The sample space of compositional data.

J. J. Egozcue

Dep. Matemática Aplicada III UPC, Barcelona

Dep. EIO de la UPC Barcelona 24 Noviembre, 2006

> V. Pawlowsky-Glahn and J. J. Egozcue

▲□▶ ▲□▶ ▲目▶ ▲目▶ 三目 のへで

Compositions	Simplicial geometry	Elementary statistics	Regression	Conclusion
Summar	y			

- 2 Simplicial geometry
- 3 Elementary statistics
- Simplicial regression

5 Conclusion

V. Pawlowsky-Glahn and J. J. Egozcue

◆□ > ◆□ > ◆注 > ◆注 > □ 注

Compositions ••••••	Simplicial geometry	Elementary statistics	Regression	Conclusion
Concepts				
compos	itional data			

- parts of some whole which only carry relative information
- typical units: parts per one, percentages, ppm, molar concentration...

Compositions ○●○○○○○○	Simplicial geometry	Elementary statistics	Regression	Conclusion
Concento				

Concepts

sample space of compositional data

• the simplex (for κ a constant)

$$\mathcal{S}^{D} = \left\{ \mathbf{x} = [\mathbf{x}_{1}, \dots, \mathbf{x}_{D}] \in \mathbb{R}^{D} \mid \mathbf{x}_{i} > 0, \sum_{i=1}^{D} \mathbf{x}_{i} = \kappa \right\}$$

- compositional data are equivalence classes
 ⇒ the value of κ is not important
- representation: ternary diagram

Closure operator: $C\mathbf{x}$ normalizes to κ .

V. Pawlowsky-Glahn and J. J. Egozcue

Compositions	Simplicial geometry	Elementary statistics	Regression	Conclusion
Concepts				
ternary of	diagram			

For 3-part compositions,

V. Pawlowsky-Glahn and J. J. Egozcue

▲□▶ ▲圖▶ ▲≣▶ ▲≣▶ ▲■ - のへで

Compositions	Simplicial geometry	Elementary statistics	Regression	Conclusion		
History						
milestone I: Karl Pearson, 1897						

- "On a form of spurious correlation which may arise when indices are used in the measurement of organs"
- Pearson was the first to point out dangers that may befall the analyst who attempts to interpret correlations between ratios whose numerators and denominators contain common parts

V. Pawlowsky-Glahn and J. J. Egozcue

Compositions ○○○●○○○○	Simplicial geometry	Elementary statistics	Regression	Conclusion
History				

milestone II: Felix Chayes, 1960

- "On correlation between variables of constant sum"
- Chayes showed that correlations between closed data are induced by numerical constraints (negative bias or closure problem) and made attempts to separate the *spurious* part from the *real* correlation

V. Pawlowsky-Glahn and J. J. Egozcue

Compositions	Simplicial geometry	Elementary statistics	Regression	Conclusion
000000000				

History

example of *negative bias* and *spurious correlation*

scientists A and B record the composition of aliquots of soil samples; A records (animal, vegetable, mineral, water) compositions, B records (animal, vegetable, mineral) after drying the sample; both are absolutely accurate (adapted from Aitchison, 2005)

sam	ple	X 1	X 2	X 3	X 4	sample	x ' ₁	x ₂ '	X ' ₃
1		0.1	0.2	0.1	0.6	1	0.25	0.50	0.25
2		0.2	0.1	0.2	0.5	2	0.40	0.20	0.40
3		0.3	0.3	0.1	0.3	3	0.43	0.43	0.14
correl X1 X2 X3 X4	1.0)0 (x ₂).50 1.00	<i>x</i> ₃ 0.00 -0.87 1.00	x ₄ -0.98 -0.65 0.19 1.00	 $\begin{array}{c} \text{correl} \\ x_1' \\ x_2' \\ x_3' \end{array}$	x ₁ 1.00	<i>x</i> ₂ ' -0.57 1.00	x ₃ ' -0.05 -0.79 1.00
	x	= [x ₁	, x 2, x 3	3, X 4]		X	$\mathbf{x}' = \mathcal{C}[\mathbf{x}]$	1, x 2, x 3]	V. Pawlow

V. Pawlowsky-Glah

・ロト ・ 母 ト ・ ヨ ト ・ ヨ ト ・ ヨ

000000 000000 000000 000000	Compositions	Simplicial geometry	Elementary statistics	Regression	Conclusion
	00000000				

History

attempts to model compositional uncertainty

hexagonal fields of variation employed in sedimentary petrology (error polygon) limits 90%, 95%, 99%

illustration from Weltje (2006)

(日)

V. Pawlowsky-Glahn and J. J. Egozcue

Compositions ○○○○○○●○	Simplicial geometry	Elementary statistics	Regression	Conclusion			
History							
naive modelling							

Ξ.

