
7 Spatial Data

7.1 Types of Spatial Data

Most data in earth sciences are spatially distributed, either as vector data,
(points, lines, polygons) or as raster data (gridded topography). Vector data
are generated by digitizing map objects such as drainage networks or out-
lines of lithologic units. Raster data can be obtained directly from a satellite
sensor output, but in most cases grid data can be interpolated from irregu-
larly-distributed samples from the fi eld (gridding).

The following chapter introduces the use of vector data by using coast-
line data as an example (Chapter 7.2). Subsequently, the acquisition and
handling of raster data are illustrated with help of digital topography data
(Chapters 7.3 to 7.5). The availability and use of digital elevation data has
increased considerably since the early 90’s. With 5 arc minutes resolution,
the ETOPO5 was one of the fi rst data sets for topography and bathymetry. In
October 2001, it was replaced by the ETOPO2 that has a resolution of 2 arc
minutes. In addition, there is a data set for topography called GTOPO30
completed in 1996 that has a horizontal grid spacing of 30 arc seconds (ap-
proximately 1 km). Most recently, the 30 and 90 m resolution data from the
Shuttle Radar Topography Mission (SRTM) have replaced the older data
sets in most scientifi c studies.

The second part of the chapter deals with surface estimates from ir-
regular-spaced data and statistics on spatial data (Chapters 7.6 to 7.8). In
earth sciences, most data are collected in an irregular pattern. Access to
rock samples is often restricted to natural outcrops such as shoreline cliffs
and the walls of a gorge, or anthropogenic outcrops such as road cuts and
quarries. Clustered and traversed data are a challenge for all gridding tech-
niques. The corresponding chapters illustrate the use of the most impor-
tant gridding routines and outline the potential pitfalls while using these
methods. Chapters 7.9 to 7.11 introduce various methods to analyse spa-
tial data, including the application of statistical tests to point distributions
(Chapter 7.9), the spatial analysis of digital elevation models (Chapter 7.10)

166 7 Spatial Data

and an overview of geostatistics and kriging (Chapter 7.10).
This chapter requires the Mapping Toolbox although most graphics rou-

tines used in our examples can be easily replaced by standard MATLAB
functions. An alternative and useful mapping toolbox by Rich Pawlowicz
(Earth and Ocean Sciences at the Unversity of British Columbia) is avail-
able from

http://www2.ocgy.ubc.ca/~rich

The handling and processing of large spatial data sets also requires a power-
ful computing system with at least 1 GB physical memory.

7.2 The GSHHS Shoreline Data Set

The global self-consistent, hierarchical, high-resolution shoreline data
base GSHHS is amalgamated from two public domain data bases by Paul
Wessel (SOEST, University of Hawaii, Honolulu, HI) and Walter Smith
(NOAA Laboratory for Satellite Altimetry, Silver Spring, MD). On the web
page of the US National Geophysical Data Center (NGDC)

http://www.ngdc.noaa.gov/mgg/shorelines/shorelines.html

the coastline vector data can be downloaded as MATLAB vector data. First,
we defi ne the geographic range of interest as decimal degrees with West and
South denoted by a negative sign. For example, the East African coast would
be displayed on the latitude between 0 and +15 degrees and longitude of +35
to +55 degrees. Subsequently, it is important to choose the coastline data
base from which the data is to be extracted. As an example, the World Data
Bank II provides maps at the scale 1 : 2,000,000. Finally, the compression
method is set to None for the ASCII data that have been extracted. The data
format is set to be MATLAB and GMT Preview is enabled. The resulting
GMT map and a link to the raw text data can be displayed by pressing the
Submit-Extract button at the end of the web page. By opening the 430 KB
large text fi le on a browser, the data can be saved onto a new fi le called
coastline.txt. The two columns in this fi le represent the longitude/latitude
coordinates of NaN-separated polygons or coastline segments.

NaN NaN
42.892067 0.000000
42.893692 0.001760
NaN NaN
42.891052 0.001467
42.898093 0.007921

7.2 The GSHHS Shoreline Data Set 167

42.904546 0.013201
42.907480 0.016721
42.910414 0.020828
42.913054 0.024642
42.915987 0.028749
42.918921 0.032562
42.922441 0.035789
(cont'd)

The NaN’s perform two functions: they provide a means for identifying break
points in the data. They also serve as pen-up commands when the Mapping
Toolbox plots vector maps. The shorelines can be displayed by using

data = load('coastline.txt');

plot(data(:,1),data(:,2),'k'), axis equal
xlabel('Longitude'), ylabel('Latitude')

More advanced plotting functions are contained in the Mapping Toolbox,
which allow to generate an alternative version of this plot (Fig. 7.1):

Longitude

La
tit

ud
e

0

5

10

15

36 38 40 42 44 46 48 50 52 54

GSHHS Data Set

Fig. 7.1 Display of the GSHHS shoreline data set. The map shows an area between 0° and
15° northern latitude, 40° and 50° eastern longitude. Simple map using the function plot
and equal axis aspect ratios.

168 7 Spatial Data

 axesm('MapProjection','mercator', ...
 'MapLatLimit',[0 15], ...
 'MapLonLimit',[35 55], ...
 'Frame','on', ...
 'MeridianLabel','on', ...
 'ParallelLabel','on');
plotm(data(:,2),data(:,1),'k');

Note that the input for plotm is given in the order longitude, followed by
the latitude. The second column of the data matrix is entered fi rst. In con-
trast, the function plot requires an xy input. The fi rst column is entered
fi rst. The function axesm defi nes the map axis and sets various map proper-
ties such as the map projection, the map limits and the axis labels.

7.3 The 2-Minute Gridded Global Elevation Data ETOPO2

ETOPO2 is a global data base of topography and bathymetry on a regular
2-minute grid. It is a compilation of data from a variety of sources. It can
be downloaded from the US National Geophysical Data Center (NGDC)
web page

http://www.ngdc.noaa.gov/mgg/fliers/01mgg04.html

From the menu bar Free online we select Make custom grids which is linked
to the GEODAS Grid Translator. First, we choose a Grid ID (e.g., grid01),
the Grid Data Base (e.g., ETOPO2 2-minute Global Relief), our computer
system (e.g., Macintosh) and the Grid Format (e.g., ASCII for both the data
and the header). Next we defi ne the longitude and latitude bounds. For ex-
ample, the latitude (lat) from –20 to +20 degrees and a longitude (lon) be-
tween +30 and +60 degrees corresponds to the East African coast. The
selected area can be transformed into a digital elevation matrix by press-
ing Design–a–grid. this matrix may be downloaded from the web page by
pressing Download your Grid Data, Compress and Retrieve and Retrieve
compressed fi le in the subsequent windows. Decompressing the fi le grid01.
tgz creates a directory grid01_data. This directory contains various data
and help fi les. The subdirectory grid01 contains the ASCII raster grid fi le
grid01.asc that has the following content:

NCOLS 901
NROWS 1201
XLLCORNER 30.00000
YLLCORNER -20.00000
CELLSIZE 0.03333333
NODATA_VALUE -32768
270 294 278 273 262 248 251 236 228 223 ...

7.3 The 2-Minute Gridded Global Elevation Data ETOPO2 169

280 278 278 264 254 253 240 234 225 205 ...
256 266 267 283 257 273 248 228 215 220 ...
272 273 258 258 254 264 232 218 229 210 ...
259 263 268 275 242 246 237 219 211 209 ...
(cont'd)

The header documents the size of the data matrix (e.g., 901 columns and
1201 rows in our example), the coordinates of the lower-left corner (e.g.,
x=30 and y = –20), the cell size (e.g., 0.033333 = 1/30 degree latitude and
longitude) and the –32768 fl ag for data voids. We comment the header by
typing % at the beginning of the fi rst six lines

%NCOLS 901
%NROWS 1201
%XLLCORNER 30.00000
%YLLCORNER -20.00000
%CELLSIZE 0.03333333
%NODATA_VALUE -32768
270 294 278 273 262 248 251 236 228 223 ...
280 278 278 264 254 253 240 234 225 205 ...
256 266 267 283 257 273 248 228 215 220 ...
272 273 258 258 254 264 232 218 229 210 ...
259 263 268 275 242 246 237 219 211 209 ...
(cont'd)

and load the data into the workspace.

ETOPO2 = load('grid01.asc');

We fl ip the matrix up and down. Then, the –32768 fl ag for data voids has to
be replaced by the MATLAB representation for Not-a-Number NaN.

ETOPO2 = flipud(ETOPO2);
ETOPO2(find(ETOPO2 == -32768)) = NaN;

Finally, we check whether the data are now correctly stored in the work-
space by printing the minimum and maximum elevations of the area.

max(ETOPO2(:))
min(ETOPO2(:))

In this example, the maximum elevation of the area is 5199 m and the mini-
mum elevation is –5612 m. The reference level is the sea level at 0 m. We
now defi ne a coordinate system using the information that the lower-left
corner is s20e30, i.e., 20° southern latitude and 30° eastern longitude. The
resolution is 2 arc minutes corresponding to 1/30 degrees.

[LON,LAT] = meshgrid(30:1/30:60,-20:1/30:20);

Now we generate a colored surface from the elevation data using the func-

170 7 Spatial Data

tion surf.

surf(LON,LAT,ETOPO2)
 shading interp
axis equal, view(0,90)
 colorbar

This script opens a new fi gure window and generates a colored surface.
The surface is highlighted by a set of color shades on an overhead view
(Fig. 7.2). More display methods will be described in the chapter on SRTM
elevation data.

Longitude

La
tit

ud
e

4000

3000

0

1000

2000

30 35 40 45 50 55 60
20

15

10

5

0

5

10

15

20

5000

2000

1000

3000

5000

4000

ETOPO2 Data Set

Fig. 7.2 Display of the ETOPO2 elevation data set. The map uses the function surf for
generating a colored surface. The colorbar provides an information on the colormap used
to visualize topography and bathymetry.

7.4 The 30-Arc Seconds Elevation Model GTOPO30 171

7.4 The 30-Arc Seconds Elevation Model GTOPO30

The 30 arc second (approximately 1 km) global digital elevation data set
GTOPO30 only contains elevation data, not bathymetry. The data set has
been developed by the Earth Resources Observation System Data Center
and is available from the web page

http://edcdaac.usgs.gov/gtopo30/gtopo30.html

The model uses a variety of international data sources. However, it is main-
ly based on raster data from the Digital Terrain Elevation Model (DTEM)
and vector data from the Digital Chart of the World (DCW). The GTOPO30
data set has been divided into 33 pieces or tiles. The tile names refer to the
longitude and latitude of the upper-left (northwest) corner of the tile. The
tile name e020n40 refers to the upper-left corner of the tile. In our example,
the coordinates of the upper-left corner are 20 degrees eastern longitude
and 40 degrees northern latitude. As example, we select and download the
tile e020n40 provided as a 24.9 MB compressed tar fi le. After decompress-
ing the tar fi le, we obtain eight fi les containing the raw data and header fi les
in various formats. Moreover, the fi le provides a GIF image of a shaded
relief display of the data.

