maximized pseudolikelihood as a function of ψ yields the profile
pseudolikelihood

PL
(
(ϕ̂(ψ), ψ); x

) = max
ϕ

PL(ϕ, ψ).

The global MPLE of θ is then obtained by maximizing this profile pseudolikelihood over ψ.

We examine this approach for the Strauss and soft core processes in Section 10.

9.3. Parametric inference and model choice

We use the parametric bootstrap for inference and model choice. We assume in practice
that the MPLE θ̂ is approximately unbiased and approximately normal, although this has only
been established in certain cases (Jensen & Møller, 1991; Jensen & Künsch, 1994).

To obtain confidence intervals for θ, we simulate from the fitted model θ = θ̂ , obtaining
M simulated values θ̂∗(1), . . . , θ̂

∗
(M) from the distribution of the MPLE under the fitted model.

We estimate the mean vector and covariance matrix of this distribution from the simulated
values, then construct confidence intervals using location models based on the multivariate
normal or the bootstrap distribution. Similarly for model choice we use the bootstrap distri-
bution of the deviance between two (nested) models.

10. Examples of applications

Our analyses were performed in S-PLUS (Becker et al., 1988; Chambers & Hastie, 1992;
Venables & Ripley, 1994) using the generalized linear model fitting function glm() and occa-
sionally the generalized additive model function gam(). Some analyses were cross-checked
using GLIM (Aitkin et al., 1989).

10.1. Swedish pines data

Figure 2 depicts the Swedish pines data of Strand (1972) which give the locations of 71
pine saplings in a 10 m×10 m square. Ripley’s pioneering analysis (Ripley, 1981 Section 8.6,
pp .172–175) plotted L(t) = √

K(t)/π and rejected the hypothesis of a homogeneous Pois-
son process at the 1% level by a Monte Carlo test based on D = supt |L(t)− t |. Ripley then
fitted a Strauss process manually, obtaining r = 0.7 m and γ = 0.20. In the latest analysis,
by Venables & Ripley (1994 p .396), γ was estimated to be 0.15 using maximum pseudo-
likelihood (using a procedure essentially the same as our ‘polynomial approach’ (25)–(26))
with Ripley’s hybrid edge correction (Section 9.1.3).

We fitted a Strauss process to these data by maximum pseudolikelihood, using both the
Berman–Turner device and the polynomial approach via (25)–(26). We estimated β and γ,

but initially held r fixed at 0.7. For the Berman–Turner method, we tried varying densities
of dummy points, with various edge corrections, and computed the quadrature weights using
the Dirichlet and counting methods (Section 4.3). Estimates obtained for γ ranged from 0.29
to 0.20, and for β from 1.49 to 2.12. A finer quadrature scheme always led to a smaller
value of γ and a larger value of β. Both the Berman–Turner and polynomial methods gave
γ = 0.21 using a 50×50 grid of dummy points. This is close to the value obtained by Ripley
(1981). The corresponding value of β was 1.98 by the Berman–Turner method and 2.01 by
the polynomial method.

Various edge corrections (Section 9.1) were tried, all using a 50 × 50 grid of dummy
points. Using the border method, eroding the window by a distance r = 0.7 m, we obtained
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Figure 2. The Swedish pines data: locations of 71 pine saplings in a 10 m×10 m
square. Extracted by Ripley (1981) from Strand (1972). Data obtained from the

MASS library accompanying Venables & Ripley (1994).

γ̂ = 0.13 and β values of 3.24 (Berman–Turner) and 3.29 (polynomial). Periodic edge
correction yielded β̂ = 2.09, γ̂ = 0.24 (Berman–Turner) and β̂ = 2.24, γ̂ = 0.22 (poly-
nomial). Our proposed edge corrected pseudolikelihood method was also applied, using the
translation correction (Ripley, 1988; Baddeley, 1998) as the edge correction factor e(u, v,W).

The parameter estimates were β̂ = 1.97, γ̂ = 0.25. The latter two edge corrections inflated
the estimate of γ while the border correction deflated it.

A graph of the profile log-pseudolikelihood of the interaction distance r (Figure 3) yields
r̂ = 0.7, which agrees with Venables & Ripley (1994 p .396). The jaggedness of the plot is
due to the discontinuity of the interpoint interaction: 1 {‖u− xi‖ ≤ r} and hence s(x) are
discontinuous functions of r, while the left sides of (25)–(26) are differentiable with respect
to r. There seems little prospect of a convenient limit theory for r̂ .

Next we estimated the covariance matrix of the parameter estimates using the parametric
bootstrap (Section 9.3). To reduce the amount of computation we did not apply edge correction
and looked at only one set of quadrature weights (based on a 50×50 regular grid). However, r
was estimated by profile pseudolikelihood. This version of the estimation algorithm was first
applied to the data yielding (β̂, γ̂ , r̂) = (1.9781, 0.2131, 0.7000). A Metropolis–Hastings
birth–death-shift algorithm (Geyer & Møller, 1994) generated 500 simulated realizations from
the Strauss process with the same parameter values. The bootstrap covariance matrix, based
on 500 parametric bootstrap replicates, was

Ĉ =

 0.1938 −0.0155 0.0036
−0.0155 0.0063 0.0008

0.0036 0.0008 0.0014


 ,

yielding corresponding (normal-based) 95% confidence intervals of [1.1153, 2.8410],
[0.0575, 0.3686], and [0.6267, 0.7733] for β, γ, and r, respectively.