Figure: normal in \mathbb{R}^2

V. Pawlowsky-Glahn and J. J. Egozcue

▲□▶ ▲圖▶ ▲≣▶ ▲≣▶ ▲■ - のへで

Compositions ○○○○○○○●	Simplicial geometry	Elementary statistics	Regression	Conclusion
History				

milestone III: John Aitchison, 1982

- "The statistical analysis of compositional data"
- as parts of a composition give only relative information, Aitchison suggested to use transformations based on log-ratios, e.g.

•
$$\operatorname{alr}: \mathcal{S}^{D} \to \mathbb{R}^{D-1}, \quad \operatorname{alr}(\mathbf{x}) = \left[\operatorname{ln} \frac{x_{1}}{x_{D}}, \dots, \operatorname{ln} \frac{x_{D-1}}{x_{D}} \right]$$

• $\operatorname{clr}: \mathcal{S}^{D} \to \mathbb{R}^{D}, \quad \operatorname{clr}(\mathbf{x}) = \left[\operatorname{ln} \frac{x_{1}}{g(\mathbf{x})}, \dots, \operatorname{ln} \frac{x_{D}}{g(\mathbf{x})} \right]$

where $g(\mathbf{x})$ stands for the geometric mean of the parts

Aitchison (1982, 1986)

・ コ ト ・ 雪 ト ・ ヨ ト ・ ヨ ト

V. Pawlowsky-Glahr and J. J. Egozcue

Compositions	Simplicial geometry ●○○○○○○	Elementary statistics	Regression	Conclusion
Euclidean space				

Euclidean space structure of S^D

for $\mathbf{x}, \mathbf{y} \in \mathcal{S}^{D}$, $\alpha \in \mathbb{R}$, and \mathcal{C} is the closure operation

- perturbation: $\mathbf{x} \oplus \mathbf{y} = \mathcal{C}[x_1y_1, \dots, x_Dy_D]$
- powering: $\alpha \odot \mathbf{x} = \mathcal{C}[\mathbf{x}_1^{\alpha}, \dots, \mathbf{x}_D^{\alpha}]$
- inner product:

$$\langle \mathbf{x}, \mathbf{y} \rangle_a = \frac{1}{D} \sum_{i < j} \ln \frac{x_i}{x_j} \ln \frac{y_i}{y_j}$$

• associated norm and distance:

$$\|\mathbf{x}\|_a^2 = \frac{1}{D}\sum_{i < j} \left(\ln \frac{x_i}{x_j}\right)^2 \quad d_a^2(\mathbf{x}, \mathbf{y}) = \frac{1}{D}\sum_{i < j} \left(\ln \frac{x_i}{x_j} - \ln \frac{y_i}{y_j}\right)^2$$

Aitchison (1982, 1986), operations and distance

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● のへで

Billheimer et al. (2001); Pawlowsky-Glahn and Egozcue (2001), Aitchison et al. (2002), Billheimer et al. (2002), Billheime

Compositions	Simplicial geometry ●○○○○○○	Elementary statistics	Regression	Conclusion
Euclidean space				

Euclidean space structure of S^D

for $\mathbf{x}, \mathbf{y} \in \mathcal{S}^{D}$, $\alpha \in \mathbb{R}$, and \mathcal{C} is the closure operation

- perturbation: $\mathbf{x} \oplus \mathbf{y} = \mathcal{C}[x_1y_1, \dots, x_Dy_D]$
- powering: $\alpha \odot \mathbf{x} = \mathcal{C}[\mathbf{x}_1^{\alpha}, \dots, \mathbf{x}_D^{\alpha}]$
- inner product:

$$\langle \mathbf{x}, \mathbf{y} \rangle_{a} = \frac{1}{D} \sum_{i < j} \ln \frac{x_{i}}{x_{j}} \ln \frac{y_{i}}{y_{j}}$$