Importing the GTOPO30 data into the workspace is simple. The Mapping
Toolbox provides an import routine gtopo30 that reads the data and stores
it onto a regular data grid. We import only a subset of the original matrix:

latlim = [-5 5]; lonlim = [30 40];
GTOPO30 = gtopo30('E020N40',1,latlim,lonlim);

This script reads the data from the tile e020n40 (without fi le extension) in
full resolution (scale factor = 1) into the matrix GTOPO30 of the dimension
1200x1200 cells. The coordinate system is defi ned by using the lon/lat lim-
its as listed above. The resolution is 30 arc seconds corresponding to 1/120
degrees.

[LON,LAT] = meshgrid(30:1/120:40-1/120,-5:1/120:5-1/120);

We have to reduce the limits by 1/120 to obtain a matrix of similar dimen-
sion as the matrix GTOPO30. A grayscale image can be generated from the
elevation data by using the function surf. The fourth power of the colormap
gray is used to darken the map at higher levels of elevation. Subsequently,
the colormap is fl ipped vertically in order to obtain dark colors for high
elevations and light colors for low elevations.

172 7 Spatial Data

figure
surf(LON,LAT,GTOPO30)
shading interp
 colormap(flipud(gray.^4))
axis equal, view(0,90)
colorbar

This script opens a new fi gure window, generates the gray surface using
interpolated shading in an overhead view (Fig. 7.3).

La
tit

ud
e

5

4

3

2

1

0

-1

-2

-3

-4

-5

Longitude

30 31 32 33 34 35 36 37 38 39 40
0

1000

1500

2500

3000

3500

4000

4500

5000

5500

2000

500

GTOPO30 Data Set

Fig. 7.3 Display of the GTOPO30 elevation data set. The map uses the function surf for
generating a gray surface. We use the colormap gray to power of four in order to darken
the colormap with respect to the higher elevation. In addition, we fl ip the colormap in
up/down direction using flipud to obtain dark colors for high elevations and light colors
for low elevations.

7.5 The Shuttle Radar Topography Mission SRTM 173

7.5 The Shuttle Radar Topography Mission SRTM

The Shuttle Radar Topography Mission (SRTM) incorporates a radar
system that fl ew onboard the Space Shuttle Endeavour during an 11-day
mission in February 2000. SRTM is an international project spearheaded
by the National Geospatial-Intelligence Agency (NGA) and the National
Aeronautics and Space Administration (NASA). Detailed info on the SRTM
project including a gallery of images and a users forum can be accessed on
the NASA web page:

http://www2.jpl.nasa.gov/srtm/

The data were processed at the Jet Propulsion Laboratory. They are being
distributed through the United States Geological Survey‘s (USGS) EROS
Data Center by using the Seamless Data Distribution System.

http://seamless.usgs.gov/

Alternatively, the raw data fi les can be downloaded via FTP from

ftp://e0srp01u.ecs.nasa.gov/srtm

This directory contains zipped fi les of SRTM-3 DEM’s from various areas
of the world, processed by the SRTM global processor and sampled at 3
arc seconds or 90 meters. As an example, we download the 1.7 MB large
fi le s01e036.hgt.zip containing the SRTM data. All elevations are in meters
referenced to the WGS84 EGM96 geoid as documented at

http://earth-info.nga.mil/GandG/wgs84/index.html

The name of this fi le refers to the longitude and latitude of the lower-left
(southwest) pixel of the tile, i.e., one degree southern latitude and 36 de-
grees eastern longitude. SRTM-3 data contain 1201 lines and 1201 samples
with similar overlapping rows and columns. After having downloaded and
unzipped the fi le, we save s01e036.hgt in our working directory. The digital
elevation model is provided as 16-bit signed integer data in a simple binary
raster. Bit order is Motorola (big-endian) standard with the most signifi cant
bit fi rst. The data are imported into the workspace using

fid = fopen('S01E036.hgt','r');
SRTM = fread(fid,[1201,inf],'int16','b');
fclose(fid);

174 7 Spatial Data

This script opens the fi le s01e036.hgt for read access using fopen, defi nes
the fi le identifi er fid, which is then used for reading the binaries from the
fi le using fread, and writing it into the matrix SRTM. Function fclose
closes the fi le defi ned by fid. First, the matrix needs to be transposed and
fl ipped vertically.

SRTM = SRTM'; SRTM = flipud(SRTM);

The –32768 fl ag for data voids can be replaced by NaN, which is the MATLAB
representation for Not-a-Number.

SRTM(find(SRTM == -32768)) = NaN;

Finally, we check whether the data are now correctly stored in the work-
space by printing the minimum and maximum elevations of the area.

max(SRTM(:))

ans =
 3992

min(SRTM(:))

ans =
 1504

In our example, the maximum elevation of the area is 3992 m, the minimum
altitude is 1504 m above sea level. A coordinate system can be defi ned by
using the information that the lower-left corner is s01e036. The resolution is
3 arc seconds corresponding to 1/1200 degrees.

[LON,LAT] = meshgrid(36:1/1200:37,-1:1/1200:0);

A shaded grayscale map can be generated from the elevation data using the
function surfl. This function displays a shaded surface with simulated
lighting.

figure
surfl(LON,LAT,SRTM)
 shading interp
colormap gray
view(0,90)
colorbar

This script opens a new fi gure window, generates the shaded-relief map us-
ing interpolated shading and a gray colormap in an overhead view. Since
SRTM data contain much noise, we fi rst smooth the data using an arbitrary

7.5 The Shuttle Radar Topography Mission SRTM 175

9×9 pixel moving average fi lter. The new matrix is stored in the matrix
SRTM_FILTERED.

B = 1/81 * ones(9,9);
SRTM_FILTERED = filter2(B,SRTM);

The corresponding shaded-relief map is generated by

figure
surfl(LON,LAT,SRTM_FILTERED)
shading interp
colormap gray
view(0,90)
 colorbar

After having generated the shaded-relief map (Fig. 7.4), the graph has to be
exported onto a graphics fi le. For instance, the fi gure may be written onto
a JPEG format with 70% quality level and a 300 dpi resolution.

1

0.9

0.8

0.7

0.6

0.5

0.4

0.3

0.2

0.1

0

36.1 36.2 36.3 36.4 36.5 36.6 36.7 36.8 36.9 3736

Longitude

La
tit

ud
e

SRTM Data Set

Fig. 7.4 Display of the fi ltered SRTM elevation data set. The map uses the function surfl
for generating a shaded-relief map with simulated lighting using interpolated shading and
a gray colormap in an overhead view. Note that the SRTM data set contains a lot of gaps, in
particular in the lake areas.

176 7 Spatial Data

print -djpeg70 -r300 srtmimage

The new fi le srtmimage.jpg has a size of 300 KB. The decompressed image
has a size of 16.5 MB. This fi le can now be imported to another software
package such as Adobe® Photoshop®.

7.6 Gridding and Contouring Background

The previous data sets were all stored in evenly-spaced two-dimensional
arrays. Most data in earth sciences, however, are obtained on an irregular
sampling pattern. Therefore, irregular-spaced data have to be interpolated,
i.e., we compute a smooth and continuous surface from our measurements
in the fi eld. Surface estimation is typically carried out in two major steps.
Firstly, the number of control points needs to be selected. Secondly, the
grid points have to be estimated. Control points are irregularly-spaced fi eld
measurements, such as the thicknesses of sandstone units at different out-
crops or the concentrations of a chemical tracer in water wells. The data are
generally represented as xyz triplets, where x and y are spatial coordinates,
and z is the variable of interest. In such cases, most gridding methods re-
quire continuous and unique data. However, the spatial variables in earth
sciences are often discontinuous and spatially nonunique. As an example,
the sandstone unit may be faulted or folded. Furthermore, gridding requires
spatial autocorrelation. In other words, the neighboring data points should
be correlated with each other by a certain relationship. It is not sensible to
use random z variable for the surface estimation if the data are not autocor-
related. Having selected the control points, the calculation of the z values at
the evenly-spaced grid points varies from method to method.

Various techniques exist for selecting the control points (Fig. 7.5a). Most
methods make arbitrary assumptions on the autocorrelation of the z vari-
able. The nearest-neighbor criterion includes all control points within a
circular neighborhood of the grid point, where the radius of the circle is
specifi ed by the user. Since the spatial autocorrelation is likely to decrease
with increasing distance from the grid point, considering too many distant
control points is likely to lead to erroneous results while computing the grid
points. On the other hand, small circular areas limit the calculation of the
grid points to a very small number of control points. Such an approach leads
to a noisy estimate of the modeled surface.

It is perhaps due to these diffi culties that triangulation is often used as an
alternative method for selecting the control points (Fig. 7.5b). In this tech-

7.6 Gridding and Contouring Background 177

nique, all control points are connected to a triangular net. Every grid point
is located in a triangular area of three control points. The z value of the grid
point is computed from the z values of the grid points. In a modifi cation of
such gridding, the three points at the apices of the three adjoining triangles
are also used. The Delauney triangulation uses the triangular net where
the acuteness of the triangles is minimized, i.e., the triangles are as close as
possible to equilateral.

Kriging introduced in Chapter 7.9 is an alternative approach of select-
ing control points. It is often regarded as the method of gridding. Some
people even use the term geostatistics synonymous with kriging. Kriging is
a method for determining the spatial autocorrelation and hence the circle di-
mension. More sophisticated versions of kriging use an elliptical area which
includes the control points.

The second step of surface estimation is the actual computation of the z
values of the grid points. The arithmetic mean of the z values at the control
points

provides the easiest way of computing the grid points. This is a particularly
useful method if there are only a limited number of control points. If the
study area is well covered by control points and the distance between these

Control Point

Grid Point

a b

Fig. 7.5 Methods to select the control points for estimating the grid points. a Construction of
a circle around the grid point (plus sign) with a radius defi ned by the spatial autocorrelation
of the z-values at the control points (circles). b Triangulation. The control points are selected
from the apices of the triangles surrounding the grid point and optional also the apices of
the adjoining triangles.

178 7 Spatial Data

points is highly variable, the z values of the grid points should be computed
by a weighted mean. The z values at the control points are weighted by the
inverse distance di from the grid points.

Depending on the spatial scaling relationship of the parameter z, the inverse
square or the root of distance may also be used instead of weighing the z
values by the inverse of distance. The fi tting of 3D splines to the control
points provides another method for computing the grid points that is com-
monly used in the earth sciences. Most routines used in surface estimation
involve cubic polynomial splines, i.e., a third-degree 3D polynomial is fi tted
to at least six adjacent control points. The fi nal surface consists of a com-
posite of pieces of these splines. MATLAB also provides interpolation with
biharmonic splines generating very smooth surfaces (Sandwell, 1987).

7.7 Gridding Example

MATLAB provides a biharmonic spline interpolation since the beginnings.
This interpolation method was developed by Sandwell (1987). This specifi c
gridding method produces smooth surfaces that are particularly suited for
noisy data sets with irregular distribution of control points.

As an example, we use synthetic xyz data representing the vertical dis-
tance of an imaginary surface of a stratigraphic horizon from a reference
surface. This lithologic unit was displaced by a normal fault. The foot wall
of the fault shows roughly horizontal strata, whereas the hanging wall is
characterized by the development of two large sedimentary basins. The xyz
data are irregularly distributed and have to be interpolated onto a regular
grid. Assume that the xyz data are stored as a three-column table in a fi le
named normalfault.txt.