Normality of the estimates is suspect. Chi-squared tests for normality on the sequences
of bootstrap replicates of estimates gave P-values of 0.02, 0.22, and 0.00, respectively, for
the normality of β̂, γ̂ , and r̂; so γ̂ is the only estimate which may legitimately be as-
sumed normal. However, rough 95% confidence intervals based on the empirical quantiles
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Figure 3. Profile log-pseudolikelihood of the Strauss process irregular parameter r

for the Swedish pines data. — : polynomial method and (23); · · · : Berman–Turner
device and (16). For comparison, the homogeneous Poisson process achieves a

maximum log-pseudolikelihood of –92.4 (see Section 4.2).

of the bootstrap replicates were calculated as [1.29, 2.73], [0.09, 0.39], and [0.62, 0.81],
respectively. These are in broad agreement with the normal-based intervals.

The confidence interval for γ easily captures Ripley’s (edge-corrected) value of 0.15.
However, the β interval does not embrace the corresponding β-value of 3.11. Thus β appears
to be more sensitive to the estimation method than does γ.

10.2. Swedish pines data — Ord’s model

Following remarks of Ord in Ripley (1977 Discussion) and Ripley (1981 p .175) we
attempted to fit Ord’s model (Section 6.3) to the Swedish pines data. For simplicity we took
a ‘Strauss-type’ kernel

gθ (v) =
{
βγ if v ≤ v0,

β if v > v0,
(37)

where β, γ > 0 are parameters to be estimated and the threshold v0 > 0 is an irregular
parameter. Figure 4 shows the profile log-pseudolikelihood of v0 for the Swedish pines data.
The calculations were done using the Berman–Turner technique with Dirichlet weights, and
the border edge correction.

The jaggedness of the graph may again be explained by discontinuity of the kernel. There
is a sharp peak at v0 = 1.10 m2. Adopting this value as the threshold, the parameter estimates
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Figure 4. Profile log-pseudolikelihood (PL) for the threshold parameter v0 of the Strauss-
type kernel (37) in the Ord model for the Swedish pines data. The peak is at v0 = 1.10 m2.

Horizontal line shows log-pseudolikelihood for the homogeneous Poisson model.

for the Swedish pines data are β = 1.70 and γ = 0.43. Figure 5 shows the result of fitting
the same model (with v0 fixed at 1.10) to 100 simulations of a binomial process, i.e. 71 inde-
pendent uniformly distributed points in the same region. It indicates very strong dependence
between β̂ and γ̂ for the binomial process. The graph confirms that the Swedish pines data
appear to be strongly ordered.

10.3. Japanese black pines data

Figure 6 depicts the Japanese black pines data of Numata (1964) giving the locations
of 204 seedlings in a 10 m × 10 m square. Ogata & Tanemura (1986) used approximate
maximum likelihood estimation to fit a soft core model with log-polynomial trend (i.e. where
B(u) in (27) is a polynomial in the Cartesian coordinates), and found that a cubic polynomial
gave the optimal fit.

In our analysis we first fitted a soft core model with log-cubic trend. The homogeneous
soft core model has already been discussed in Section 6.1.2. Adding the polynomial trend
to the model is trivial using our approach; it is simply a matter of adding polynomial terms
in the Cartesian coordinates to the linear predictor in the associated loglinear model. The
estimation of the irregular parameter κ is problematic, so we initially set κ = 0.5 arbitrarily.
Both Dirichlet and counting weights were used; the results were visually indistinguishable.
The fitted trend surface shown (Figure 7) has contours similar to those obtained by Ogata &
Tanemura (1986). Edge corrections had little effect on the fit, suggesting that edge effects are
negligible.
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Figure 5. Estimated parameters logβ and log γ for the Strauss-type Ord kernel (37)
for the Swedish pines data ( — lower right hand corner) and for 100 simulations of
a binomial process with the same number of points (•). Dashed lines indicate β = λ̂

(the estimated intensity) and γ = 1 (corresponding to a Poisson process).
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Figure 6. Map of a natural stand of seedlings and saplings of Japanese black pine (Pinus
thunbergii), 204 seedlings and saplings in a sampling rectangle 10 m×10 m. Source: Numata

(1964). Data kindly supplied by Professor Y. Ogata and Professor M. Tanemura.
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Figure 7. Fitted log-cubic trend surface exp(θ̂ TB(u)) for the Japanese black pines data
with soft core interaction model: perspective plot (right); contour plot (left)
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Figure 8. Fitted conditional intensity function λ
θ̂
(· ; x) for the

Japanese black pines data with soft core interaction model

We also find it helpful to graph the fitted conditional intensity function λ
θ̂
(· ; x) (Fig-

ure 8). This is not a substitute for plotting the trend surface, because the conditional intensity
depends on the realized pattern x. Its usefulness lies in visualizing the effect of the fitted
interaction model on the underlying trend, the relative magnitudes and ranges of the trend and
interaction terms, and the trade-off between these two (when comparing different models).
The graph also helps in checking discretization effects.

Other interaction terms and trend terms can be fitted at little extra cost using the Berman–
Turner device, in contrast to the extra effort required for maximum likelihood or simulation-
based approaches. It is of interest to compare the foregoing fit with that obtained using a Strauss
model for the interaction (along with a log-cubic polynomial spatial trend). In obtaining the
Strauss fit we estimated the interaction radius r by maximizing the profile pseudolikelihood,
as well as estimating the parameters β and γ.
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Figure 9. Profile log-pseudolikelihood of the Strauss interaction range r for
the Japanese black pines data; Strauss process, with log-cubic polynomial
trend, fitted using the Berman–Turner device. Maximum occurs at r = 0.14.

The Strauss parameter γ must satisfy 0 ≤ γ ≤ 1. In this analysis we had to impose the
constraint explicitly, i.e. for some values of r an estimate γ̂ > 1 was obtained, whereupon
we set γ̂ = 1, and adjusted β and the pseudolikelihood accordingly, as noted in Section 3.3.
A graph of the resulting profile log-pseudolikelihood (Figure 9) yields r̂ = 0.14. This value
is just less than the minimum interpoint distance for the Japanese black pines dataset. That is,
when a spatial trend is allowed for, the optimal Strauss model for the interaction is the hard
core model. It is probably a result of this fact that the profile here is so much smoother than
that depicted in Figure 3.