• associated norm and distance:

$$\|\mathbf{x}\|_a^2 = \frac{1}{D}\sum_{i< j} \left(\ln\frac{x_i}{x_j}\right)^2 \quad d_a^2(\mathbf{x}, \mathbf{y}) = \frac{1}{D}\sum_{i< j} \left(\ln\frac{x_i}{x_j} - \ln\frac{y_i}{y_j}\right)^2$$

Aitchison (1982, 1986), operations and distance

◆□▶ ◆□▶ ◆□▶ ◆□▶ ▲□ ◆ ○○

Billheimer et al. (2001); Pawlowsky-Glahn and Egozcue (2001), Aitchison et al. (2002)

x3

parallel lines

x2

x3

V. Pawlowsky-Glahn

orthogonal lines

・ロト ・聞ト ・ヨト ・ヨト 三日

illustration from Egozcue and Pawlowsky-Glahn (2006) and Reporcue

x2

Compositions	Simplicial geometry	Elementary statistics	Regression	Conclusion		
orthogonal coordinates						
consequences						

- in an Euclidean space an orthonormal basis always exists
- operations and metrics in the simplex are equivalent to ordinary operations and metrics in coordinates

$\mathbf{x} \in \mathcal{S}^{D}$, Coordinates: $\mathbf{y} = h(\mathbf{x}) \in \mathbb{R}^{D-1}$

- $\bullet \mathbf{X}_1 \oplus \mathbf{X}_2 \quad \Leftrightarrow \quad \mathbf{y}_1 + \mathbf{y}_2$
- $\bullet \ \alpha \odot \mathbf{X} \quad \Leftrightarrow \quad \alpha \cdot \mathbf{y}$
- $\langle \mathbf{x}_1, \mathbf{x}_2 \rangle_a = \langle \mathbf{y}_1, \mathbf{y}_2 \rangle$
- $d_a(\mathbf{x}_1, \mathbf{x}_2) = d(\mathbf{x}_1, \mathbf{x}_2)$

V. Pawlowsky-Glahn and J. J. Egozcue

Compositions	Simplicial geometry	Elementary statistics	Regression	Conclusion			
orthogonal coordinates							
consequ	consequences						

- in an Euclidean space an orthonormal basis always exists
- operations and metrics in the simplex are equivalent to ordinary operations and metrics in coordinates

$\mathbf{x} \in \mathcal{S}^{D}$, Coordinates: $\mathbf{y} = h(\mathbf{x}) \in \mathbb{R}^{D-1}$

- $\ \circ \alpha \odot \mathbf{X} \quad \Leftrightarrow \quad \alpha \cdot \mathbf{y}$

•
$$\langle \mathbf{x}_1, \mathbf{x}_2 \rangle_a = \langle \mathbf{y}_1, \mathbf{y}_2 \rangle$$

• $d_a(\mathbf{x}_1, \mathbf{x}_2) = d(\mathbf{x}_1, \mathbf{x}_2)$

V. Pawlowsky-Glahn and J. J. Egozcue

・ロット (雪) (日) (日) (日)

Compositions	Simplicial geometry	Elementary statistics	Regression	Conclusion
orthogonal coordin	atos			

orthogonal coordinates

example of orthogonal coordinates

• example of orthonormal basis in S^3 :

$$\boldsymbol{e}_1 = \mathcal{C}\left[\exp\frac{1}{\sqrt{2}}, \exp\frac{-1}{\sqrt{2}}, 1\right], \quad \boldsymbol{e}_2 = \mathcal{C}\left[\exp\frac{1}{\sqrt{6}}, \exp\frac{1}{\sqrt{6}}, \exp\frac{-2}{\sqrt{6}}\right]$$

• coordinates for $\mathbf{x} = [x_1, x_2, x_3] \in S^3$ in this basis:

$$y_1 = \frac{1}{\sqrt{2}} \ln \frac{x_1}{x_2}$$
, $y_2 = \frac{1}{\sqrt{6}} \ln \frac{x_1 \cdot x_2}{x_3 \cdot x_3}$