4.32e+02 7.46e+01 0.00e+00
4.46e+02 7.21e+01 0.00e+00
4.51e+02 7.87e+01 0.00e+00
4.66e+02 8.71e+01 0.00e+00
4.65e+02 9.73e+01 0.00e+00
4.55e+02 1.14e+02 0.00e+00
4.29e+02 7.31e+01 5.00e+00
(cont'd)

7.7 Gridding Example 179

The fi rst and second column contains the coordinates x (between 420 and
470 of an arbitrary spatial coordinate system) and y (between 70 and 120),
whereas the third column contains the vertical z values. The data are loaded
using

data = load('normalfault.txt');

Initially, we wish to create an overview plot of the spatial distribution of the
control points. In order to label the points in the plot, numerical z values of
the third column are converted into string representation with maximum
two digits.

labels = num2str(data(:,3),2);

The 2D plot of our data is generated in two steps. Firstly, the data are dis-
played as empty circles by using the plot command. Secondly, the data
are labeled by using the function text(x,y,'string') which adds text
contained in string to the xy location. The value 1 is added to all x coor-
dinates as a small offset between the circles and the text.

plot(data(:,1),data(:,2),'o')
hold on
text(data(:,1)+1,data(:,2),labels);
hold off

This plot helps us to defi ne the axis limits for gridding and contouring,
xlim = [420 470] and ylim = [70 120]. The function meshgrid transforms
the domain specifi ed by vectors x and y into arrays XI and YI. The rows of
the output array XI are copies of the vector x and the columns of the output
array YI are copies of the vector y. We choose 1.0 as grid intervals.

x = 420:1:470; y = 70:1:120;
[XI,YI] = meshgrid(x,y);

The biharmonic spline interpolation is used to interpolate the irregular-
spaced data at the grid points specifi ed by XI and YI.

ZI = griddata(data(:,1),data(:,2),data(:,3),XI,YI,'v4');

The option v4 depicts the biharmonic spline interpolation, which was the
sole gridding algorithm until MATLAB4 was replaced by MATLAB5.
MAT LAB provides various tools for the visualization of the results. The
simplest way to display the gridding results is a contour plot using con-
tour. By default, the number of contour levels and the values of the contour
levels are chosen automatically. The choice of the contour levels depends on

180 7 Spatial Data

the minimum and maximum values of z.

 contour(XI,YI,ZI)

Alternatively, the number of contours can be chosen manually, e.g., ten con-
tour levels.

contour(XI,YI,ZI,10)

Contouring can also be performed at values specifi ed in a vector v. Since
the maximum and minimum values of z is

min(data(:,3))

ans =
 -25

max(data(:,3))

ans =
 20

we choose

v = -30 : 10 : 20;

The command

[c,h] = contour(XI,YI,ZI,v);

returns contour matrix c and a handle h that can be used as input to the
function clabel, which labels contours automatically.

 clabel(c,h)

Alternatively, the graph is labeled manually by selecting the manual op-
tion in the function clabel. This function places labels onto locations that
have been selected with the mouse. Labeling is terminated by pressing the
return key.

[c,h] = contour(XI,YI,ZI,v);
clabel(c,h,'manual')

Filled contours are an alternative to the empty contours used above. This
function is used together with colorbar displaying a legend for the graph.
In addition, we plot the locations and z values of the true data points (black
empty circles, text labels) (Fig. 7.6).

7.7 Gridding Example 181

 contourf(XI,YI,ZI,v), colorbar
hold on
plot(data(:,1),data(:,2),'ko')
text(data(:,1)+1,data(:,2),labels);
hold off

A pseudocolor plot is generated by using the function pcolor. Black con-
tours are also added at the same levels as in the above example.

 pcolor(XI,YI,ZI), shading flat
hold on
contour(XI,YI,ZI,v,'k')
hold off

The third dimension is added to the plot by using the mesh command. We
use this example also to introduce the function view(az,el) for a view-
point specifi cation. Herein, az is the azimuth or horizontal rotation and el
is the vertical elevation (both in degrees). The values az = –37.5 and el =
30 defi ne the default view of all 3D plots,

 mesh(XI,YI,ZI), view(-37.5,30)

Fig. 7.6 Contour plot of the locations and z-values of the true data points (black empty
circles, text labels).

182 7 Spatial Data

whereas az = 0 and el = 90 is directly overhead and the default 2D view

mesh(XI,YI,ZI), view(0,90)

The function mesh represents only one of the many 3D visualization meth-
ods. Another commonly used command is the function surf. Furthermore,
the fi gure may be rotated by selecting the Rotate 3D option on the Edit Tools
menu. We also introduce the function colormap, which uses predefi ned
pseudo colormaps for 3D graphs. Typing help graph3d lists a number
of builtin colormaps, although colormaps can be arbitrarily modifi ed and
generated by the user. As an example, we use the colormap hot, which is a
black-red-yellow-white colormap.

 surf(XI,YI,ZI), colormap('hot'), colorbar

Here, Rotate 3D only rotates the 3D plot, not the colorbar. The function
surfc combines both a surface and a 2D contour plot in one graph.

 surfc(XI,YI,ZI)

The function surfl can be used to illustrate an advanced application of
3D visualization. It generates a 3D colored surface with interpolated shad-
ing and lighting. The axis labeling, ticks and background can be turned off
by typing axis off. In addition, black 3D contours may be added to the
surface plot. The grid resolution is increased prior to data plotting to obtain
smooth surfaces (Fig. 7.7).

[XI,YI] = meshgrid(420:0.25:470,70:0.25:120);
ZI = griddata(data(:,1),data(:,2),data(:,3),XI,YI,'v4');

surf(XI,YI,ZI), shading interp, light, axis off
hold on
contour3(XI,YI,ZI,v,'k');
hold off

The biharmonic spline interpolation described in this chapter provides a
solution to most gridding problems. Therefore, it was the only gridding
method that came with MATLAB for quite a long time. However, different
applications in earth sciences require different methods for interpolation,
but there is no method without problems. The next chapter compares bihar-
monic splines with other gridding methods and summarizes their strengths
and weaknesses.

7.8 Comparison of Methods and Potential Artifacts 183

7.8 Comparison of Methods and Potential Artifacts

The fi rst example illustrates the use of the bilinear interpolation technique
for gridding irregular-spaced data. Bilinear interpolation is an extension
of the one-dimensional linear interpolation. In the two-dimensional case,
linear interpolation is performed in one direction fi rst, then in the other
direction. Intuitively, the bilinear method is one of the simplest interpola-
tion techniques. One would not expect serious artifacts and distortions of
the data. On the contrary, this method has a number of disadvantages and
therefore other methods are used in many applications.

The sample data used in the previous chapter can be loaded to study the
performance of a bilinear interpolation.

data = load('normalfault.txt');
labels = num2str(data(:,3),2);

We now choose the option linear while using the function griddata to
interpolate the data.

[XI,YI] = meshgrid(420:0.25:470,70:0.25:120);
ZI = griddata(data(:,1),data(:,2),data(:,3),XI,YI,'linear');

Fig. 7.7 Three-dimensional colored surface with interpolated shading and simulated
lighting. The axis labeling, ticks and background are turned off. In addition, the graph
contains black 3D contours.

184 7 Spatial Data

The results are plotted as contours. The plot also includes the location of the
control points.

contourf(XI,YI,ZI), colorbar, hold on
plot(data(:,1),data(:,2),'o'), hold off

The new surface is restricted to the area that contains control points. By
default, bilinear interpolation does not extrapolate beyond this region.
Furthermore, the contours are rather angular compared to the smooth out-
line of the contours of the biharmonic spline interpolation. The most impor-
tant character of the bilinear gridding technique, however, is illustrated by
a projection of the data in a vertical plane.

plot(XI,ZI,'k'), hold on
plot(data(:,1),data(:,3),'ro')
text(data(:,1)+1,data(:,3),labels)
title('Linear Interpolation'), hold off

This plot shows the projection of the estimated surface (vertical lines) and
the labeled control points. The z-values at the grid points never exceed the z-
values of the control points. Similar to the linear interpolation of time series
(Chapter 5), bilinear interpolation causes signifi cant smoothing of the data
and a reduction of the high-frequency variation.

Biharmonic splines are sort of the other extreme in many ways. They are
often used for extremely irregular-spaced and noisy data.

[XI,YI] = meshgrid(420:0.25:470,70:0.25:120);
ZI = griddata(data(:,1),data(:,2),data(:,3),XI,YI,'v4');

contourf(XI,YI,ZI), colorbar, hold on
plot(data(:,1),data(:,2),'o'), hold off

The contours suggest an extremely smooth surface. In many applications,
this solution is very useful, but the method also produces a number of ar-
tifacts. As we can see from the next plot, the estimated values at the grid
points are often out of the range of the measured z-values.

plot(XI,ZI,'k'), hold on
plot(data(:,1),data(:,3),'o')
text(data(:,1)+1,data(:,3),labels);
title('Biharmonic Spline Interpolation'), hold off

This sometimes makes much sense and does not smooth the data in the way
bilinear gridding does. However, introducing very close control points with
different z-values can cause serious artifacts.

data(79,:) = [450 105 5];

7.8 Comparison of Methods and Potential Artifacts 185

data(80,:) = [450 104.5 -5];
labels = num2str(data(:,3),2);
ZI = griddata(data(:,1),data(:,2),data(:,3),XI,YI,'v4');

contourf(XI,YI,ZI), colorbar, hold on
plot(data(:,1),data(:,2),'ko')
text(data(:,1)+1,data(:,2),labels)

The extreme gradient at the location (450,105) results in a paired low and
high (Fig. 7.8). In such cases, it is recommended to delete one of the two
control points and replace the z-value of the remaining control point by the
arithmetic mean of both z-values.

Extrapolation beyond the area supported by control points is a common
feature of splines (see also Chapter 5). Extreme local trends combined with
large areas with no data often cause unrealistic estimates. To illustrate these
 edge effects we eliminate all control points in the upper-left corner.

Fig. 7.8 Contour plot of a data set gridded using a biharmonic spline interpolation. At the
location (450,105), very close control points with different z-values have been introduced.
Interpolation causes a paired low and high, which is a common artefact of spline
interpolation of noisy data.

186 7 Spatial Data

[i,j] = find(data(:,1)<435 & data(:,2)>105);
data(i,:) = [];

labels = num2str(data(:,3),2);

plot(data(:,1),data(:,2),'ko')
hold on
text(data(:,1)+1,data(:,2),labels);
hold off

We again employ the biharmonic spline interpolation technique.

[XI,YI] = meshgrid(420:0.25:470,70:0.25:120);
ZI = griddata(data(:,1),data(:,2),data(:,3),XI,YI,'v4');

v = -40 : 10 : 40;
contourf(XI,YI,ZI,v)
caxis([-40 40])
colorbar
hold on
plot(data(:,1),data(:,2),'ko')

Fig. 7.9 Contour plot of a data set gridded using a biharmonic spline interpolation. No control
points are available in the upper left corner. The spline interpolation then extrapolates
beyond the area with control points using gradients at the map edges causing unrealistic z
estimates at the grid points.