Using r = 0.14 we fitted the Strauss model with log-cubic polynomial trend. The fitted
trend was visually identical to that obtained for the inhomogeneous soft core model, and is not
shown. The fitted conditional intensity function (Figure 10) is essentially the trend surface
‘with holes of radius 0.14 punched in it’ at each data point.

Although the trend surfaces are visually identical, one might ask for a more objective as-
sessment of the difference between the two trends. The differences between the corresponding
polynomial coefficients appear to be relatively small. The maximum percentage difference,

|est1 − est2|
1
2 (|est1| + |est2|)

× 100%,

is about 7%. Yet it is not clear how to assess the magnitude of these differences. A rough idea
might be given by dividing the differences by an estimate of the standard deviations of, say,
the Strauss fits, obtained by bootstrapping. When this is done, the maximum absolute value
of the resulting ratios is 0.0956 (corresponding to the x3 coefficient). Intuitively this confirms
the visual impression that there is no evidence of a difference between the two fitted trends.

A trend was also fitted to the Japanese black pines data in the form of a general non-
parametric smooth function, as foreshadowed in Section 7.1. The smooth function was pro-
vided by the S-PLUS function lo(), and fitted using the function gam() in place of glm().
Both Strauss and soft core models were used for the interaction. When the Strauss model was
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Figure 10. Conditional intensity function for the Japanese black pines data
with the interaction modelled as a Strauss process

used, profile pseudolikelihood indicated a value of 0.14 for the r parameter — i.e. a hard core
model — the same as for the cubic polynomial trend. For the Strauss (hard core) model the
intensity function and the trend surfaces were visually indistinguishable from those obtained
using the cubic polynomial trend. For the soft core model the interaction seemed much more
subdued when the trend was modelled using lo(); the plot of the conditional intensity showed
not much more than dimples in the trend surface.

This finding reinforces the principle that the more freedom we allow for the trend, the
closer the trend fits the actual data, so the less interaction is needed to explain the data. This
effect is not noticeable with the hard core interaction which cannot adapt itself to the smooth
trend surface. The lo() trend itself, with soft core interaction, was visually very similar to
the cubic polynomial trend, but slightly lower.

Next we attempted to estimate the soft core irregular parameter κ. The approximate
profile log-pseudolikelihood can be calculated from the output of the GLM fitting algorithm,
via (16). However, graphs of this quantity and of the parameter estimates suggested that small
values of κ lead to numerical instability. This persisted when different starting values and
different statistical packages (S-PLUS, GLIM) were used. Note that the interaction potential
(31) is unbounded, with infinities at the data points, and the approximate pseudolikelihood is
not uniformly continuous in κ, even for fixed data and dummy points. Hence the quadrature
schemes advocated in Section 4.3 appear to be inadequate for the profile pseudolikelihood.

An alternative numerical integration procedure was then implemented using the mid-
point rule and a fine array of integration points. Figure 11 shows the resulting approximate
profile log-pseudolikelihood. It suggests that the maximum occurs very close to κ = 0.
In fact the pseudolikelihood can have an infinite maximum at a point where κ = 0 in cer-
tain circumstances. Let d = mini �=i′ ‖xi − xi′ ‖ be the minimum interpoint distance and
b = supu∈W mini=1,...,n(x) ‖u − xi‖ be the maximum distance from a location in W to the
nearest data point. If b ≤ d then the soft core pseudolikelihood has an infinite maximum at
σ = d and κ = 0.
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Figure 11. Profile log-pseudolikelihood of the soft core process irregular parameter κ

for the Japanese black pines data, calculated by the ‘exact’ method

TABLE 1

Experiments exploring the sensitivity of estimates of the soft
core model parameters β, σ to the irregular parameter κ

β̂ σ̂ True κ κ used

mean 2.29 0.10 0.75 0.75
sd 0.24 0.02
mean 2.01 0.10 0.75 0.25
sd 0.16 0.02
mean 1.87 0.11 0.9 0.5
sd 0.18 0.02
mean 2.46 0.10 0.1 0.5
sd 0.20 0.01

This finding reinforces the claim (Section 3.2) that pseudolikelihood is inefficient for
strong interactions. On the other hand, the estimates of β and σ are not overly sensitive to κ.

This sensitivity was investigated in a small simulation study. Realizations of a stationary soft
core process were generated in a 10 × 10 window using parameter values β = 2.3, σ = 0.1
close to those fitted to the Japanese pines data, but with various values of κ. In four separate
experiments, 100 realizations of the process with a particular ‘true’ κ value were generated,
and from each realization β and σ were estimated using another value of κ. The results
are summarized in Table 1. In the second row, β is substantially underestimated when the
wrong value of κ is used, but the estimates appear to be still tolerable. In the third and fourth
rows, β is very substantially underestimated when the true value of κ is large, and slightly
overestimated when the true value of κ is small, but is still accurate to one significant figure.
The estimates of σ (arguably the more important parameter) are good in all instances.
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Figure 12. Map of the locations of nests of two species of ants, Messor wasmanni
(◦) and Cataglyphis bicolor (•) in a 250 metre square area. Rotated subset of

original data of Harkness & Isham (1983) demarcated by Särkkä (1993).

10.4. Harkness–Isham ant data

Figure 12 shows the locations of nests of two species of ants, Messor wasmanni and
Cataglyphis bicolor in a 250 metre square area. These are a subset of the original data col-
lected by Professor R.D. Harkness and analysed in Harkness & Isham (1983), Isham (1984)
and Takacs & Fiksel (1986). We follow Särkkä (1993) in restricting attention to this subset.

