Escola Superior de Agricultura "Luiz de Queiroz" Universidade de São Paulo

Modelos gaussianos geoestatísticos espaço-temporais e aplicações

Aluno: Alexandre Sousa da Silva Orientador: Prof^o Dr. Paulo J. Ribeiro Júnior

Piracicaba 05 de Fevereiro 2007

Motivação

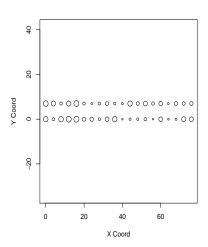
■ Falta de trabalhos sobre o tema;

Motivação

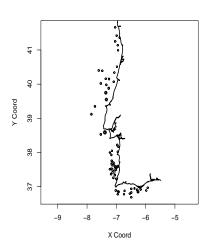
■ Falta de trabalhos sobre o tema;

■ Grande aplicabilidade.

Exemplos de aplicação

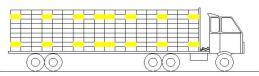


Exemplos de aplicação



Exemplos de aplicação

Caixas com data logger temp/UR



Lateral do Caminhão, com o posicionamento dos loggers. As duas laterais são iguais, porém a fileira do meio é diferente.

Corte Transversal do Caminhão (Fileira 10)

Corte Transversal do Caminhão (Demais fileiras)

Campos Aleatórios

Um campo aleatório ou uma função aleatória é um processo estocástico definido no espaço $G \subset \mathbf{R}^d$. Um campo aleatório é definido como:

$$\{Z(\mathbf{s}): \mathbf{s} \in G \subset \mathbf{R}^d\},\$$

em que $Z(\mathbf{s})$ é o valor do atributo Z na localização \mathbf{s} e $d \geq 1$ é a dimensão do campo aleatório.

 Abordagem baseada em modelos: covariância induzida pelo modelo, usualmente sem forma explícita, típica de modelos hierárquicos;

 Abordagem baseada em modelos: covariância induzida pelo modelo, usualmente sem forma explícita, típica de modelos hierárquicos;

 Abordagem geoestatística: forma explícita para funções de covariância (espaço e/ou espaço temporias);

Campos Aleatórios

Propriedade da função de covariância estacionário de segunda ordem

(i)
$$Cov[Z(s), Z(s+0)] = Var[Z(s)] = C(0) \ge 0;$$

(ii)
$$C(h) = C(-h);$$

(iii)
$$C(\mathbf{0}) \geq |C(\mathbf{h})|$$
;

(iv)
$$C(\mathbf{h}) = Cov[Z(\mathbf{s}), Z(\mathbf{s}+\mathbf{h})] = Cov[Z(\mathbf{0}), Z(\mathbf{h})];$$

- (v) If $C_j(\mathbf{h})$ com j=1,2,...,k, são funções de covariância válidas, então $\sum_{j=1}^k b_j C_j(\mathbf{h})$ é uma função de covariância válida, se $b_j \geq 0 \forall j;$
- (vi) If $C_j(\mathbf{h})$ com j=1,2,...,k, são funções de covariância válidas, então $\prod_{j=1}^k C_j(\mathbf{h})$ é uma função de covariância válida;
- (vii) If $C(\mathbf{h})$ é uma função válidas no \mathbf{R}^d , então ela também será uma função de covariância válida em \mathbf{R}^p , com p < d.

Campos Aleatórios

Para que uma função de covariância de um campo aleatório estacionário seja considerada válida é necessário e suficiente que ${\cal C}$ satisfaça a condição de ser positiva definida, ou seja:

$$\sum_{i=1}^k \sum_{j=1}^k a_i a_j C(\mathbf{s}_i - \mathbf{s}_j) \ge 0,$$

para qualquer conjunto de localizações e número real.

Campo aleatório espaço-temporal é definido como:

$$\{Z(\mathbf{s},t),\mathbf{s}\in R^d,t\in R\}.$$

Percebe-se intuitivamente que o domínio natural do processo é $\mathbb{R}^d \times \mathbb{R}$.