V. Pawlowsky-Glahn and J. J. Egozcue

Compositions	Simplicial geometry ○○○○●○○○	Elementary statistics	Regression	Conclusion		
orthogonal coordinates						
parallel	lines					

coordinate representation

V. Pawlowsky-Glahn and J. J. Egozcue

Compositions	Simplicial geometry	Elementary statistics	Regression	Conclusion			
orthogonal coordinates							
circles and ellipses							

in \mathcal{S}^3

coordinate representation v. Pertowsky-citahn

◆□→ ◆□→ ◆注→ ◆注→ □注

Compositions	Simplicial geometry ○○○○○○●○	Elementary statistics	Regression	Conclusion
orthogonal coordinates	5			

building an orthonormal basis

the intuitive approach

example: for $\mathbf{x} \in S^5$ define a sequential binary partition and obtain the coordinates in the corresponding orthonormal basis

order	x ₁	X 2	X 3	X 4	X 5	coordinate
1	+1	-1	+1	+1	-1	$y_1 = \sqrt{\frac{3 \cdot 2}{3 + 2}} \ln \frac{(x_1 \cdot x_3 \cdot x_4)^{1/3}}{(x_2 \cdot x_5)^{1/2}}$ $y_2 = \sqrt{\frac{1 \cdot 1}{1 + 1}} \ln \frac{x_2}{x_5}$
2	0	+1	0	0	-1	$y_2 = \sqrt{\frac{1 \cdot 1}{1 + 1}} \ln \frac{x_2}{x_5}$
3	+1	0	-1	-1	0	$y_3 = \sqrt{\frac{1 \cdot 2}{1 + 2}} \ln \frac{x_1}{(x_2 \cdot x_4)^{1/2}}$
4	0	0	+1	-1	0	$y_4 = \sqrt{\frac{1 \cdot 1}{1 + 1}} \ln \frac{x_3}{x_4}$

V. Pawlowsky-Glahn and J. J. Egozcue

(日) (字) (日) (日) (日)

Compositions	Simplicial geometry ○○○○○○●	Elementary statistics	Regression	Conclusion
orthogonal coordinates	;			
balances				

coordinates in an orthonormal basis obtained from a sequential binary partition:

$$y_i = \sqrt{\frac{r_i \cdot s_i}{r_i + s_i}} \ln \frac{(\prod_{j \in \mathcal{R}_i} x_j)^{1/r_i}}{(\prod_{\ell \in S_i} x_\ell)^{1/s_i}}$$

where i = order of partition, R_i and S_i index sets, r_i the number of indices in R_i , s_i the number in S_i

Egozcue et al. (2003)

・ロト ・ 母 ト ・ ヨ ト ・ ヨ ト ・ ヨ

Egozcue, Pawlowsky-Glahn (2005,2006)

V. Pawlowsky-Glahn and J. J. Egozcue

Compositions	Simplicial geometry	Elementary statistics ●○○○○○	Regression	Conclusion		
Centre and total variance						
centre and total variance						

Metric variability with respect to a point z X random composition with values in S^D

$$\operatorname{Var}[\mathbf{X};\mathbf{z}] = \operatorname{E}[d_a^2(\mathbf{X},\mathbf{z})] = \operatorname{E}[d^2(h(\mathbf{X}),h(\mathbf{z}))]$$

Center or mean in the simplex: value of z minimizing Var[X; z]

$$\operatorname{Cen}[\mathbf{X}] = h^{-1}(\operatorname{E}[h(\mathbf{X})]) = \mathcal{C} \exp(\operatorname{E}[\ln \mathbf{X}])$$

Total or metric variance: minimum variability

 $\operatorname{Var}[\mathbf{X}] = \operatorname{Var}[\mathbf{X}; \operatorname{Cen}[\mathbf{X}]] = \operatorname{E}[d^2(h(\mathbf{X}), \operatorname{E}[h(\mathbf{X})])]$

Pawlowsky-Glahn, Egozcue (2001)

V. Pawlowsky-Glahn and J. J. Egozcue

Compositions	Simplicial geometry	Elementary statistics ●○○○○○	Regression	Conclusion		
Centre and total variance						
centre and total variance						

Metric variability with respect to a point zX random composition with values in S^D

$$\operatorname{Var}[\mathbf{X}; \mathbf{z}] = \operatorname{E}[d_a^2(\mathbf{X}, \mathbf{z})] = \operatorname{E}[d^2(h(\mathbf{X}), h(\mathbf{z}))]$$