7.8 Comparison of Methods and Potential Artifacts 187

text(data(:,1)+1,data(:,2),labels)
hold off

As we can see from the plot, this method extrapolates beyond the area with
control points using gradients at the map edges (Fig. 7.9). Such effect is
particular undesired in the case of gridded closed data, such as percentages,
or data that have only positive values. In such cases, it is recommended to
replace the estimated z values by NaN. For instance, we erase the areas with
z values larger than 20, which is regarded as an unrealistic value. The cor-
responding plot now contains a sector with no data.

ZID = ZI;
ZID(find(ZID > 20)) = NaN;

contourf(XI,YI,ZID,v)
caxis([-40 40])
colorbar
hold on
plot(data(:,1),data(:,2),'ko')
text(data(:,1)+1,data(:,2),labels)
hold off

Alternatively, we can eliminate a rectangular area with no data.

ZID = ZI;
ZID(131:201,1:71) = NaN;

contourf(XI,YI,ZID,v)
caxis([-40 40])
colorbar
hold on
plot(data(:,1),data(:,2),'ko')
text(data(:,1)+1,data(:,2),labels)
hold off

In some examples, the area with no control points is simply eliminated by
putting a legend on this part of the map.

Another very useful MATLAB gridding method are splines with tension
by Wessel and Bercovici (1998). The tsplines use biharmonic splines in
tension t, where the parameter t can vary between 0 and 1. A value of t = 0
corresponds to a standard cubic spline interpolation. Increasing t reduces
undesirable oscillations between data points, e.g., the paired lows and highs
observed in one of the above examples. The limiting situation t →1 corre-
sponds to linear interpolation.

188 7 Spatial Data

7.9 Statistics of Point Distributions

This chapter is about the statistical distribution of points in an area, which
may help understand the relationship between these objects and properties
of the area. For instance, the spatial concentration of handaxes in an ar-
chaeological site suggests that a larger population of hominins lived in that
part of the area. The clustered occurrence of fossils may document envi-
ronmental conditions that are favourable to the corresponding organisms.
Volcano alignments often help to map tectonic structures in the deeper and
shallower subsurface.

The following text introduces methods for the statistical analysis of point
distributions. First, the spatial distribution of objects is tested for uniform
and random distribution. Then, a simple test for clustered distributions of
objects is presented.

Test for Uniform Distribution

We compute synthetic data to illustrate the test for uniform distributions.
The function rand computes uniformly-distributed pseudo-random num-
bers drawn from a uniform distribution on the unit interval. We compute xy
data using rand and multiply the data by ten to obtain data on the interval
[0,10].

rand('seed',0)
data = 10 * rand(100,2);

We use the χ 2–test introduced in Chapter 3.8 to test the hypothesis that
the data have a uniform distribution. The xy data are now organized in
25 classes that are square subareas of the size 2-by-2. We display the data
as blue points in a plot y versus x. The square areas are outlined by red lines
(Fig. 7.10).

plot(data(:,1),data(:,2),'o')
hold on
x = 0:10; y = ones(size(x));
for i = 1:4, plot(x,2*i*y,'r-'), end
for i = 1:4, plot(2*i*y,x,'r-'), end
hold off

The three-dimensional version of histogram hist3 is used to display the
spatial data organized in classes (Fig. 7.11).

hist3(data,[5 5]), view(30,70)

7.9 Statistics of Point Distibutions 189

0 1 2 3 4 5 6 7 8 9 10
0

1

2

3

4

5

6

7

8

9

10

Fig. 7.10 Two-dimensional plot of a point distribution. The distribution of objects in the
fi eld are tested for uniform distribution using the χ 2-test. The xy data are organized in
25 classes that are square subareas of the size 2-by-2.

Equivalent to the two-dimensional function, the function hist3 can be
used to compute the frequency distribution n_exp of the data.

n_exp = hist3(data,[5 5]);
n_exp = n_exp(:);

For a uniform distribution, the theoretical frequencies for the classes are
identical. The expected number of objects in each square area is the size
of the total area 10 × 10 =100 divided by the 25 subareas or classes, which
comes to be four. To compare the theoretical frequency distribution with
the actual distribution of objects, we generate an 5-by-5 array with identical
elements four.

n_syn = 4 * ones(25,1);

The χ 2-test explores the squared differences between the observed and ex-
pected frequencies (Chapter 3.8). The quantity χ 2 is defi ned as the sum of
the squared differences divided by the expected frequencies.

190 7 Spatial Data

Fig. 7.11 Three-dimensional histogram displaying the numbers of objects for each subarea.
The histogram was created using hist3.

chi2_data = sum((n_exp - n_syn).^2 ./n_syn)

chi2 =
 14

The critical χ 2 can be calculated by using chi2inv. The χ 2-test requires the
degrees of freedom Φ . In our example, we test the hypothesis that the data are
uniformly distributed, i.e., we estimate only one parameter (Chapter 3.4).
Therefore, the number of degrees of freedom is Φ =25– (1+1) =23. We test
the hypothesis on a p = 95% signifi cance level. The function chi2inv com-
putes the inverse of the χ 2 CDF with parameters specifi ed by Φ for the cor-
responding probabilities in p.

chi2_theo = chi2inv(0.95,25-1-1)

ans =
 35.1725

The critical χ 2 of 35.1725 is well above the measured χ 2 of 14. Therefore,
we cannot reject the null hypothesis and conclude that our data follow a
uniform distribution.

0
2

4

6
8

10

0

5

10

0

2

4

6

8

10

7.9 Statistics of Point Distibutions 191

Test for Random Distribution

The following example illustrates the test for randomly-distributed objects
in an area. We use the uniformly-distributed data generated in the previous
example and display the point distribution.

clear
rand('seed',0)
data = 10 * rand(100,2);
plot(data(:,1),data(:,2),'o')
hold on
x = 0:10; y = ones(size(x));
for i = 1:9, plot(x,i*y,'r-'), end
for i = 1:9, plot(i*y,x,'r-'), end
hold off

We generate the three-dimensional histogram and use the function hist3
to count the objects per class. In contrast to the previous test, we now count
the subareas containing a certain number of observations. The number of
subareas is usually larger than it would be used for the previous test. In our
example, we use 49 subareas or classes.

hist3(data,[7 7])
view(30,70)

counts = hist3(data,[7 7]);
counts = counts(:);

The frequency distribution of subareas with a certain number of objects fol-
lows a Poisson distribution (Chapter 3.4) if the objects are randomly distrib-
uted. First, we compute a frequency distribution of subareas with N objects.
In our example, we count the subareas with 0, …, 5 objects. We also display
the histogram of the frequency distribution as a two-dimensional histogram
using hist (Fig. 7.12).

N = 0 : 5;

[n_exp,v] = hist(counts,N);

hist(counts,N)
title('Histogram')
xlabel('Number of observations N')
ylabel('Subareas with N observations')

The expected number of subareas Ej with a certain number of objects j can
be computed using

192 7 Spatial Data

0 1 2 3 4 5
0

5

10

15

Fig. 7.12 Frequency distribution of subareas with N objects. In our example, we count the
subareas with 0, …, 5 objects. We display the histogram of the frequency distribution as a
two-dimensional histogram using hist.

where n is the total number of objects and T is the number of subareas. For
j = 0, j ! is taken to be 1. We compute the theoretical frequency distribution
using the equation shown above,

for i = 1 : 6
 n_syn(i) = 49*exp(-100/49)*(100/49)^N(i)/factorial(N(i));
end
n_syn = sum(n_exp)*n_syn/sum(n_syn);

and display both the empirical and theoretical frequency distributions in
one plot.

h1 = bar(v,n_exp);
hold on
h2 = bar(v,n_syn);
hold off

set(h1,'FaceColor','none','EdgeColor','r')
set(h2,'FaceColor','none','EdgeColor','b')

The χ 2-test is again employed to compare the empirical and theoretical dis-
tributions. The test is performed on a p = 95% signifi cance level. The Poisson
distribution is defi ned by only one parameter (Chapter 3.4). Therefore, the
number of degrees of freedom is Φ = 6– (1+1) = 4. The measured χ 2 of

7.9 Statistics of Point Distibutions 193

chi2 = sum((n_exp - n_syn).^2 ./n_syn)

chi2 =
 1.4357

is well below the critical χ 2, which is

chi2inv(0.95,6-1-1)

ans =
 9.4877

Therefore, we cannot reject the null hypothesis and conclude that our data
follow a Poission distribution. Therfore, the point distribution is random.

Test for Clustering

Point distributions in geosciences are often clustered. We use a nearest-
neighbor criterion to test a spatial distribution for clustering. Davis (2002)
published an excellent summary of the nearest-neighbor analysis, summa-
rizing the work of a number of other authors. Swan and Sandilands (1996)
presented a simplifi ed description of this analysis. The test for clustering
computes the distances di of all possible pairs of nearest points in the fi eld.
The observed mean nearest-neighbor distance is

where n is the total number of points or objects in the fi eld. The arithmetic
mean of all distances is related to the area of the map. This relationship is
expressed by the expected mean nearest-neighbor distance, which is

where A is the map area. Small values of this ratio then suggest signifi cant
clustering, whereas larger values indicate regularity or uniformity. The test
uses a Z statistic (Chapter 3.4), which is

where se is the standard error of the mean nearest-neighbor distance, which

194 7 Spatial Data

is defi ned as

The null hypothesis randomness is tested against two alternative hypothe-
ses, clustering and uniformity or regularity. The Z statistic has critical va-
lues of 1.96 and –1.96 at a signifi cance level of 95%. If –1.96< Z <+1.96,
we accept the null hypothesis that the data are randomly distributed. If
Z < –1.96, we reject the null hypothesis and accept the fi rst alternative hy-
pothesis of clustering. If Z >+1.96, we also reject the null hypothesis, but
accept the alternative hypothesis of uniformity or regularity.

As an example, we use the synthetic data analyzed in the previous ex-
amples again.

clear
rand('seed',0)
data = 10 * rand(100,2);
plot(data(:,1),data(:,2),'o')

We fi rst compute the pairwise Euclidian distance between all pairs of ob-
servations using the function pdist (Chapter 9.4). The resulting distance
matrix is then reformatted between upper triangular and square form using
squareform.

distances = pdist(data,'Euclidean');
distmatrix = squareform(distances);

The following for loop fi nds the nearest neighbors, stores the correspond-
ing distances and computes the mean distance.

for i = 1 : 5
 distmatrix(i,i) = NaN;
 k = find(distmatrix(i,:) == min(distmatrix(i,:)));
 nearest(i) = distmatrix(i,k(1));
end
observednearest = mean(nearest)

observednearest =
 0.5471

In our example, the mean nearest distance observednearest comes
to be 0.5471. Next, we calculate the area of the map. The expected mean
nearest-neighbor distance is half the squareroot of the map area divided by
the number of observations.