Defini-se a média e a função de covariância como:

$$\mu(\mathbf{s},t) = E(Z(\mathbf{s},t))$$

$$Cov(Z(\mathbf{s}_1, t_1), Z(\mathbf{s}_2, t_2)) = C(\mathbf{s}_1, \mathbf{s}_2, t_1, t_2)$$

Estacionariedade;

$$Cov(Z(\mathbf{s}_1, t_1), Z(\mathbf{s}_2, t_2)) = c(\mathbf{h}, u)$$

Estacionariedade;

$$Cov(Z(\mathbf{s}_1, t_1), Z(\mathbf{s}_2, t_2)) = c(\mathbf{h}, u)$$

Completa Simetria;

$$Cov(Z(\mathbf{s}_1,t_1),Z(\mathbf{s}_2,t_2)) = Cov(Z(\mathbf{s}_1,t_2),Z(\mathbf{s}_2,t_1))$$

Estacionariedade;

$$Cov(Z(\mathbf{s}_1, t_1), Z(\mathbf{s}_2, t_2)) = c(\mathbf{h}, u)$$

Completa Simetria;

$$Cov(Z(\mathbf{s}_1,t_1),Z(\mathbf{s}_2,t_2)) = Cov(Z(\mathbf{s}_1,t_2),Z(\mathbf{s}_2,t_1))$$

■ Estacionariedade e Completa Simetria .

$$C(\mathbf{h}, u) = C(\mathbf{h}, -u) = C(-\mathbf{h}, u) = C(-\mathbf{h}, -u)$$

Separabilidade

$$Cov(Z(\mathbf{s}_{1}, t_{1}), Z(\mathbf{s}_{2}, t_{2})) = Cov(Z(\mathbf{s}_{1}, \mathbf{s}_{2})) + Cov(Z(t_{1}, t_{2}))$$

$$Cov(Z(\mathbf{s}_1, t_1), Z(\mathbf{s}_2, t_2)) = Cov(Z(\mathbf{s}_1, \mathbf{s}_2))Cov(Z(t_1, t_2)),$$

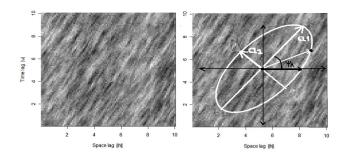
em ambos $\mathbf{s}_1, t_1 \in \mathbf{s}_2, t_2 \in \mathbf{R}^2 \times \mathbf{R}$.

Exemplo de covariância espaço-temporal separável

$$Cov(Z(\mathbf{s}_1, t_1), Z(\mathbf{s}_2, t_2)) = \sigma_1^2 exp(-\phi_1 || (\mathbf{s}_1 - \mathbf{s}_2) ||) + \sigma_2^2 exp(-\phi_2 || (t_1 - t_2) ||),$$

em que ϕ_1 e ϕ_2 são as matrizes de anisotropia.

Modelos e suas simplificações



Modelos e suas simplificações

STATIONA	RY		
FULL	Y-SYMMETRIC		
8	SEPERABLE		
		J	
		IO-ISOTRO	l -

Funções de covariância não separáveis, algumas alternativas:

■ Cressie e Huang (1999);

Funções de covariância não separáveis, algumas alternativas:

■ Cressie e Huang (1999);

■ Gneiting (2002);

Funções de covariância não separáveis, algumas alternativas:

Cressie e Huang (1999);

Gneiting (2002);

outros...

Considere C estacionária e contínua e que a função de distribuição espectral possua densidade espectral $g(\mathbf{w},\tau)\geq 0$. Pelo teorema de Bochner a função de covariância espaço-temporal será considerada válida se:

$$C(\mathbf{h},u) = \int \int exp\{i\mathbf{h}'\mathbf{w} + iu\tau\}g(\mathbf{w},\tau)d\mathbf{w}d\tau$$

 $\emph{Id\'eia}:$ constrir funções positivas definidas no R^d que sejam também válidas em R^{d+1} .

Desta forma, seja $C(\mathbf{h},u)$ integrável, temos através da tranformção inversa de Fourier que:

$$\begin{split} g(\mathbf{w},\tau) &= (2\pi)^{-d-1} \int \int exp\{-i\mathbf{h}\cdot\mathbf{w} - iu\tau\} C(\mathbf{h},u) d\mathbf{h} du \\ &= (2\pi)^{-1} \int exp\{-iu\tau\} h(\mathbf{w},u) du \end{split}$$

em que

$$\begin{split} h(\mathbf{w},u) &= (2\pi)^{-d} \int exp\{-i\mathbf{h}\cdot\mathbf{w}\}C(\mathbf{h},u)d\mathbf{h} \\ &= \int exp\{iu\tau\}g(\mathbf{w},\tau)d\tau. \end{split}$$

Assumindo que:

$$h(\mathbf{w}, u) = \rho(\mathbf{w}, u)k(\mathbf{w})$$

as seguintes condições devem satisfeitaz:

(C1) Para cada $\mathbf{w} \in R^d, \rho(\mathbf{w},u)$, é uma função de autocorrelação contínua, $\int \rho(\mathbf{w},u)du < \infty,$ e $k(\mathbf{w})>0.$

$$(C2) \int k(\mathbf{w}) d\mathbf{w} < \infty.$$

tem-se que:

$$C(\mathbf{h}, u) = \int exp\{i\mathbf{h}, \mathbf{w}\}\rho(\mathbf{w}, u)k(\mathbf{w})d(\mathbf{w})$$

Desta forma o objetivo é satisfeito e para se construir uma função de covariância válida no \mathbb{R}^{d+1} , basta que as condições C1 e C2 sejam satisfeitas na dimensão \mathbb{R}^d .

Um exemplo simples de covariância espaço-temporal não separável baseado nos resultados de Cressie e Huang (1999), é dado por: Considerando

$$\rho(\mathbf{w},u) = exp\{-||\mathbf{w}||^2u^2/4\}exp\{-\delta u^2\}; \delta > 0$$

$$k(\mathbf{w}) = exp\{-c_0||\mathbf{w}||^2/4\}; c_0 > 0,$$

que satisfizem as condições (C1) e (C2), tem-se:

$$C(\mathbf{h}, u) \propto \frac{1}{(u^2 + c_0)^{d/2}} exp \left\{ \frac{-||\mathbf{h}||^2}{u^2 + c_0} \right\} exp \left\{ -\delta u^2 \right\}; \delta > 0,$$

a equação acima é uma função de covariância espaço-temporal contínua no ${\cal R}^d \times {\cal R}$.

A representação de Gneiting (2002) considerara qualquer função monótona $\phi(t)$, definida em $t \geq 0$ e qualquer função positiva $\psi(t)$, definida em $t \geq 0$ com derivadas completamente monótonas , então:

$$C(\mathbf{h},u) = \frac{\sigma^2}{(\psi(u)^2)^{d/2}} \phi \Big(\frac{||\mathbf{h}||^2}{\psi(|u|^2)} \Big)$$

é uma função de covariância espaço-temporal válida no $\mathbb{R}^d imes \mathbb{R}$.

Uma função contínua $\phi(t)$ é completamente monótona se possui derivadas $\phi^{(n)}$ de todos as ordens e $(-1)^n\phi^{(n)}(t)\geq 0$, em que $t>0, n=0,1,2,\ldots$

Funções completamente monótonas $\phi(t)$, $t \ge 0$

$$\begin{split} \phi(t) &= exp(-ct^{\gamma}), c > 0, 0 < \gamma \leq 1 \\ \phi(t) &= (1 + ct^{\gamma})^{\nu}, c > 0, 0 < \gamma \leq 1, \nu > 0 \\ \phi(t) &= (2^{\nu - 1}\Gamma(\nu))^{-1}(ct^{1/2})^{\nu} \mathbf{K}_{\nu}(ct^{1/2}), c > 0, \nu > 0 \\ \phi(t) &= 2^{\nu}(exp(ct^{1/2}) + exp(-ct^{1/2}))^{\nu}, c > 0, \nu > 0 \end{split}$$

Funções positivas $\psi(t)$, $t \ge 0$

$$\psi(t) = (at^{\alpha} + 1)^{\beta}, a > 0, 0 < \alpha \le 1, 0 \le \beta \le 1$$

$$\psi(t) = \ln(at^{\alpha} + b)/\ln(b), a > 0, b > 1, 0 < \alpha \le 1$$

$$\psi(t) = (at^{\alpha} + b)/(b(at^{\alpha} + 1)), a > 0, o < b \le 1$$

Um exemplo simples da família de covariância espaço-temporal não separável proposta por Gneiting é dada como segue:

$$\begin{split} \phi(t) &= exp(-ct^{\gamma}), c > 0, 0 < \gamma \leq 1 \\ \psi(t) &= (at^{\alpha}+1)^{\beta}, a > 0, 0 < \alpha \leq 1, 0 \leq \beta \leq 1 \end{split}$$

são as funções completamente monótona e positiva respectivamente.