For comparison we fitted the Strauss–hard core model used by Takacs & Fiksel (1986),
Särkkä (1993) and others. This is a pairwise interaction two-type point process (34) with
bθ (x,m) = βm and an interaction that is a combination of the Strauss type with a hard core:

hθ

(
(x, i), (y, j)

) =



0 if ‖x − y‖ ≤ rij ,

γij if rij < ‖x − y‖ ≤ Rij ,

1 otherwise.

Here β1, β2, γ11, γ12, γ21, γ22 are parameters with γ12 = γ21, and rij < Rij are non-zero
interaction distances with r12 = r21, R12 = R21. We define

t4
(
(u,m), v

) = #{i : rm4 < ‖u− xi‖ ≤ Rm4 and mi = 4}.

The conditional intensity is

λ
(
(u,m), v

) = βmγ
t1((u,m),v)
m1 γ

t2((u,m),v)
m2 ,

provided that ‖u−xi‖ > rm,m′ for all (xi,m′) ∈ v; and λ((u,m), v) = 0 otherwise. That is,
the conditional intensity is zero whenever there is a marked point of the pattern lying within
the relevant hard core distance of the marked point in question. As discussed in Section 4,
the appropriate action is to delete from our set of dummy points all those points (x,m) for
which there is a data point of type 1 within distance rm1 of x or a data point of type 2 within
distance rm2 of x.
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TABLE 2

Parameter estimates for the Strauss or hard core model for the ant data

Method β1 β2 γ11 γ12 γ22

Fixed, 50 × 50 0.026 0.001 0.431 0.977 0.360
Fixed, 20 × 20 0.018 0.001 0.464 0.996 0.383
Random, 20 × 20 0.026 0.001 0.443 0.910 0.352
Särkkä 0.43 0.88 0.41

There are five ‘regular’ parameters βm, γm,m′ (which appear in the conditional intensity
in loglinear form (8)), and six ‘irregular’ parameters rm,m′ , Rm,m′ . The irregular param-
eters could be estimated by maximum profile pseudolikelihood, but the dimensionality makes
this impractical. Instead we adopted Särkkä’s (1993) values of the interaction radii, r11 =
9.1; r12 = 5.0; r22 = 2.5; R11 = R12 = R22 = 45.0 except that we changed the value of
r12 from 6.1 to 5.0 to accommodate an interpoint distance of 5.6 in the data.

The S-PLUS invocation to fit the model is of the form

glm(y ∼ marks + t11 + t12 + t22, family = poisson,weights = w)

where y and w are S-PLUS vectors containing the responses yj = zj /wj , and the quadrature
weights wj respectively, t11, t12 and t22 are the ‘explanatory’ variables containing the values
of tij (x, v), and marks is a factor with levels 1 and 2 containing the marks for the data or
dummy points.

To allow direct comparison with the analysis by Särkkä (1993), we used periodic edge
correction (Section 9.1.1). Results are shown in Table 2 together with Särkkä’s estimates of
the γ parameters (estimates of βi were not stated). The estimation procedures used all relied
upon the Berman–Turner approximation and the counting quadrature weights, with (a) fixed
50 × 50 grid of dummy points, (b) fixed 20 × 20 grid of dummy points, and (c) random
dummy points each of which was uniformly distributed on each of a 20 × 20 grid of cells
covering the window. This last was done so as to emulate Särkkä’s procedure as closely as
possible. The values obtained are reasonably commensurate with those of Särkkä (1993).

11. Simulation study

To assess the performance of the maximum pseudolikelihood procedure, we generated
500 simulated realizations from the Strauss process in a 10 × 10 square, with (β, γ, r) =
(3.0, 0.15, 0.7) suggested by the fit in Section 10.1. To imitate the unbounded process, data
were actually generated in an expanded square of area 200 and clipped to the given square. We
produced each realization by 600 000 iterations of a Metropolis–Hastings birth–death-shift
procedure (Geyer & Møller, 1994). We chose this number by inspecting the autocorrelation
of the sufficient statistics n(x), s(x) which fell to 0 at a lag of about 15 000.

Estimates of β and γ were computed from each simulated pattern. To reduce the compu-
tational effort, r was fixed at the true value of 0.7. We applied the Berman–Turner device
(border correction, counting weights), the polynomial method (border correction) and the
polynomial method with Ripley’s hybrid correction. Table 3 shows the sample means of
the various estimates, and their standard errors. The results using Ripley’s hybrid correction
were obtained using our software, but with K̂ calculated by Venables and Ripley’s S-PLUS
function Kfn().
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TABLE 3

Means of parameter estimates from 500 simulated realizations of the Strauss process
with true values β = 3.0 and γ = 0.15. Numbers in parentheses are standard errors.

Not edge corrected Edge corrected
Method Grid size

β̂ γ̂ β̂ γ̂

Berman–Turner 25 2.270 0.195 2.643 0.179
(0.019) (0.003) (0.028) (0.003)

Polynomial 25 2.447 0.181 3.139 0.152
(0.023) (0.003) (0.039) (0.003)

Ripley 25 3.137 0.152
(0.039) (0.003)

Berman–Turner 50 2.607 0.170 2.995 0.160
(0.025) (0.003) (0.036) (0.003)

Polynomial 50 2.601 0.170 3.134 0.153
(0.025) (0.003) (0.040) (0.003)

Ripley 50 3.132 0.152
(0.039) (0.003)

Berman–Turner 100 2.710 0.163 3.098 0.155
(0.027) (0.003) (0.039) (0.003)

Polynomial 100 2.672 0.165 3.136 0.153
(0.027) (0.003) (0.040) (0.003)

Ripley 100 3.134 0.153
(0.040) (0.003)

On the basis of the mean values, Ripley’s hybrid correction and the border corrected
polynomial method do well even for a grid size of 25. For grid sizes of 50 and 100 all meth-
ods are comparable as long as edge correction is used. The uncorrected versions appear to
underestimate β by 10–25%, and to overestimate γ by similar amounts. The edge corrected
versions overestimate both β and γ by about 3–4% in general.