7.10 Analysis of Digital Elevation Models (by R. Gebbers) 195

maparea = (max(data(:,1)-min(data(:,1)))) ...
 *(max(data(:,2)-min(data(:,2))));
expectednearest = 0.5 * sqrt(maparea/length(data))

expectednearest =
 0.4940

In our example, the expected mean nearest distance expectednearest is
0.4940. Finally, we compute the standard error of the mean nearest-neigh-
bor distance se

se = 0.26136/sqrt((length(data).^2/maparea))

se =
 0.0258

and the test statistic Z.

Z = (observednearest - expectednearest)/se

Z =
 2.0561

In our example, Z is 2.0561. Since Z>+1.96, we reject the null hypothesis
and conclude that the data are uniformly or regularly distributed, but not
clustered.

7.10 Analysis of Digital Elevation Models (by R. Gebbers)

Digital elevation models (DEM) and their derivatives (e.g., slope and as-
pect) can indicate surface processes like lateral water fl ow, solar irradiation
or erosion. The simplest derivatives of a DEM are the slope and the aspect.
The slope (or gradient) describes the measurement of the steepness, the
incline or the grade of a surface measured in percentages or degrees. The
aspect (or exposure) generally refers to the direction to which a mountain
slope faces.

We use the SRTM data set introduced in Chapter 7.5 to illustrate the
analysis of a digital elevation model for slopes, aspects and other deriva-
tives. The data are loaded by

fid = fopen('S01E036.hgt','r');
SRTM = fread(fid,[1201,inf],'int16','b');
fclose(fid);

SRTM = SRTM';
SRTM = flipud(SRTM);
SRTM(find(SRTM==-32768)) = NaN;

196 7 Spatial Data

These data are elevation values in meters above sea level sampled at a 3-
arc-second or 90 meter grid. The SRTM data contain small-scale spatial
disturbances and noise that could cause problems when computing a con-
sistent drainage pattern. Therefore, we lowpass-fi lter the data using a two-
dimensional moving-average fi lter using the function filter2. The fi lter
used here is a spatial running mean of 3×3 elements. We use only the subset
SRTM(400:600,650:850) of the original data set to reduce computation
time. We also remove the data at the edges of the DEM to eliminate fi lter
artifacts.

F = 1/9 * ones(3,3);
SRTM = filter2(F, SRTM(750:850,700:800));
SRTM = SRTM(2:99,2:99);

The DEM is displayed as a pseudocolor plot using pcolor and the color-
map demcmap included in the Mapping Toolbox. This colormap creates and
assigns a colormap appropriate for elevation data since it provides land and
sea colors in proportion to topography and bathymetry.

h = pcolor(SRTM);
demcmap(SRTM), colorbar
set(h,'LineStyle','none')
axis equal
title('Elevation [m]')
[r c] = size(SRTM);
axis([1 c 1 r])
set(gca,'TickDir','out');

The DEM is characterized by a horseshoe-shaped mountain range sur-
rounding a valley descending towards the Southeast (Fig. 7.15a).

The SRTM subset is now analyzed for slopes and aspects. While we are
working with DEMs on a regular grid, slope and aspect can be estimated as
local derivatives by using centered fi nite differences in a local 3×3 neigh-
borhood. Figure 7.13 shows the local neighborhood using the cell indexing
convention of MATLAB. For calculating slope and aspect, we need two
 fi nite differences of the DEM elements z in x and y direction:

and

7.10 Analysis of Digital Elevation Models (by R. Gebbers) 197

Z(4)

Z(2)

Z(3)

Z(7)

Z(5) Z(8)

Z(6) Z(9)

Z(1)

Fig. 7.13 Local neighborhood showing cell number convention of MATLAB.

where h is the cell size, which has the same unit as the elevation. Using the
fi nite differences, the dimensionless slope is then calculated by

Other primary relief attributes such as the aspect, the plan, the profi le and
the tangential curvature can be derived in a similar way using fi nite differ-
ences (Wilson and Galant 2000). The function gradientm contained in
the Mapping Toolbox calculates slope and aspect of a data grid z in units
of degrees clockwise from North and up from the horizontal. Function
gradientm(z,refvec) requires a three-element referencing vector re-
fvec. The reference vector contains the number of cells per degree as well
as the latitude and longitude of the upper-left (northwest) element of the
data array. Since the SRTM digital elevation model is sampled at a 3-arc-
second grid, 60 × 60/3=1200 elements of the DEM correspond to one de-
gree longitude or latitude. For simplicity, we ignore the actual coordinates
of the SRTM subset in this example and use the indices of the DEM ele-
ments instead.

refvec = [1200 0 0];
[asp, slp] = gradientm(SRTM, refvec);

We display a pseudocolor map of the slope (in degrees) of the DEM
(Fig 7.15b).

h = pcolor(slp);
colormap(jet), colorbar
set(h,'LineStyle','none')

198 7 Spatial Data

axis equal
title('Slope [°]')
[r c] = size(slp);
axis([1 c 1 r])
set(gca,'TickDir','out');

Flat areas can be found everywhere on the summits and the valley bottoms.
The southeastern and south-southwestern sectors are relatively fl at. Steeper
slopes are concentrated in the center and the southwestern sector. Next, a
pseudocolor map of the aspect is generated (Fig. 7.15c).

h = pcolor(asp);
colormap(hsv), colorbar
set(h,'LineStyle','none')
axis equal
title('Aspect')
[r c] = size(asp);
axis([1 c 1 r])
set(gca,'TickDir','out');

This plot displays the aspect in units of degrees clockwise from North. For
instance, mountain slopes facing North are displayed in red colors, whereas
green areas depict East-facing slopes.

The aspect changes abruptly along the ridges of the mountain ranges
where neighboring drainage basins are divided by watersheds. The Image
Processing Toolbox includes the function watershed to detect the drainage
divides and to label individual watershed regions or catchments by integer
values, where the fi rst watershed region is labeled 1, the elements labeled 2
belong to the second catchment, and so on.

watersh = watershed(SRTM);

The watershed regions are displayed by a pseudocolor plot where the labels of
the regions are assigned by colors given in the color table hsv (Fig 7.15d).

h = pcolor(watersh);
colormap(hsv), colorbar
set(h,'LineStyle','none')
axis equal
title('Watershed')
[r c] = size(watersh);
axis([1 c 1 r])
set(gca,'TickDir','out');

The watersheds are displayed as series of red pixels. The largest catchment
corresponds to the medium blue region in the center of the map. To the
Northwest, this large catchment seems to be neighbored by three catch-
ments (represented by green colors) without an outlet. As in this example,

7.10 Analysis of Digital Elevation Models (by R. Gebbers) 199

watershed often generates unrealistic results as watershed algorithms are
sensitive to local minima that act as spurious sinks. We can detect such
sinks in the SRTM data using the function imregionalmin. The output
of this function is a binary image that has the value 1 corresponding to the
elements of the DEM that belong to regional minima and the value of 0
otherwise.

sinks = 1*imregionalmin(SRTM);

h = pcolor(sinks);
colormap(gray)
set(h,'LineStyle','none')
axis equal
title('Sinks')
[r c] = size(sinks);
axis([1 c 1 r])
set(gca,'TickDir','out');

The pseudocolor plot of the binary image exhibits twelve local sinks repre-
sented by white pixels that are potentially the locations of non-outlet catch-
ments and should be kept in mind while computing the following hydrologi-
cal DEM attributes.

Flow accumulation (specifi c catchment area, upslope contributing area)
is defi ned as the number of cells, or area, which contribute to runoff of a
given cell (Fig. 7.14). In contrast to the local parameters slope and aspect,
fl ow accumulation can only be determined from the global neighborhood.
The principal operation is to add cell outfl ows iteratively to lower neigh-
bors. Before cascading the cell outfl ows, we have to determine the individ-
ual gradients to each neighbor indexed by N. The array N contains indices
for the eight neighboring cells according to the MATLAB convention as
shown in Figure 17.3. We make use of the circshift function to access
the neighboring cells. In the case of a two-dimensional matrix Z, the func-
tion circshift(Z,[r c]) circularly shifts the values in the matrix Z by
an amount of rows and columns given by r and c, respectively. For example,
circshift(Z,[1 1]) will circularly shift Z one row down and one col-
umn to the right. The individual gradients are calculated by

for the eastern, southern, western, and northern neighbors (the so-called
rook’s case) and by

200 7 Spatial Data

1

2

3

1

1

1

1

4

1

22

36

1 1 1

3

8

1 1

3

16

1

10

2

2 3

3

3

6

1

1

1 2

2

1

1

3

1

2

3

1

1

1

1

4

1

22

36

1 1 1

3

8

1 1

3

16

1

10

2

2 3

3

3

6

1

1

1 2

2

1

1

3

b c

a

Elevation Mode

Flow Direction Flow Accumulation

Fig. 7.14 Schematic of calculation of fl ow accumulation by the D8 method

7.10 Analysis of Digital Elevation Models (by R. Gebbers) 201

for the diagonal neighbors (bishop’s case). Herein, h is the cell size, zr,c

is the elevation of the center cell and zr+y,c+x is the elevation of a neigh-
bor. The cell indices x and y are obtained from the matrix N. The gradients
are stored in a three-dimensional matrix grads, where grads(:,:,1)
contains the gradients towards the neighbors in the East, grads(:,:,2)
contains the gradients towards the neighbors in the Southeast, and so on.
Negative gradients indicate outfl ow from the center to the respective neigh-
bor. To obtain relative surface fl ow gradients are transformed by inverse
tangent divided by 0.5π .

N = [0 -1;-1 -1;-1 0;+1 -1;0 +1;+1 +1;+1 0;-1 +1];
[a b] = size(SRTM);
grads = zeros(a,b,8);
for c = 2 : 2 : 8
 grads(:,:,c) = (circshift(SRTM,[N(c,1) N(c,2)]) ...
 -SRTM)/sqrt(2*90);
end
for c = 1 : 2 : 7
 grads(:,:,c) = (circshift(SRTM,[N(c,1) N(c,2)]) ...
 -SRTM)/90;
end
grads = atan(grads)/pi*2;

Since a center cell can have several downslope neighbors, water can fl ow in
several directions. This phenomenon is called divergent fl ow. Early fl ow ac-
cumulation algorithms were based on the single-fl ow-direction method (D8
method, Fig. 7.14), which allows fl ow to only one of the cell's eight neighbors.
This method cannot model divergence in ridge areas and tends to produce
parallel fl ow lines in some examples. Here, we are illustrating the use of a
multiple-fl ow-direction method, which allows fl ow from a cell to multiple
neighbors. The fl ow to another neighbor corresponds to the individual gradi-
ent and is a fraction of the total outfl ow. Even though multiple-fl ow methods
reveal more realistic results in most examples, they tend to cause dispersion
in valleys where the fl ow should be more concentrated. Thus, a weighting
factor w is introduced, which controls the relation of the outfl ows.

