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Outline

Lecture 1: Space-time modeling of air
quality data

Kriging, nonstationary covariance,
singular value decomposition

Lecture 2: Extremes, air quality
standards, and climate trends

Hypothesis testing, Riceʼs formula
Lecture 3: Compositional data in the
environment

Algebra of compositions, logistic normal
distribution, spatial autoregression



1. Space-time modeling of
air quality data

The spatial problem
Given observations at n locations
Z(s1),...,Z(sn)
estimate

Z(s0) (the process at an unobserved site)

or (an average of the process)

In the environmental context often time
series of observations at the locations.

Z(s)d!(s)
A

"
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Some history

Regression (Galton, Bartlett)
Mining engineers (Krige 1951,
Matheron, 60s)
Spatial models (Whittle, 1954)
Forestry (Matérn, 1960)
Objective analysis (Grandin,
1961)
More recent work Cressie
(1993), Stein (1999)



A Gaussian formula
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Simple kriging
Let X = (Z(s1),...,Z(sn))T, Y = Z(s0), so that

µX=µ1n, µY=µ,
ΣXX=[C(si-sj)],  ΣYY=C(0), and

 ΣYX=[C(si-s0)].

Then

This is the best unbiased linear predictor
when µ and C are known (simple kriging).

The prediction variance is

p(X) ! Ẑ(s0 ) = µ + C(si " s0 )[ ]
T
C(si " sj )#$ %&

"1

X " µ1n( )

m1 = C(0) ! C(si ! s0 )[ ]
T
C(si ! sj )"# $%

!1

C(si ! s0 )[ ]



Some variants

Ordinary kriging (unknown µ)

where

Universal kriging (µ (s)=A(s)β  for some spatial
variable A) 

Still optimal for known C.

p(X) ! Ẑ(s0 ) = µ̂ + C(si " s0 )[ ]
T
C(si " sj )#$ %&

"1

X " µ̂1n( )

µ̂ = 1n
T C(si ! sj )"# $%

!1

1n( )
!1

1n
T C(si ! sj )"# $%

!1

X

!̂ = ( A(si )[ ]
T
C(si " sj )#$ %&

"1
A(si )[ ])"1

A(si )[ ]
T
C(si " sj )#$ %&

"1
X



Universal kriging variance

E Ẑ(s0 ) ! Z(s0 )( )
2

= m1 +

A(s0 ) ! [A(si )
T[C(si ! sj )]

!1[C(si ! s0 )]( )
T

"( A(si )[ ]
T
C(si ! sj )#$ %&

!1

A(si )[ ])!1

" A(s0 ) ! [A(si )
T[C(si ! sj )]

!1[C(si ! s0 )]( )

simple kriging 
variance

variability due to estimating β



The (semi)variogram

Intrinsic stationarity
Weaker assumption (C(0) needs not
exist)
Kriging predictions can be expressed in
terms of the variogram instead of the
covariance.

! ( h ) =
1

2
Var(Z(s + h) " Z(s)) = C(0) " C( h )



Parana rainfall
Built-in geoR data set
Average rainfall over different years for
May-June (dry-season)
143 recording stations throughout
Parana State, Brazil



Parana precipitation



Fitted variogram



Is it significant?



Kriging surface



Kriging standard error



A better combination



Spatial trend

Indication of spatial trend
Fit quadratic in coordinates



Residual variogram



Geometric anisotropy

If    we have an
isotropic covariance (circular
isocorrelation curves).
If for a linear
transformation A, we have geometric
anisotropy (elliptical isocorrelation
curves).
General nonstationary correlation
structures are typically locally
geometrically anisotropic.

 

C(x,y) = C( x ! y )

 

C(x,y) = C(Ax ! Ay )



The deformation idea

In the geometric anisotropic case, write

where f(x) = Ax. This suggests using a
general nonlinear transformation

. Usually d=2 or 3.
 G-plane   D-space

We do not want f to fold.
Do a Bayesian implementation using
thin plate splines

 

C(x,y) = C( f (x) ! f(y) )

 

f:R
2
! R

d



California ozone

1

2

3

4

5

6

7
8

9

10

1112

13
14

15

16

17
18

19

20

21

22

23

24

25

26

27

2829

30

31

32

33

34

35

36

37

38

39

40

4142

43

44
4546

47

48

49

50

51

52

53

54

55

56

57

58

5960 61

62

63

12

3

4

5

6
7 8

9

10

11
12

13

14

15

16

17

18

19

20

21

22

23
24

25

26

27

2829

30

31

32

33
34

35

36

37

38

39

40
4142

43

44

4546

47

48

49

50

51

52

53

54

55

56

57

58

5960 61

62

63

63 Region 6 monitoring sites and their representation in a 
deformed coordinate system reflecting spatial covariance

 Thu Oct 30 00:12:36 PST 2003



Posterior samples
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Region 6: S Calif, all 94 sites, fitting and validation

Fitting (63)
Validation (31)

Los Angeles County



Trend model

where Vik are covariates, such as
population density, proximity to roads,
local topography, etc.

where the fj are smoothed versions of
temporal singular vectors (EOFs) of the
TxN data matrix.
We will set µ1(si) = µ0(si) for now.