When the performance of the estimates is compared on the basis of root mean squared
error (RMSE), a somewhat different story is told. The RMSE values as fractions of the true
parameter values are displayed in Table 4. In this table the RMSE is also broken down into
absolute bias and standard deviation, also expressed as fractions of the true parameters.

Edge correction appears to reduce the RMSE only when a coarse grid is used. The RMSE
in the estimates of β has its smallest overall value when the estimate is not edge corrected.
It is around 23% of the true value (for both the 50 × 50 and the 100 × 100 grids) when no
edge correction is used, and goes up by about 6 or 7 percentage points with edge correction.
We observe that the bias is substantially diminished by edge correction, but that the standard
deviation increases. This effect is much less pronounced for γ. The RMSE (for the estimates
from the finer grids) goes up under edge correction by only about 0.5 to 1.5 percentage points,
and in one instance (for the polynomial method, 50 × 50 grid) diminishes slightly. Thus in
this one instance, edge correction seems to improve efficiency.

12. Discussion and conclusions

It appears that this extension of the Berman–Turner device works well (and has the ad-
vantage of being easy to implement and extremely versatile). Edge corrections require further
investigation.

The computation times depend, of course, upon the quadrature scheme used and upon
the number of quadrature points — data points and dummy points. The following are typical
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TABLE 4

Root mean squared error (RMSE), bias, and standard deviation of parameter
estimates in the simulation study, expressed relative to true values

Not edge corrected Edge corrected
Method Grid size

β̂ γ̂ β̂ γ̂

Relative RMSE

Berman-Turner 25 0.281 0.502 0.240 0.474
Polynomial 0.253 0.456 0.297 0.402
Ripley 0.294 0.379

Berman-Turner 50 0.228 0.403 0.270 0.419
Polynomial 0.231 0.408 0.296 0.405
Ripley 0.294 0.381

Berman-Turner 100 0.224 0.385 0.293 0.409
Polynomial 0.226 0.393 0.300 0.407
Ripley 0.298 0.383

Relative bias

Berman-Turner 25 –0.243 +0.298 –0.119 +0.191
Polynomial –0.184 +0.203 +0.046 +0.015
Ripley +0.046 +0.012

Berman-Turner 50 –0.131 +0.132 –0.002 +0.063
Polynomial –0.133 +0.131 +0.045 +0.019
Ripley +0.044 +0.016

Berman-Turner 100 –0.097 +0.089 +0.033 +0.031
Polynomial –0.109 +0.102 +0.045 +0.019
Ripley +0.045 +0.017

Relative standard deviation

Berman-Turner 25 0.141 0.404 0.209 0.434
Polynomial 0.174 0.409 0.293 0.402
Ripley 0.290 0.379

Berman-Turner 50 0.187 0.381 0.270 0.414
Polynomial 0.189 0.387 0.293 0.404
Ripley 0.291 0.381

Berman-Turner 100 0.202 0.375 0.291 0.408
Polynomial 0.198 0.379 0.296 0.406
Ripley 0.294 0.383

times for a modest (133 MHz, 96 Mb) workstation. Fitting a Strauss model (with ‘known’ r)

to the Swedish pines data took about 2.9 cpu seconds, using Dirichlet weights and 625 dummy
points (for a total of 696 points). With 3600 dummy points for a total of 3671 points, the fit
took about 32 seconds. Using counting weights and a 50×50 grid (for a total of 2571 points),
the fit took 1.6 seconds. With a 100 × 100 grid (10 071 points) it took about 5.2 seconds.

Addition of a spatial trend naturally increases the computational burden. It took 6.1
seconds to fit a soft core model to the Numata pines data, with counting weights and a 50×50
grid. With a log-cubic polynomial trend added to the model, the fit took 12.3 seconds. The
smooth trends fitted using lo() and gam() were much more time consuming. A soft core
model as above, with a smooth trend, took about 211 seconds to fit. Likewise to fit an Ord
model is very time consuming. To fit such a model to the Swedish pines data with a 20 ×
20 grid of dummy points (471 points in all) took about 350 seconds of cpu time, or about
0.75 seconds per point. Note, however, that this computation was done in a very sub-optimal
way — the calculation of the conditional intensity at each data and dummy point involved
recomputing the Dirichlet tessellation from scratch.
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This paper has not dealt with replicated patterns, or more generally, designed experiments
where the response is a point pattern. Such data can be analysed using the same approach.

It would be of great interest to fit smooth curves (in the style of generalized additive
models) to the pair potential function H(‖u−v‖) in a pairwise interaction process. It appears
to us that existing software cannot be applied directly.

We have implemented the methods of this paper in an SPLUS software package which is
available at http://www.maths.uwa.edu.au/∼adrian/spatstat.html.
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Discussion of the paper by Adrian Baddeley and Rolf Turner

Peter Diggle (Medical Statistics Unit, Lancaster University): I very much enjoyed this paper,
which offers a routine, computationally easy method of point estimation for a very wide class
of point process models. With the progressive development of Markov chain Monte Carlo
methods, one might ask whether ‘quick and easy’ methods of estimation are still needed. My
answer is yes.

In my experience, MCMC methods need careful, and sometimes laborious, re-tuning to
each new application if misleading results are to be avoided. Exact MCMC methods, which
seem well suited to point process models (see e.g. Kendall & Moller, 1999), could eventually
change this assessment, but in their current state of development do not offer the flexibility
required for routine use.