$$C(\mathbf{h}, u) = \frac{\sigma^2}{(\psi(u)^2)^{d/2}} \phi\left(\frac{||\mathbf{h}||^2}{\psi(|u|^2)}\right)$$
$$C(\mathbf{h}, u) = \frac{\sigma^2}{(a|t|^{2\alpha} + 1)^{\frac{\beta d}{2}}} exp\left\{-\frac{c||\mathbf{h}||^{2\gamma}}{(a|t|^{2\alpha} + 1)^{\beta\gamma}}\right\}.$$

Para $\beta=0$ a covariância não depende do tempo, e multiplicando-se por uma função de covariância puramente temporal, $(at^{\alpha}+1)^{-\delta}$, tem-se com resultado:

$$C(\mathbf{h}, u) = \frac{\sigma^2}{(a|t|^{2\alpha} + 1)^{\delta + \frac{\beta d}{2}}} exp\{-\frac{c||\mathbf{h}||^{2\gamma}}{(a|t|^{2\alpha} + 1)^{\beta\gamma}}\},$$

se $\beta=0$ tem-se uma função de covariância separável.

Isto sugere uma forma de testar a suposição de separabilidade.

Aplicações

Monitoramento de estoques de pescada na costa portuguesa

Simplificações

Coletas em pontos diferentes no espaço;

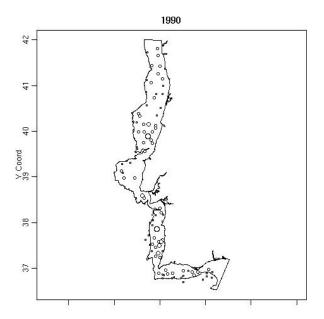
Aplicações

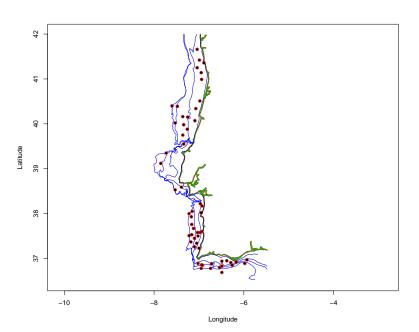
Monitoramento de estoques de pescada na costa portuguesa

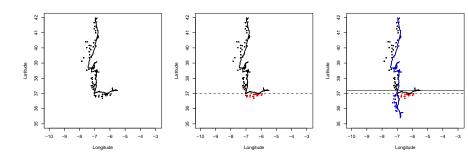
Simplificações

Coletas em pontos diferentes no espaço;

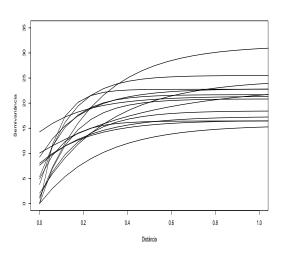
Rotação na coordenadas;



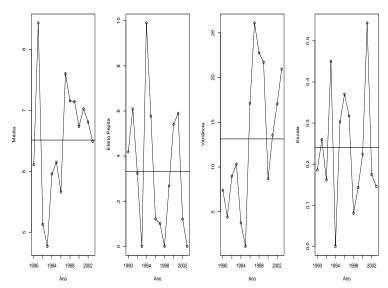




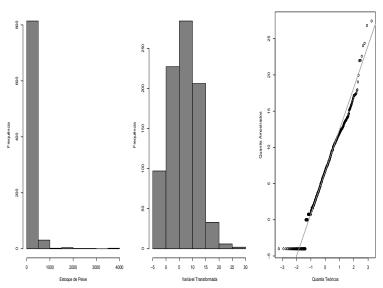
Análise descritiva



Análise descritiva



Análise descritiva



Modelagem com estrutura separável

$$C(\mathbf{h},u) = \frac{\sigma^2}{(a|u|^\delta)} expc||h||^\gamma + \frac{\sigma_{h=0}^2}{(a|u|^\delta)},$$

que é separável pois pode ser escrita da forma:

$$C(\mathbf{h}, u) = C(\mathbf{h})C(u).$$

Estimando-se os parâmetros pelo método da máxima verossimilhança, obteve-se o seguinte modelo ajustado:

$$C(\mathbf{h},u) = \tfrac{32.26}{(0.10|u|^{0.2}+1)^{0.44}} exp\{-2.5||\mathbf{h}||^{0.83}\} + \tfrac{6.99}{(0.10|u|^{0.2}+1)^{0.44}}.$$