 

µ(si,t) = µ1(si) + µ2 (si,t)

µ1(si) = µ0 (si) + !kV" ik

 

µ2 (si,t) = !j (si )fj (t)"



SVD computation

Singular values of T=2912 x S=545 observation matrix

Index, 1:545
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EOF 1
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EOF 2

dates87to94[1:1456]
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EOF 3

dates87to94[1:1456]

A
n
n
u
a
l.
s
v
d
$
s
v
d
$
u
[1

:1
4
5
6
, 
j]

-0
.0

4
0
.0

0
.0

4

01/01/1987 10/01/1987 07/01/1988 04/01/1989 01/01/1990 10/01/1990

dates87to94[1457:2912]

A
n
n
u
a
l.
s
v
d
$
s
v
d
$
u
[1

4
5
7
:2

9
1
2
, 
j]

-0
.0

6
-0

.0
2

0
.0

2
0
.0

6

01/01/1991 10/01/1991 07/01/1992 04/01/1993 01/01/1994 10/01/1994

Annual Trend Component 3



1987-1994
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Kriging of µ0
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Kriging of ρ2
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Quality of trend fits
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Observed vs. predicted
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2. Air quality standards,
extremes and climate
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Outline

Health effects
Regulations
Implementation
Statistical quality considerations
Trends in extremes





Health effect studies

Often opportunistic
Rarely yield clear cutoff values
Uncertainty associated with dose-
response curve
What are important health outcomes for
policy setting?



Network bias

Many health effects studies use
air quality data from compliance
networks
health outcome data from hospital
records

Compliance networks aim at finding
large values of pollution
Actual exposure may be lower than
network values



A calculation
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Special cases
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WHO health effects
estimates for ozone

10% most sensitive healthy children get
5% reduction in lung capacity at .125
ppm hourly average
Double inflammatory response for
healthy children at .09 ppm 8-hr
average
Minimal public health effect at .06 ppm
8-hr average



North American ozone
measurements 94-96



Transport wind vectors
 high regional O3 days



Task for authorities

Translate health effects into limit values
for standard
Determine implementation rules for
standard
Devise strategies for ozone reduction

Need to limit emissions of primary
pollutants in summertime



Some standards

30 µg/m365 ppbCanada

50 µg/m360 ppbEU

35 µg/m380 ppbUSA

25 µg/m3100 µg/m3
(46.7 ppb)

WHO

PM2.5Ozone

Max 8 hr
average

24 hr ave



North American ozone
measurements 94-96

WHO

USA

EU
CA



US 1-hr ozone standard

In each region the expected number of
daily maximum 1-hr ozone
concentrations in excess of 0.12 ppm
shall be no higher than one per year
Implementation: A region is in violation
if 0.12 ppm is exceeded at any
approved monitoring site in the region
more than 3 times in 3 years



A hypothesis testing
framework

The US EPA is required to protect
human health. Hence the more serious
error is to declare a region in
compliance when it is not.
The correct null hypothesis therefore is
that the region is violating the standard.



Optimal test

One station, observe
Y3 = # exceedances in 3 years

Let θ = E(Y1)
H0: θ > 1 vs. HA: θ ≤ 1
When θ = 1, approximately

 Y3 ~ Bin(3•365,1/365) ≈ Po(3)
and the best test rejects for small Y3.
For Y3 = 0 α = 0.05.
In other words, no exceedances should
be allowed.



How did the US EPA
perform the test?

EPA wants Y3 ≤ 3, so α = 0.647
The argument is that θ ≈ Y3 / 3
(Law of large numbers applied to n=3)
Using Y3 / 3 as test statistic, equate the
critical value to the boundary between
the hypotheses (!).
This implementation of the standard
does not offer adequate protection for
the health of individuals.



An example

                                   For Houston, TX,
µ=0.235 (0.059 ppm) and σ=0.064.
The station exceeds 0.12 ppm with
probability 0.041, for an expected number
of exceedances of 15 (18 were observed in
1999)
At level 0.18 ppm (severe violation) the
exceedance probability is 0.0016,
corresponding to 0.6 violations per year (1
observed in 1999)
 In order to have an exceedance probability
of 1/365=.0027 we need the mean reduced
to 0.182 (0.033 ppm)

Let Zi ~ N(µ,!
2 ).



A conditional calculation

Given an observation of .120 ppm in the
Houston region, what is the probability
that an individual in the region is
subjected to more that .120 ppm?

Need to calculate maximum of
Gaussian process (after
transformation) over a region that is
highly correlated with measurement
site, taking into account measurement
error.



Probability of exceeding
level u



Level of standard to protect
against 0.18 ppm



General setup

Given measurements             of a
Gaussian field           observed with
error, find c[t] such that

where [t] denotes season and the mean
of             equals the γ-quantile of the
estimated health effects distribution.