Simpler methods of the kind described by Baddeley and Turner can help to suggest good
proposal distributions for Metropolis-type MCMC algorithms, but are also valuable in their
own right in situations where inferential validity is more important than theoretical efficiency.
One such situation, to which the authors briefly refer in their discussion, is in the analysis of
replicated point patterns from designed experiments, where the design itself can provide the
basis for a valid inference based on an appropriate summary of each replicate. Diggle, Lange
& Benes (1991) develop this approach using Ripley’s (1977) K-function as a non-parametric
summary, and Diggle, Mateu & Clough (2000) describe the analogous approach using pseudo-
likelihood estimates as summarizing statistics for a parametric, pairwise interaction process.

Baddeley and Turner place some importance on the fact that their neat computational
trick of turning the point process pseudo-likelihood into a classical Poisson likelihood allows
the pseudo-likelihood method to be implemented within standard generalized linear modelling
software. Their arguments are reasonable, but the advantages seem to be bought at the cost
of at least two potential disadvantages. First, by using a mixture of data-locations and non-
data-locations as quadrature points, the authors introduce a discontinuity error as discussed in
Section 3.3. Second, if we were to approach the evaluation of (11) as a standard quadrature
problem, we might prefer to proceed by computing successive approximations based on an
increasing sequence of values of m without recomputation of any of the λ(uj ; x). Agree-
ment of successive approximations would then provide a direct check on the accuracy of the
quadrature. Diggle & Gratton (1984) proposed a similar strategy in the context of Monte Carlo
likelihood maximization. This has the advantage that a small value of m can be used initially,
with larger values (and hence improved approximations) being introduced as the optimization
algorithm homes in on the maximum likelihood estimate.

In Section 6.1.3, the authors consider step-function interactions, apparently as a surrogate
for non-parametric estimation of h(·). Diggle, Gates & Stibbard (1987) propose a smooth,
non-parametric estimator for h(·) , although their method involves some subjective judge-
ment, and I would agree that fitting a piecewise constant interaction function may well be
more robust for routine use.

The edge-corrected version of pseudo-likelihood that the authors suggest in Section 9.1.4
is not new. It was proposed in Diggle et al. (1994).

The examples in the paper are of unreplicated patterns with relatively small numbers of
points in each. It would be interesting to see the method applied to larger, more complex
datasets. One rich source of such data is environmental epidemiology, where each point rep-
resents an individual case of a particular disease, or an individual control sampled from the
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population at risk; the complexity arises because of the considerable spatial heterogeneity
inmost human settlement patterns. The capacity of the authors’ methods to handle the combi-
nation of spatial heterogeneity and interactions between points opens up interesting possibil-
ities. Elliott, Martuzzi & Shaddick (1995) give a thoughtful discussion of the role of spatial
statistical methods in environmental epidemiology, whilst Elliott et al. (2000) review more
recent methodological developments including, but not restricted to, point process methods.

My final comments are only very indirectly related to the paper, and concern statistical
methods for marked point processes. This seems to me to be an area where formal mathe-
matical theory has been developed with rather little discussion of what underlying scientific
problems the analysis of such data is intended to address. I would argue that, from a scientific
perspective, the subsuming of what I would call multivariate point processes within the wider
class of marked point processes is unhelpful.

In a general sense, a marked point process is a model for two random processes, the
locations P and the marks M. By analogy with simple bivariate distributions, the joint prob-
abilistic structure of P and M can be expressed in either of two equivalent ways, namely

[P,M] = [P ][M | P ] = [M][P | M].

Case-control data in environmental epidemiology can be modelled formally as a marked point
process with a binary mark process M identifying whether or not an individual member of
the population at risk acquires the disease in question. The unmarked process P of individual
locations irrespective of their disease status is an object which makes physical sense as a
description of the population at risk, and could be modelled in its own right. Thus, the fac-
torization [P,M] = [P ][M |P ] provides a reasonable foundation for modelling. However,
the questions to which epidemiologists require answers concern the conditional distribution
[M |P ], and there is no obvious scientific value in devising elaborate models for [P ].

On the other hand, in the area of spatial statistics known as geostatistics the mark process
M is derived from an underlying random field M(x): x ∈ A on a continuous spatial region
A, with values of M(x) being observed only at a set of sampling locations which define
a point process P. Because M(x) exists in its own right, the more natural factorization on
which to base a model is [P,M] = [M][P |M]. In many applications, the choice of sampling
locations is influenced by prior knowledge of the spatial variation in M(x) and the condi-
tioning of P on M is non-trivial; as a specific example, air pollution monitoring networks
often deliberately site monitoring stations close to known or suspected sources of pollution.
However, geostatistical analyses typically ignore any stochastic element in P and analyse the
data on M under the tacit assumption that P and M are independent. When this is not the
case, inferential validity is potentially compromised. By construction, the observed data on
M(x) are a realization from the conditional [M |P ], not from [M].

Finally, the data in Baddeley and Turner’s third example are generated from a pair of
potentially interdependent point processes, one for each of two species of ant. In this set-
ting, neither of the two factorizations of [P,M] seems particularly helpful. It would make
no scientific (as opposed to mathematical) sense to model either a point process of ants of
indeterminate species, or a binary spatial process of the species of a hypothetical ant at an
arbitrary location. The model which the authors fit to these data, in which the interaction
between a pair of ants depends both on their relative locations and on their respective species,
seems sensible for this kind of bivariate point process.
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Mark Berman (CSIRO Mathematical & Information Sciences): It is a pleasure to be invited
to discuss this very comprehensive and useful paper.