Modelagem com estrutura não separável

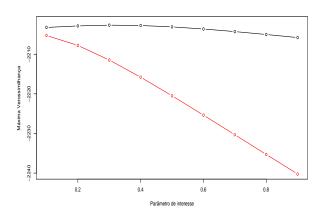
$$C(\mathbf{h},u) = \frac{\sigma^2}{(\psi|u|^2)^{d/2}} \phi\Big(\frac{||\mathbf{h}||^2}{\psi(|u|^2)}\Big)$$
 ,

que para as escolhas de $\phi(.)$ e $\psi(.)$ utilizadas aqui tem como modelo ajustado pelo método da máxima verossimilhança:

$$C(\mathbf{h}, u) = \frac{1}{(0.10|u|^{0.2} + 1)^{0.44}} \left(\frac{32.26}{(0.10|u|^{0.4} + 1)^{0.0335}} exp \left\{ -2.5 \left[\frac{||\mathbf{h}||}{(0.10|u|^{0.4} + 1)} \right]^{0.83} \right\} \right) + \frac{6.99}{(0.10|u|^{0.2} + 1)^{0.44}}$$

- $\psi(|u|) = (0.10|u|^{0.4} + 1)^{0.0335}$
- $\bullet \phi(||\mathbf{h}||) = 32.26.exp\{-2.5||\mathbf{h}||^{0.83}\}$

Analisando o parâmetro β



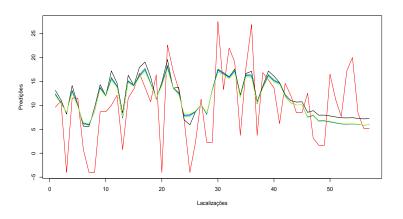
Máxima verossimilhança condicional (linha vermelha) e perfilhada

Analisando as predições

Erro quadrático médio de predição para funções de covariância espaço-temporais com diferentes valores do parâmetro β

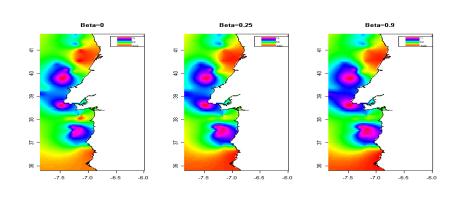
	EQM	Média	Variância
Modelo separável $\beta = 0$	41.34258	11.86858	15.73710
Modelo não separável $\beta=0.25$	41.47026	11.33011	15.67702
Modelo não separável $\beta=0.5$	41.61852	11.27031	14.76563
Modelo não separável $\beta=0.75$	41.82565	11.20703	13.79720
Modelo não separável $\beta=0.95$	42.03688	11.15387	12.98332

Analisando as predições



Distribuição das predições para 2004 e do verdadeiro valor amostrado

Analisando as predições



Krigagem para modelo com $\beta=0$, $\beta=0.25$ e $\beta=0.95$, respectivamente

Conclusões

■ Superioridade dos modelos espaço-temporais não separáveis;

Conclusões

Superioridade dos modelos espaço-temporais não separáveis;

■ Eficiência do RandomFields;

Conclusões

■ Superioridade dos modelos espaço-temporais não separáveis;

■ Eficiência do RandomFields;

Análises futuras;

Bibbliografia

Cressie, N. and Huang, H.-C. (1999). Classes of Non-Seperable, Spatio-temporal stationary covariance functions. Journal of the American Statistical Association, 94, 1330-1340.

Elmatzoglou, I. (2006). Spatio-temporal geoestatistical models, with an aplication in fish stock. Submitted for the degree of master in statistics at Lancaster University

Gneiting T.(2002), Nonseperable, Stationary Covariance Functions for Space-Time Data, American Statistical Association Journal of the American Statistical Association, June 2002, Vol.97, No.458.

Gneiting, T., and Schlather, M. (2002) Space-time covariance models. Encyclopedia of Environmetrics, Vol 4, pp 2041-2045.

Bibbliografia

Gneiting T., Genton M.G., Guttorp P.(2006), Geostatistical Space-Time Models, Stationarity, Seperability and Full Symmetry, Technical Report no.475 Department of Statistics University of Washington.

Schabenberger O., Gotway C.A. (2005) Statistical Methods for Spatial Data Analysis, Chapman Hall / CRC.

Schmidt, A.M., Sanso, B. (2006) Modelagem Bayesiana da Estrutura de Covariância de Processos Espaciais e Espaço-Temporais, 17^o SINAPE

RandomFields: Simulation and Analysis of Random Fields, Martin Schlather, R package version 1.3.28, http://www2.hsu-hh.de/schlath/index.html