202 7 Spatial Data

A recommended value for w is 1.1. Higher values will concentrate the fl ow
in the direction of the steepest slope, while w = 0 would cause an extreme
dispersion. In the following sequence of commands, we fi rst select the gra-
dients less than zero and multiply the result with the weight.

w = 1.1;
flow = (grads.*(-1*grads<0)).^w;

Then we are summing up the upslope gradients, i.e., the third dimension of
flow. We replace values of 0 by the value of 1 that avoids the problems with
division by zero.

upssum = sum(flow,3);
upssum(upssum==0) = 1;

We divide the fl ows by upssum to obtain fractional weights summing up to
one. In our code, this is done separately for each layer of the 3D flow array
by a for loop:

for i=1:8
 flow(:,:,i) = flow(:,:,i).*(flow(:,:,i)>0)./upssum;
end

The 2D matrix inflowsum will store the intermediate sums of infl ows for
each step of the iteration. The infl ows are summed up to the total fl ow accu-
mulation flowac at the end of each iteration. Initial values of inflowsum
and flowac are provided by upssum.

inflowsum = upssum;
flowac = upssum;

Another 3D matrix inflow is now needed to store the intermediate infl ow
achieved by all neighbors:

inflow = grads*0;

Flow accumulation is terminated when there is no infl ow, or translated
into MATLAB code, we use a conditional while loop that terminates if
sum(inflowsum(:)) == 0. The number of non-zero entries in inflow-
sum will decrease during each loop iteration. This is achieved by alternately
updating inflow and inflowsum. Here, inflowsum is updated with the
intermediate inflow of the neighbor(s) weighted by flow under the condi-
tion that the neighbors are contributing cells, i.e., where grads are positive.
Since not all neighbors are contributing cells, the intermediate inflow-
sum, and also inflow is reduced. Flow accumulation flowac is increasing

7.10 Analysis of Digital Elevation Models (by R. Gebbers) 203

through the consecutive summation of the intermediate inflowsum.

while sum(inflowsum(:))>0
 for i = 1:8
 inflow(:,:,i) = circshift(inflowsum,[N(i,1) N(i,2)]);
 end
 inflowsum = sum(inflow.*flow.*grads>0,3);
 flowac = flowac + inflowsum;
end

We display the result as a pseudocolor map with log-scaled values
(Fig 7.15e).

h = pcolor(log(1+flowac));
colormap(flipud(jet)), colorbar
set(h,'LineStyle','none')
axis equal
title('Flow accumulation')
[r c] = size(flowac);
axis([1 c 1 r])
set(gca,'TickDir','out');

The plot displays areas with high fl ow accumulation in blue colors, whereas
areas with low fl ow accumulation are displayed in red colors usually cor-
responding to ridges. We used a logarithmic scaling for mapping the fl ow
accumulation to obtain a better representation of the results. The simplifi ed
algorithm to calculate fl ow accumulation introduced here can be used to an-
alyze DEMs representing a sloping terrain. In fl at terrains, where the slope
becomes zero, no fl ow direction can be generated by our algorithm and
thus fl ow accumulation stops. Such examples require more sophisticated
algorithms to perform the analysis of DEMs. Furthermore, more advanced
algorithms also include sink-fi lling routines to avoid spurious sinks that in-
terrupt fl ow accumulation. Small depressions can be fi lled by smoothing as
we have done it at the beginning of this chapter.

The fi rst part of this chapter was about primary relief attributes.
Secondary attributes of a DEM are functions of two or more primary at-
tributes. Examples for secondary attributes are the wetness index and the
stream power index. The wetness index is the log of the ratio of the specifi c
catchment area and tangent of slope:

The term 1+fl owac avoids the problems with calculating the logarithm of
zero when flowac=0. The wetness index is used to predict the soil water

204 7 Spatial Data

content (saturation) due to the lateral water movement. The potential for
water logging is usually high at lower elevations of a catchment with small
slopes. Flat areas having a large upslope area have a high wetness index as
compared with steep areas with small catchments. The wetness index weti
is computed and displayed by

weti = log((1+flowac)./tand(slp));

h = pcolor(weti);
colormap(flipud(jet)), colorbar
set(h,'LineStyle','none')
axis equal
title('Wetness index')
[r c] = size(weti);
axis([1 c 1 r])
set(gca,'TickDir','out');

In this graph, blue colors indicate high values of the wetness index, where-
as red colors display low values (Fig. 7.15f). In our example, soils in the
Southeast most likely have high water content due to the runoff from the
large central valley and the terrain fl atness.

The stream power index is another important secondary relief attribute
which is frequently used in hillslope hydrology, geomorphology, soil science
and related disciplines. As a measure of stream power it indicates sediment
transport and erosion by water. It is defi ned as the product of the specifi c
catchment area and tangent of the slope:

The potential for erosion is high when large quantities of water (calculated
by the fl ow accumulation) are fast fl owing due to an extreme slope. The fol-
lowing series of commands compute and display the stream power index:

spi = flowac.*tand(slp);

h = pcolor(log(1+spi));
colormap(jet), colorbar
set(h,'LineStyle','none')
axis equal
title('Stream power index')
[r c] = size(spi);
axis([1 c 1 r])
set(gca,'TickDir','out');

The wetness and stream power indices are particularly useful in large-scale
terrain analysis, i.e., digital elevation models sampled on intervals of less

7.10 Analysis of Digital Elevation Models (by R. Gebbers) 205

a

c

e f

d

b

5

10

15

20

25

5

10

15

20

2

4

8

6

10

3200

3400

3600

3800

50

100

150

200

250

300

350

1

3

5

7

2

4

6

12

4000

0

00

Slope (°)Elevation (m)

Watershed

Flow Accumulation Wetness Index

Aspect (°)

Fig. 7.15 Display of a subset of the SRTM data set used in Chapter 7.5 and primary
and secondary attributes of the digital elevation model; a elevation, b slope, c aspect,
d watershed, e fl ow accumulation and f wetness index.

206 7 Spatial Data

7.11 Geostatistics and Kriging (by R. Gebbers)

Geostatistics describes the autocorrelation of one or more variables in the
1D, 2D, and 3D space or even in 4D space-time, to make predictions at
unobserved locations, to give information about the accuracy of predic-
tion and to reproduce spatial variability and uncertainty. The shape, the
range, and the direction of the spatial autocorrelation are described by the
variogram, which is the main tool in linear geostatistics. The origins of
geostatistics can be dated back to the early 50’s when the South African
mining engineer Daniel G. Krige fi rst published an interpolation method
based on spatial dependency of samples. In the 60’s and 70’s, the French
mathematician George Matheron developed the theory of regionalized vari-
ables which provides the theoretical foundations of Kriges’s more practical
methods. This theory forms the basis of several procedures for the analy-
sis and estimation of spatially dependent variables, which Matheron called
geostatistics. Matheron as well coined the term kriging for spatial interpola-
tion by geostatistical methods.

Theorical Background

A basic assumption in geostatistics is that a spatiotemporal process is com-
posed of deterministic and stochastic components (Fig. 7.16). The determin-
istic components can be global and local trends (sometimes called drifts).
The stochastic component is formed by a purely random and an autocorre-
lated part. An autocorrelated component implies that on average, closer ob-
servations are more similar than more distant observations. This behavior
is described by the variogram where squared differences between observa-
tions are plotted against their separation distances. The fundamental idea of
D. Krige was to use the variogram for interpolation as means to determine
the magnitude of infl uence of neighboring observations when predicting

than 30 meters. Though we have calculated weti and spi from a medium-
scale DEM, we have to expect scale dependency of these attributes in our
terrain analysis example.

This chapter has illustrated the use of basic tools to analyze digital eleva-
tion models. More detailed introductions to digital terrain modelling are
given by the book by Wilson & Galant (2002). Furthermore, the article
by Freeman (1991) provides a comprehensive summary and introduction to
advanced algorithms for fl ow accumulation.

7.11 Geostatistics and Kriging (by R. Gebbers) 207

0 100 200 300 400 500 600 0 100 200 300 400 500 600

0 100 200 300 400 500 600

0 100 200 300 400 500 600

0 100 200 300 400 500 600

0 10 20 30 40 50 60

3.0

1.5

0.0

-1.5

-3.0

3.0

1.5

0.0

-1.5

-3.0

3.0

1.5

0.0

-1.5

-3.0

3.0

1.5

0.0

-1.5

-3.0

3.0

1.5

0.0

-1.5

-3.0

0.8

0.6

0.4

0.2

0

1.0

x x

x

x

x

Lag Distance

Spatiotemporal Process Global Trend Component

Local Trend Component Random Component

Autocorrelation Component Variogram

a

c

e f

d

b

Fig. 7.16 Components of a spatiotemporal process and the variogram. The variogram (f)
should only be derived from the autocorrelated component.

208 7 Spatial Data

values at unobserved locations. Basic linear geostatistics includes two main
procedures: variography for modeling the variogram and kriging for inter-
polation.

Preceding Analysis

Because linear geostatistics as presented here is a parametric method, the
underlying assumptions have to be checked by a preceding analysis. As
other parametric methods, linear geostatistics is sensitive to outliers and
deviations from normal distribution. First, after opening the data fi le geost_
dat.mat containing xyz data triplets we plot the sampling locations. Doing
this, we can check point distribution and detect gross errors on the data
coordinates x and y.

load geost_dat.mat

plot(x,y,'.')

Checking of the limits of the observations z can be done by

min(z)

ans =
 3.7199

max(z)

ans =
 7.8460

For linear geostatistics, the observations z should be gaussian distributed.
In most cases, this is only tested by visual inspection of the histogram be-
cause statistical tests are often too sensitive if the number of samples exceed
ca. 100. In addition, one can calculate skewness and kurtosis of the data.

hist(z)

skewness(z)

ans =
 0.2568

kurtosis(z)

ans =
 2.5220

A fl at-topped or multiple peaks distribution suggests that there is more than
one population in your data set. If these populations can be related to con-

7.11 Geostatistics and Kriging (by R. Gebbers) 209

tinuous areas they should be treated separately. Another reason for multiple
peaks can be preferential sampling of areas with high and/or low values.
This happens usually due to some a priori knowledge and is called cluster
effect. Handling of the cluster effect is described in Deutsch and Journel
(1998) and Isaaks and Srivastava (1998).

Most problems arise from positive skewness (long upper tail). According
to Webster and Oliver (2001), one should consider root transformation if
skewness is between 0.5 and 1, and logarithmic transformation if skewness
exceeds 1. A general formula of transformation is:

for min(z)+m> 0. This is the so called Box-Cox transform with the spe-
cial case k = 0 when a logarithm transformation is used. In the logarithm
transformation, m should be added when z values are zero or negative.
Interpolation results of power-transformed values can be backtransformed
directly after kriging. The backtransformation of log-transformed values
is slightly more complicated and will be explained later. The procedure is
known as lognormal kriging. It can be important because lognormal distri-
butions are not unusual in geology.