X(si, tj )
!(s, t)

P( sup
v:!(u,v)"#{ }

$(u, t) > c[t] ) % &

!(u, t)



Stockholm daily
temperatures 1756-2000

Is there a trend?



What does climate
models predict?

Increasing global mean annual
temperature
Decreasing annual temperature range
Increasing minimum temperatures



Looking at annual averages

Is there a trend now?



Trendline



What about the range?



It matters what you base the quantiles on:
                (min ,1%,2.5%.97.5%,99%,max)
all data   (-27.7,-13.5,-10.5,20.0,21.6,27.5)
late data (-24.6,-13.0,-10.0,19.7,21.2,27.5)

Are the extremes changing?



Annual minimum

Is the trend due to climate change?



Multiple variables

Extreme in one, not extreme in others?
Interesting scenario:
Medium temperature, about 0C
Large snowfall
Extreme winds



What do we mean by trends
in extreme values?



3. Modeling
compositional data
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Outline

Compositional data
An algebra for compositions
Examples:

air quality
ecology
water quality



Background

NAPAP, 1980ʼs
Workshop on biological monitoring,
1986
Dirichlet process: Gary Grunwald, 1987
Current framework: Dean Billheimer,
1995
Other co-workers: Adrian Raftery,
Mariabeth Silkey, Eun-Sug Park



Compositional data

Vector of proportions

Proportion of taxes in different
categories
Composition of rock samples
Composition of biological populations
Composition of air pollution

z = (z1,...,zk )
T zi > 0 zi = 1

1

k

! z !"
k#1



The triangle plot

Proportion 1

0

1

1

0

1

0

Proportion 2

Proportion 3

(0.55,0.15,0.30)



The spider plot

(0.40,0.20,0.10,0.05,0.25)
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1.0



An algebra for
compositions

Perturbation: For define

The composition acts as a
zero, so     .
Set so       .

Finally define .
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The logistic normal

If

we say that z is logistic normal, in short
Z ~ LN(µ,Σ).
Other distributions on the simplex:
Dirichlet — ratios of independent
gammas
“Danish” — ratios of independent
inverse Gaussian
Both have very limited correlation
structure.

alr(z) = log
z1
zk
,...,log

zk!1
zk

" 

# 
$ $ 

% 

& 
' ' 

T

~MVN(µ,()



Scalar multiplication
Let a be a scalar. Define

is a complete inner product
space, with inner product given, e.g., by 

N is the multinomial covariance N=I+jjT
j is a vector of k-1 ones.

                is a norm on the simplex.

The inner product and norm are invariant to
permutations of the components of the
composition.
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Some models

Measurement error:
where εj ~ LN(0,Σ) .

Regression:

Correspondence in Euclidean space:

ξj ξ  γ    uj

zj = !" # j

!j = !" # $uj

compositions

centered
covariate

µj = !0 + !1 (xj " x )

alr !1(µj ) = alr !1("0) # alr !1("1)$ (xj ! x )



Some regression lines



A regression example

γ=(0.40,0.35,0.25)



Time series (AR 1)
z
k+1

= !" z
k
# $

k



A source receptor model

Observe relative concentration Yi of k
species at a location over time.
Consider p sources with chemical
profiles θj. Let αi be the vector of mixing
proportions of the different sources at
the receptor on day i.

Θ ~ LN, αi ~ indep LN, εi ~ zero mean LN

EYi = !ij
i=1

p

" #j = $!i

Y = !"i # $i



Juneau air quality

50 observations of relative mass of 5
chemical species. Goal: determine the
contribution of wood smoke to local
pollution load.
Prior specification:

Inference by MCMC.

f(!," i ,#i ,µ"
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Wood smoke contribution

95% CL

50% CL



Source profiles

(fluoranthene)

(pyrene)

(benzo(a))

(chrysene)

(benzo(b))



State-space model

Space-time model of proportions
State-space model:
zj unobservable composition ~ LN(µj,Σj)
yj k-vector of counts ~ Mult(

Inference using MCMC again

 

yj[ ]
i
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k
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Stability of arthropod
 food webs

Omnivory thought to destabilize ecological
communities
Stability: Capacity to recover from shock
(relative abundance in trophic classes)
Mount St. Helens experiment: 6 treat-ments
in 2-way factorial design; 5 reps.
Predator manipulation (3 levels)
Vegetation disturbance (2 levels)
Count anthropods, 6 wks after treatment.
Divide into specialized herbivores, general
herbivores, predators.



Specification of structure

Σ is generated from independent
observations at each treatment
mean depends only on treatment







Benthic invertebrates
in estuary

EMAP estuaries monitoring program:
Delaware Bay 1990. 25 locations, 3 grab
samples of bottom sediment during
summer
Invertebrates in samples classified into

–pollution tolerant
–pollution intolerant
–suspension feeders (control group;
mainly palp worms)



Site j, subsample t

θj ~ CAR process
 
zjt ! LN(! j + "xj,#)

E(! j !" j ) = µ +
#

nj
(!k

k$N(j)

% " µ)

Var(! j !" j ) =
&

nj





Effect of salinity