The analysis of spatial point patterns has been notoriously difficult, mainly because most
of the models require spatial interactions between the points themselves. Many of the more
interesting models involving spatial interaction belong to the class of Gibbs processes, which
is the class considered by the authors. Because there is no natural ordering in two (or more) di-
mensions, it is usually impossible to calculate analytically the normalization constants for even
the simplest (non-Poisson) Gibbs models (typically because a complicated multiple integral
is involved (Cox & Isham, 1980 Equation 6.17)), and hence maximum likelihood estimation
(MLE) becomes impracticable in most cases. For this reason, many authors try to maximize
Besag’s pseudolikelihood, which the authors point out ‘can be viewed as an infinite product
of infinitesimal conditional probabilities’. The computational advantage of pseudolikelihood
over maximum likelihood is that only a two-dimensional integral needs to be calculated, ei-
ther analytically or numerically. Although maximum pseudolikelihood estimation (MPLE) is
usually sub-optimal, in many cases it is at least consistent and asymptotically normal. Un-
fortunately, until the advent of this paper, each model required its own particular method for
solving the MPLE equations. In turn this meant that only the cognoscenti were able to estimate
the parameters of most Gibbs point process models.

Adrian Baddeley and Rolf Turner have built on earlier work by Rolf and myself, in which
we approximated MLE for general point processes on the line (which are more tractable be-
cause a natural ordering exists) and for spatial Poisson processes (which are more tractable
because of independence). They have shown how MPLE can be well approximated relatively
quickly and easily using simple quadrature schemes and generalized linear or additive models.
Their approximation to the pseudolikelihood is formally equivalent to the weighted likelihood
of independent Poisson variables, and so software packages such as GLIM and S-PLUS can be
used to obtain the MPL estimators. (It is, however, worth repeating here the authors’ point that
the standard errors produced by these packages are not correct, because the full likelihood is
not being maximized. The bootstrap is needed for inference and model selection purposes.)

The power of the authors’ relatively simple observation is firstly in the breadth of its
application, which is amply demonstrated in the paper, and secondly in the relative speed with
which the MPL estimators are calculated for most of the models. This means that the authors
have made a significant step towards making the analysis of Gibbs point process models a
routine procedure. Such analyses would become truly routine (at least for S-PLUS users) if
there were a generic S routine to carry out the bootstrap-based inference for models with the
intensity (8). The authors may care to comment on this possibility.
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One might ask: how is it that the simple numerical approximation (11) to an integral
leads to the Poisson log-likelihood (13) in so many cases? In fact, there is a basic probabilistic
explanation for all this, and it is closely related to the way in which likelihoods of many point
process models are derived. Divide the bounded observation region W into tiles of equal area
C. Let Xj denote the number of observations in tile j, and let xj represent all the Xi in W

except for Xj . Assuming that the point process is orderly (Diggle, 1983 p .47), then provided
C is sufficiently small,

Pr(Xj = 0 | xj ) = 1 − λ(j ; xj )+ o(C),

Pr(Xj = 1 | xj ) = λ(j ; xj )+ o(C),

where λ(j ; xj ) is the conditional intensity for the j th tile. The (discretized) pseudolikelihood
is just Ej∈WPr(Xj | xj ). If we now let C approach zero, then under mild regularity conditions
ensuring that, in the limit, the λ(j ; xj ) do not fluctuate too wildly, the product of conditional
Bernoulli probabilities above will converge to (6), which is a variant of the usual Poisson-type
approximation to the Binomial. The approximation (11) rediscretizes the continuous Poisson
approximation to a discrete Poisson approximation instead of a Bernoulli one. It therefore
seems plausible that we could also approximate (6) by a product of conditional Bernoulli
probabilities. Presumably, this approximation could also be analysed using GLIM with Bino-
mial rather than Poisson ‘errors’, although it is not obvious that there are any advantages in
doing so.

In our earlier paper (Berman & Turner, 1992) Rolf Turner and I used a quadrature scheme
based on the Dirichlet tessellation. This was done so as to ensure that there was at most
one point in every tile, in sympathy with the notion of orderliness. The authors describe a
computationally cheaper scheme, in which tiles are of equal size and the weight in tile j is
a/nj , where a is the area of each tile, and nj is the number of dummy or data points in the
same tile. Without loss of generality, we can assume that a = 1; this just involves a rescaling
of our axes. If we make a further approximation that the conditional intensity is constant
within a tile, then it is easily shown that the fundamental approximation (13) can be rewritten
as

log PL(θ; x) ≈
∑
k

(mk log λk − λk),

where the summation is now over tiles (rather than points) and mk is the number of data points
in tile k. The above approximation is formally equivalent to the log likelihood of independent
and unweighted Poisson variables Yk ∼ Poisson(λk). Provided that the tiles are sufficiently
small, all the approximations should give similar results. The slight advantage of this one is
that all the weights are equal.

Finally, I would like to make a brief observation about the speed of parameter estimation
for the Ord model, which is computationally expensive, because many Dirichlet tessellations
need to be computed whether for the ‘exact’ pseudolikelihood (6) or its approximation (13).
Specifically, the tessellation involving the points x ∪ u, where u is a typical dummy point,
needs to be computed for each dummy point, of which there are typically several hundred or
several thousand. In their example (Section 10.2), the authors have recomputed new Dirich-
let tessellations for each dummy point. This has made the complete estimation quite slow.
Clearly, as one moves systematically and locally from one dummy point to the next (e.g. if
they are on a regular grid), there are significant speed gains to be made, using the fact that
the tessellation is only likely to change locally, by removing one dummy point and inserting
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the next. Efficient algorithms based on successively inserting points into the tessellation are
widely available (Okabe, Boots & Sugihara, 1992 Section 4.3), although I am unaware of
algorithms that involve both insertion and deletion. Presumably, such an algorithm would
involve only a minor modification of existing ones based on insertions alone.
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Authors’ rejoinder: We are extremely grateful to Mark Berman and Peter Diggle for their
insightful commentaries on the paper, and delighted at their encouraging remarks on its use-
fulness for statistical practice.