Variography with the Classical Variogram

The variogram describes the spatial dependency of referenced observations
in a one or multidimensional space. While usually we do not know the true
variogram of the spatial process we have to estimate it from observations.
This procedure is called variography. Variography starts with calculating
the experimental variogram from the raw data. In the next step, the experi-
mental variogram is summarized by the variogram estimator. Variography
fi nishes with fi tting a variogram model to the variogram estimator. The
experimental variogram is calculated as the difference between pairs of the
observed values depending on the separation vector h (Fig. 7.17). The clas-
sical experimental variogram is given by the semivariance,

where zx is he observed value at location x and zx+h is he observed value at
another point within a distance h. The length of the separation vector h is

210 7 Spatial Data

called lag distance or simply lag. The correct term for γ (h) is semivario-
gram (or semivariance), where semi refers to the fact that it is half of the
variance of the difference between zx and zx+h. It is, nevertheless, the vari-
ance per point when points are considered as in pairs (Webster and Oliver,
2001). Conventionally, γ (h) is termed variogram instead of semivariogram
and so we do at the end of this chapter. To calculate the experimental vario-
gram we fi rst have to build pairs of observations. This is done by typing

[X1,X2] = meshgrid(x);
[Y1,Y2] = meshgrid(y);
[Z1,Z2] = meshgrid(z);

The matrix of separation distances D between the observation points is

D = sqrt((X1 - X2).^2 + (Y1 - Y2).^2);

where srqt is the square root of the data. Then we get the experimental
variogram G as half the squared differences between the observed values:

G = 0.5*(Z1 - Z2).^2;

We used the MATLAB capability to vectorize commands instead of using
for loops to run faster. However, we have computed n2 pairs of observa-
tions although only n (n–1)/2 pairs are required. For large data sets, e.g.,
more than 3000 data points, the software and physical memory of the com-
puter may become a limiting factor. For such cases, a more effi cient way
of programming is described in the user manual of the software SURFER
(2002). The plot of the experimental variogram is called the variogram
cloud (Fig. 7.18). We get this after extracting the lower triangular portions
of the D and G arrays.

y
-C
o
o
rd
in
a
te
s

x-Coordinates

|h|

x = x + hj i

x i

Fig. 7.17 Separation vector h between two points.

7.11 Geostatistics and Kriging (by R. Gebbers) 211

indx = 1:length(z);
[C,R] = meshgrid(indx);
I = R > C;

plot(D(I),G(I),'.')
xlabel('lag distance')
ylabel('variogram')

The variogram cloud gives you an impression of the dispersion of values at
the different lags. It might be useful to detect outliers or anomalies, but it
is hard to judge from it whether there is any spatial correlation, what form
it might have, and how we could model it (Webster and Oliver, 2001). To
obtain a clearer view and to prepare variogram modeling the experimental
variogram is replaced by the variogram estimator in the next section.

The variogram estimator is derived from the experimental variograms
to summarize their central tendency (similar to the descriptive statistics
derived from univariate observations, Chapter 3.2). The classical vario-
gram estimator is the averaged empirical variogram within certain distance
classes or bins defi ned by multiples of the lag interval. The classifi cation of
separation distances is visualized in Figure 7.19.

Distance between observations

S
em

iv
ar

ia
nc

e

0

1

2

3

4

5

6

7

8

9

0 50 100 150 200 250 300

Fig. 7.18 Variogram cloud: Plot of the experimental variogram (half squared difference
between pairs of observations) versus the lag distance (separation distance of the pairs).

212 7 Spatial Data

The variogram estimator is calculated by:

where N(h) is the number of pairs within the lag interval h.
First, we need an idea about a suitable lag interval h. If you have sampled

on a regular grid, you can use the length of a grid cell. If the samples have
irregular spacings, as in our case, the mean minimum distance of pairs is a
good starting point for the lag interval (Webster and Oliver 2001). To calcu-
late the mean minimum distance of pairs we have to replace the diagonal of
the lag matrix D zeros with NaN’s, otherwise the minimum distance will be
zero:

D2 = D.*(diag(x*NaN)+1);
lag = mean(min(D2))

lag =
 8.0107

While the estimated variogram values tend to become more erratic with
increasing distances, it is important to defi ne a maximum distance which
limits the calculation. As a rule of thumb, the half maximum distance is
suitable range for variogram analysis. We obtain the half maximum dis-
tance and the maximum number of lags by:

hmd = max(D(:))/2

hmd =
 130.1901

h3 h3 h3 h3

h1 h1 h1 h1 h1 h1

h2 h2 h2 h2 h2y-
C

oo
rd

in
at

es

x-Coordinates

Fig. 7.19 Classifi cation of separation distances in the case of equally spaced observations
along a line. The lag interval is h

1
 and h

2
, h

3
 etc. are multiples of the lag interval.

7.11 Geostatistics and Kriging (by R. Gebbers) 213

max_lags = floor(hmd/lag)

max_lags =
 16

Then the separation distances are classifi ed and the classical variogram es-
timator is calculated:

LAGS = ceil(D/lag);

for i = 1 : max_lags
 SEL = (LAGS == i);
 DE(i) = mean(mean(D(SEL)));
 PN(i) = sum(sum(SEL == 1))/2;
 GE(i) = mean(mean(G(SEL)));
end

where SEL is the selection matrix defi ned by the lag classes in LAG, DE is
the mean lag, PN is the number of pairs and GE is the variogram estimator.
Now we can plot the classical variogram estimator (variogram versus mean
separation distance) together with the population variance:

plot(DE,GE,'.')
var_z = var(z);
b = [0 max(DE)];
c = [var_z var_z];

hold on

plot(b,c, '--r')
yl = 1.1 * max(GE);
ylim([0 yl])
xlabel('Averaged distance between observations')
ylabel('Averaged semivariance')

hold off

The variogram in Figure 7.20 shows a typical behavior. Values are low at
small separation distances (near the origin), they are increasing with in-
creasing distances, than reaching a plateau (sill) which is close to the popu-
lation variance. This indicates that the spatial process is correlated over
short distances while there is no spatial dependency over longer distances.
The length of the spatial dependency is called the range and is defi ned by
the separation distance where the variogram reaches the sill.

The variogram model is a parametric curve fi tted to the variogram es-
timator. This is similar to frequency distribution fi tting (see Chapter 3.5),
where the frequency distribution is modeled by a distribution type and its
parameters (e.g., a normal distribution with its mean and variance). Due to

214 7 Spatial Data

theoretical reasons, only functions with certain properties should be used as
variogram models. Common authorized models are the spherical, the expo-
nential and the linear model (more models can be found in the literature).

Spherical model:

Exponential model:

Population
variance

Distance between observations

S
em

iv
ar

ia
nc

e

0 20 40 60 80 100 120 140

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

0

Fig. 7.20 The classical variogram estimator (gray circles) and the population variance
(solid line).

7.11 Geostatistics and Kriging (by R. Gebbers) 215

Linear model:

where c is the sill, a is the range, and b is the slope (in the case of the linear
model). The parameters c and a or b have to be modifi ed when a vario-
gram model is fi tted to the variogram estimator. The so called nugget effect
is a special type of variogram model. In practice, when extrapolating the
variogram towards separation distance zero, we often observe a positive
intercept on the ordinate. This is called the nugget effect and it is explained
by measurement errors and by small scale fl uctuations (nuggets), which
are not captured due to too large sampling intervals. Thus, we sometimes
have expectations about the minimum nugget effect from the variance of re-
peated measurements in the laboratory or other previous knowledge. More
details about the nugget effect can be found in Cressie (1993) and Kitanidis
(1997). If there is a nugget effect, it can be added to the variogram model.
An exponential model with a nugget effect looks like this:

where c0 is the nugget effect.
We can even combine more variogram models, e.g., two spherical mod-

els with different ranges and sills. These combinations are called nested
models. During variogram modeling the components of a nested model are
regarded as spatial structures which should be interpreted as the results
of geological processes. Before we discuss further aspects of variogram
modeling let us just fi t some models to our data. We are beginning with a
spherical model without nugget, than adding an exponential and a linear
model, both with nugget variance:

plot(DE,GE,'o','MarkerFaceColor',[.6 .6 .6])
var_z = var(z);
b = [0 max(DE)];
c = [var_z var_z];
hold on
plot(b,c,'--r')
xlim(b)
yl = 1.1*max(GE);
ylim([0 yl])

% Spherical model with nugget
nugget = 0;
sill = 0.803;

216 7 Spatial Data

range = 45.9;
lags = 0:max(DE);
Gsph = nugget + (sill*(1.5*lags/range - 0.5*(lags/...
 range).^3).*(lags<=range) + sill*(lags>range));
plot(lags,Gsph,':g')

% Exponential model with nugget
nugget = 0.0239;
sill = 0.78;
range = 45;
Gexp = nugget + sill*(1 - exp(-3*lags/range));
plot(lags,Gexp,'-.b')

% Linear model with nugget
nugget = 0.153;
slope = 0.0203;
Glin = nugget + slope*lags;
plot(lags,Glin,'-m')
xlabel('Distance between observations')
ylabel('Semivariance')
legend('Variogram estimator','Population variance',...
'Sperical model','Exponential model','Linear model')
hold off

Variogram modeling is very much a point of discussion. Some advocate
objective variogram modeling by automated curve fi tting, using a weighted
least squares, maximum likelihood or maximum entropy method. Contrary
to this it is often argued that the geological knowledge should be included
in the modeling process and thus, fi tting by eye is recommended. In many
cases the problem in variogram modeling is much less the question of the
appropriate procedure but a question of the quality of the experimental var-
iogram. If the experimental variogram is good, both procedures will yield
similar results.

Another question important for variogram modeling is the intended use
of the model. In our case, the linear model seems not to be appropriate
(Fig. 7.21). At a closer look we can see that the linear model fi ts reason-
ably well over the fi rst three lags. This can be suffi cient when we use the
variogram model only for kriging, because in kriging the nearby points are
the most important for the estimate (see discussion of kriging below). Thus,
different variogram models with similar fi ts near the origin will yield simi-
lar kriging results when sampling points are regularly distributed. If you
are interested in describing the spatial structures it is another case. Then it
is important to fi nd a suitable model over all lags and to determine the sill
and the range accurately. A collection of geologic case studies in Rendu
and Readdy (1982) show how process knowledge and variography can be
linked. Good guidelines to variogram modeling are given by Gringarten

7.11 Geostatistics and Kriging (by R. Gebbers) 217

and Deutsch (2001) and Webster and Oliver (2001). We will now briefl y
discuss some more aspects of variography.

 Sample size – As in any statistical procedure you need as large a sample
as possible to get a reliable estimate. For variography it is recommended
to have more than 100 to 150 samples (Webster and Oliver 2001). If you
have less, you should consider computing a maximum likelihood vario-
gram (Pardo-Igúzquiza and Dowd 1997).

 Sampling design – To get a good estimation at the origin of the variogram
sampling design should include observations over small distances. This
can be done by a nested design (Webster and Oliver 2001). Other designs
were evaluated by Olea (1984).

 Anisotropy – Thus far now we have assumed that the structure of spatial
correlation is independent of direction. We have calculated omnidirec-
tional variograms ignoring the direction of the separation vector h. In a

•

•

•

Distance between observations

S
em

iv
ar

ia
nc

e

Population
variance

Spherical model

Exponential model

Linear model

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0

0 20 40 60 80 100 120 140

Fig. 7.21 Variogram estimator (gray circles), population variance (solid line), spherical,
exponential, and linear models (dashed lines).

218 7 Spatial Data

more thorough analysis, the variogram should not only be discretized in
distance but also in direction (directional bins). Plotting directional var-
iograms, usually in four directions, we sometimes can observe different
ranges (geometric anisotropy), different scales (zonal anisotropy), and
different shapes (indicating a trend). The treatment of anisotropy needs
a highly interactive graphical user interface, e.g., VarioWin by Panatier
(1996) which is beyond the scope of this book.

Number of pairs and the lag interval – In the calculation of the classical
variogram estimator it is recommended to use more than 30 to 50 pairs
of points per lag interval (Webster and Oliver 2001). This is due to the
sensitivity to outliers. If there are fewer pairs, the lag interval should be
enlarged. The lag spacing has not necessarily to be uniform, it can be
chosen individually for each distance class. It is also an option to work
with overlapping classes, in this case the lag width (lag tolerance) has to
be defi ned. On the other hand, increasing the lag width can cause unnec-
essary smoothing and detail is lost. Thus, the separation distance and the
lag width have to be chosen with care. Another option is to use a more
robust variogram estimator (Cressie 1993, Deutsch and Journel 1998).

Calculation of separation distance – If your observations are covering a
large area, let us say more than 1000 km 2, spherical distances should be
calculated instead of the Pythagorean distances from a plane cartesian
coordinate system.

Kriging

Now we will interpolate the observations on a regular grid by ordinary
point kriging which is the most popular kriging method. Ordinary point
kriging uses a weighted average of the neighboring points to estimate the
value of an unobserved point:

where λ i are the weights which have to be estimated. The sum of the weights
should be one to guarantee that the estimates are unbiased:

•

•

7.11 Geostatistics and Kriging (by R. Gebbers) 219

The expected (average) error of the estimation has to be zero. That is:

where zx0 is the true, but unknown value. After some algebra, using the
preceding equations, we can compute the mean-squared error in terms of
the variogram:

where E is the estimation or kriging variance, which has to be minimized,
γ (xi, x0) is the variogram (semivariance) between the data point and the
unobserved, γ (xi, xj) is the variogram between the data points xi and xj,
and λ i and λ j are the weights of the i th and j th data point.

For kriging we have to minimize this equation (quadratic objective func-
tion) satisfying the condition that the sum of weights should be one (linear
constraint). This optimization problem can be solved using a Lagrange mul-
tiplier ν resulting in the linear kriging system of N+1 equations and N+1
unknowns:

After obtaining the weights λ i , the kriging variance is given by

The kriging system can be presented in a matrix notation:

where

220 7 Spatial Data

is the matrix of the coeffi cients, these are the modeled variogram values for
the pairs of observations. Note that on the diagonal of the matrix, where
separation distance is zero, the value of γ vanishes.

is the vector of the unknown weights and the Lagrange multiplier.

is the right-hand-side vector. To obtain the weights and the Lagrange multi-
plier the matrix G_mod is inverted:

The kriging variance is given by

2 1G R E_

For our calculations with MATLAB we need the matrix of coeffi cients de-
rived from the distance matrix D and a variogram model. D was calculated
in the variography section above and we use the exponential variogram
model with a nugget, sill and range from the previous section:

G_mod = (nugget + sill*(1 - exp(-3*D/range))).*(D>0);

Then we get the number of observations and add a column and row vector of
all ones to the G_mod matrix and a zero at the lower left corner:

n = length(x);
G_mod(:,n+1) = 1;
G_mod(n+1,:) = 1;
G_mod(n+1,n+1) = 0;

7.11 Geostatistics and Kriging (by R. Gebbers) 221

Now the G_mod matrix has to be inverted:

G_inv = inv(G_mod);

A grid with the locations of the unknown values is needed. Here we use a
grid cell size of fi ve within a quadratic area ranging from 0 to 200 in x and
y direction. The coordinates are created in matrix form by:

R = 0 : 5 : 200;
[Xg1,Xg2] = meshgrid(R,R);

and converted to vectors by:

Xg = reshape(Xg1,[],1);
Yg = reshape(Xg2,[],1);

Then we allocate memory for the kriging estimates Zg and the kriging vari-
ance s2_k by:

Zg = Xg * NaN;
s2_k = Xg * NaN;

Now we are kriging the unknown at each grid point:

for k = 1 : length(Xg)
 DOR = ((x - Xg(k)).^2 + (y - Yg(k)).^2).^0.5;
 G_R = (nugget + sill*(1 - exp(-3*DOR/range))).*(DOR>0);
 G_R(n+1) = 1;
 E = G_inv * G_R;
 Zg(k) = sum(E(1:n,1).*z);
 s2_k(k) = sum(E(1:n,1).*G_R(1:n,1))+E(n+1,1);
end

Here, the fi rst command computes the distance between the grid points
(Xg,Yg) and the observation points (x,y). Then we build the right-hand-
side vector of the kriging system by using the variogram model G_R and
add one to the last row. We next obtain the matrix E with the weights and
the lagrange multiplier. The estimate Zg at each point k is the weighted sum
of the observations z. Finally, the kriging variance s2_k of the grid point is
computed. We plot the results. First, we create a grid of the kriging estimate
and the kriging variance:

r = length(R);
Z = reshape(Zg,r,r);
SK = reshape(s2_k,r,r);

A subplot on the left presents the kriged values:

subplot(1,2,1)
h = pcolor(Xg1,Xg2,Z);
set(h,'LineStyle','none')

222 7 Spatial Data

axis equal
ylim([0 200])
title('Kriging Estimate')
xlabel('x-Coordinates')
ylabel('y-Coordinates')
colorbar

The left subplot presents the kriging variance:

subplot(1,2,2)
h = pcolor(Xg1,Xg2,SK);
set(h,'LineStyle','none')
axis equal
ylim([0 200])
title('Kriging Variance')
xlabel('x-Coordinates')
ylabel('y-Coordinates')
colorbar
hold on

and we are overlaying the sampling positions:

plot(x,y,'ok')
hold off

The kriged values are shown in Figure 7.22a. The kriging variance depends
only on the distance from the observations and not on the observed values
(Fig. 7.22b). Kriging reproduces the population mean when observations
are beyond the range of the variogram, at the same time kriging variance
increases (lower right corner of the maps in Figure 7.22). The kriging vari-
ance can be used as a criterion to improve sampling design and it is needed
for backtransformation in lognormal kriging. Back-transformation for log-
normal kriging is done by:

y x z x x() exp(() . ())0 0
2

00 5

Discussion of Kriging

Point kriging as presented here is an exact interpolator. It reproduces exactly
the values at an observation point, even though a variogram with a nugget ef-
fect is used. Smoothing can be caused by including the variance of the mea-
surement errors (see Kitanidis 1997) and by block kriging which averages
the observations within a certain neighborhood (block). While kriging vari-
ance depends only on the distance between the observed and the unobserved
locations it is primary a measure of density of information (Wackernagel
2003). The accuracy of kriging is better evaluated by cross-validation using

7.11 Geostatistics and Kriging (by R. Gebbers) 223

a resampling method or surrogate test (Chapter 4.6 and 4.7). The infl uence of
the neighboring observations on the estimation depends on their confi gura-
tion. Webster and Oliver (2001) summarize: Near points carry more weight
than more distant ones; the relative weight of a point decreases when the
number of points in the neighborhood increases; clustered points carry less
weight individually than isolated ones at the same distance; data points can
be screened by ones lying between them and the target. Sampling design for
kriging is different from the design which might be optimal for variography.
A regular grid, triangular or quadratic, can be regarded as optimum.

The MATLAB code presented here is a straightforward implementation
of the kriging system presented in the formulas above. In professional pro-
grams the number of data points entering the G_mod matrix are restricted
as well as the inversion of G_mod is avoided by working with the covari-
ances instead of the variograms (Webster and Oliver 2001, Kitanidis 1997).
For those who are interested in programming and in a deeper understanding
of algorithms, Deutsch and Journel (1992) is a must. The best internet sour-
ce is the homepage of AI-GEOSTATISTICS:

http://www.ai-geostats.org

4.555.566.57

0 50 100 150 200
0

50

100

150

200

0 50 100 150 200
0

50

100

150

200

0.3 0.4 0.5 0.6 0.7 0.8 0.9

x Coordinates x Coordinates

y
C

oo
rd

in
at

es

y
C

oo
rd

in
at

es

Kriging Estimate Kriging Variance

a b

Fig. 7.22 Interpolated values on a regular grid by ordinary point kriging using a an
exponential variogram model; b kriging variance as a function of the distance from the
observations (empty circles).

224 7 Spatial Data

Recommended Reading

Cressie N (1993) Statistics for Spatial Data, Revised Edition. John Wiley & Sons, New
York

Davis JC (2002) Statistics and Data Analysis in Geology, third edition. John Wiley and
Sons, New York

Deutsch CV, Journel AG (1998) GSLIB – Geostatistical Software Library and User’s Guide,
Second edition. Oxford University Press, Oxford

Freeman TG (1991) Calculating Catchment Area with Divergent Flow Based on a Regular
Grid. Computers and Geosciences 17:413–422

Gringarten E, Deutsch CV (2001) Teacher’s Aide Variogram Interpretation and Modeling.
Mathematical Geology 33:507–534

Isaaks E, Srivastava M (1989) An Introduction to Applied Geostatistics. Oxford University
Press, Oxford

Gringarten E, Deutsch CV (2001) Teacher’s Aide Variogram Interpretation and Modeling.
Mathematical Geology 33:507–534

Kitanidis P (1997) Introduction to Geostatistics – Applications in Hydrogeology. Cambridge
University Press, Cambridge

Olea RA (1984) Systematic Sampling of Spatial Functions. Kansas Series on Spatial
Analysis 7, Kansas Geological Survey, Lawrence, KS

Pannatier Y (1996) VarioWin – Software for Spatial Data Analysis in 2D, Springer, Berlin
Heidelberg New York

Pardo-Igúzquiza E, Dowd PA (1997) AMLE3D: A Computer Program for the Interference
of Spatial Covariance Parameters by Approximate Maximum Likelihood Estimation.
Computers and Geosciences 23:793–805

Rendu JM, Readdy L (1982) Geology and Semivariogram – A Critical Relationship. In:
Johnson TB, Barns RJ (eds) Application of Computer & Operation Research in the
Mineral Industry. 17th Intern. Symp. American Institute of Mining. Metallurgical and
Petroleum Engineers, New York, pp. 771–783

Sandwell DT (1987) Biharmonic Spline Interpolation of GEOS-3 and SEASAT Altimeter
data. Geophysical Research Letters 2:139–142

Swan ARH, Sandilands M (1995) Introduction to Geological Data Analysis. Blackwell
Sciences, Oxford

The Mathworks (2006) Mapping Toolbox User’s Guide – For the Use with MATLAB®. The
MathWorks, Natick, MA

Golden Software, Inc. (2002) Surfer 8 (Surface Mapping System). Golden, Colorado
Wackernagel H. (2003) Multivariate Geostatistics: An Introduction with Applications.

Third, completely revised edition. Springer, Berlin Heidelberg New York
Webster R, Oliver MA (2001) Geostatistics for Environmental Scientists. John Wiley &

Sons, New York
Wessel P, Bercovici D (1998) Gridding with Splines in Tension: A Green Function Approach.

Mathematical Geology 30:77–93
Wilson JP, Gallant JC (2000) Terrain Analysis, Principles and Applications. John Wiley

and Sons, New York