Before responding we would like to acknowledge the work of Merlise Clyde and David
Strauss (Clyde & Strauss, 1991) which has much in common with our own approach. We
apologise for this omission in the paper. We also acknowledge Diggle’s et al. (1994) priority
for the ‘edge-corrected pseudolikelihood’ (Section 9.1.4).

Mark Berman gives an attractive argument for approximating the pseudolikelihood of
a point process by the likelihood of a (Bernoulli) logistic model, rather than by a (Poisson)
loglinear model as we have done. Indeed this is essentially the approach of Clyde & Strauss
(1991): the window of observation is discretized into a fine array of cells, with binary responses
for the presence or absence of a data point in each cell. The continuous pseudolikelihood is
well approximated by the (rescaled) discrete pseudolikelihood (Besag et al., 1982), which is
formally identical to the likelihood of a logistic regression.

The main difference between our approach and the logistic regression strategy is that the
latter requires a fine discretization of the window of observation, while our approach uses
a coarse quadrature approximation. Indeed our own approach effectively degenerates to the
logistic regression approach when a fine discretization is used.

In our experience, fine discretizations become computationally prohibitive as soon as the
model contains several explanatory variables, and particularly when it is a generalized additive
model. Our S-PLUS routines were unable to fit the stationary Strauss process using regular
grids of more than about 5000 dummy points. This may well be a limitation of our current
hardware or software, rather than an essential problem. In any case, computational load is an
important practical consideration.

Fine discretization would remove the ‘discontinuity errors’ mentioned in our paper (Sec-
tions 4.3 and 5). On the other hand, it may render the parameter estimation and deviance
differences susceptible to the Hauck–Donner effect (Hauck & Donner, 1977, 1980; Væth,
1985) which arises in logistic regression when the fitted probabilities are small.

Mark Berman points out that the computationally cheap ‘counting weights’ scheme (Sec-
tion 4.3) yields approximately an unweighted Poisson likelihood. This is a nice point, and we
agree it may well confer a slight computational advantage, when the conditional intensity is
approximately flat.

Peter Diggle aptly describes our approach as a computationally effective model fitting
procedure bought ‘at a price’. Part of the price is the discontinuity error (17). We of course
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believe that the price is worth paying. For techniques to be genuinely useful to the statisti-
cal community they must be amenable to implementation within readily available software.
Still, it is of considerable interest to assess the magnitude of the discontinuity error (17) in
practical cases. Consider the Swedish pines data (Section 10.1). For the Strauss process with
parameters β and γ, a simple upper bound on (17) is nβ(1 − γ )maxj wj . The following
table shows the worst case bound (largest β, smallest γ ) amongst the different parameter
estimates for the Swedish pines data, using the ‘counting weights’. Also shown is the actual
absolute discontinuity error.

Grid size log PL (disc.) log PL (no disc.) Difference Bound

50 –67.5021 –64.6743 2.8278 8.15
100 –62.1381 –61.4266 0.7115 2.04
200 –62.1594 –61.9815 0.1779 0.51

The reduction of grid size from 100 × 100 to 50 × 50 causes a difference of 3.2477 in
the log pseudolikelihood computed without discontinuity error. This has the same order of
magnitude as the discontinuity error of 2.8278 for the 50 × 50 grid size. Unfortunately the
two errors have the same sign. It is more difficult to ascertain the impact of the discontinuity
error upon the actual parameter estimates.

We are not sure how to respond to Peter Diggle’s comments on the ‘second disadvantage’
of our approach. We grant that successive approximations of the exact value of pseudolikeli-
hood for a given value of θ could be computed by taking successively finer grids of quadrature
points. However, re-computation of all the λθ (uk; x) is required each time we update θ.

Peter Diggle’s illuminating and wise comments on the analysis of marked point processes
are well taken. He identifies a trichotomy of possible goals for inference. We agree that the
scientific context of the Harkness–Isham ant data is such that the analysis we have reported
is the appropriate one. Readers seeking to apply the same methods to other marked point
pattern datasets should take note of Peter Diggle’s comments. Other relevant discussion is in
Goulard et al. (1996) and Särkkä & Hogmander (1998). This is clearly an area for further
investigation.

Mark Berman asks us to comment on the possibility of creating a generic S-PLUS func-
tion for bootstrap inference for models with the intensity (8). This would presumably be a
parametric bootstrap approach, involving the generation of simulated realizations from the
fitted parametric model. The sticking point is the generation of such simulations for a virtu-
ally arbitrary point process model. Markov chain Monte Carlo (MCMC) methods make such
simulations possible for specific models, but, as we have noted in the paper, the simulation
algorithms are very specific to the model and require careful tuning and monitoring in exe-
cution. At the time of writing, most generic MCMC algorithms still require large ‘burn in’
times of the order of millions of iterations. Bootstrapping requires of the order of 500 such
runs, which makes the whole procedure computationally expensive. Moreover it is completely
unfeasible to conduct such simulations in interpreted languages such as the S-PLUS command
language — they must be coded in a low-level language such as C or FORTRAN and loaded
into the package. A user who wished to perform inference for a new model would need to
write low-level code for the conditional intensity of the new model.

We are not convinced that the bootstrap is essential for correct inference and model
selection. We believe that further work should be done on model selection using the pseudo-
likelihood ratio. Another interesting approach to model fitting, recently proposed by Huang
and Ogata, is to compute the maximum pseudolikelihood estimate of the parameters, and then
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to perform just a single Newton–Raphson step towards maximization of the likelihood itself.
Typically the Newton–Raphson step requires MCMC estimation of the normalizing constant
for the likelihood; in this context we only need to simulate from a single model, namely the
maximum pseudolikelihood fit. Similar remarks apply to inference and model selection.

The algorithm we used to fit Ord’s model is capable of vast acceleration, along the lines
suggested by Mark Berman. We did not have access at the time to a Dirichlet tessellation
algorithm which allowed the deletion of points.
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