Center or mean in the simplex: value of z minimizing Var[X; z]

$$\operatorname{Cen}[\mathbf{X}] = h^{-1}(\operatorname{E}[h(\mathbf{X})]) = \mathcal{C} \exp(\operatorname{E}[\ln \mathbf{X}])$$

Total or metric variance: minimum variability

 $\operatorname{Var}[\mathbf{X}] = \operatorname{Var}[\mathbf{X}; \operatorname{Cen}[\mathbf{X}]] = \operatorname{E}[d^2(h(\mathbf{X}), \operatorname{E}[h(\mathbf{X})])]$

Pawlowsky-Glahn, Egozcue (2001)

. Pawlowsky-Glah and

Compositions	Simplicial geometry	Elementary statistics	Regression	Conclusion		
Centre and total variance						
centre and total variance						

Metric variability with respect to a point zX random composition with values in S^D

$$\operatorname{Var}[\mathbf{X}; \mathbf{z}] = \operatorname{E}[d_a^2(\mathbf{X}, \mathbf{z})] = \operatorname{E}[d^2(h(\mathbf{X}), h(\mathbf{z}))]$$

Center or mean in the simplex: value of z minimizing Var[X; z]

$$\operatorname{Cen}[\mathbf{X}] = h^{-1}(\operatorname{E}[h(\mathbf{X})]) = \mathcal{C} \exp(\operatorname{E}[\ln \mathbf{X}])$$

Total or metric variance: minimum variability

$$\operatorname{Var}[\mathbf{X}] = \operatorname{Var}[\mathbf{X}; \operatorname{Cen}[\mathbf{X}]] = \operatorname{E}[d^2(h(\mathbf{X}), \operatorname{E}[h(\mathbf{X})])]$$

Pawlowsky-Glahn, Egozcue (2001)

・ロト ・ 同ト ・ ヨト ・ ヨト

V. Pawlowsky-Glahr and J. J. Egozcue

Compositions	Simplicial geometry	Elementary statistics	Regression	Conclusion
Contro and total you	dence			

Centre and total variance

Estimators of centre and variance

Compositional sample: $\mathbf{x}_1, \mathbf{x}_2, \dots, \mathbf{x}_n$ sample centre: closed geometric mean

$$\widehat{\operatorname{Cen}}[\mathbf{X}] = \mathcal{C} \exp\left(\frac{1}{n} \sum_{i} \ln \mathbf{x}_{i}\right)$$

Sample total variance: trace of sample covariance matrix of coordinates.

Bias and mean-squared-error, when $\theta \in S^{L}$ Bias $(\hat{\theta}) = \operatorname{Cen}[\hat{\theta} \ominus \theta] = h^{-1}(\operatorname{E}[h(\hat{\theta}) - h(\theta)])$ MSE $(\hat{\theta}) = \operatorname{E}[d_{a}^{2}(\hat{\theta}, \theta)] = \operatorname{E}[\|h(\hat{\theta}) - h(\theta)\|^{2}]$

Compositions	Simplicial geometry	Elementary statistics	Regression	Conclusion
Contro and total var	lence			

Centre and total variance

Estimators of centre and variance

Compositional sample: $\mathbf{x}_1, \mathbf{x}_2, \dots, \mathbf{x}_n$ sample centre: closed geometric mean

$$\widehat{\operatorname{Cen}}[\mathbf{X}] = \mathcal{C} \exp\left(\frac{1}{n} \sum_{i} \ln \mathbf{x}_{i}\right)$$

Sample total variance: trace of sample covariance matrix of coordinates.

Bias and mean-squared-error, when $\theta \in S^{D}$

$$\begin{split} &\mathsf{Bias}(\widehat{\theta}) = \mathrm{Cen}[\widehat{\theta} \ominus \theta] = h^{-1}(\mathrm{E}[h(\widehat{\theta}) - h(\theta)]) \\ &\mathsf{MSE}(\widehat{\theta}) = \mathrm{E}[d_a^2(\widehat{\theta}, \theta)] = \mathrm{E}[\|h(\widehat{\theta}) - h(\theta)\|^2] \end{split}$$

Pawlowsky-Glahn, Egozcue (2002)

Compositions	Simplicial geometry	Elementary statistics	Regression	Conclusion			
Probability densities in $\mathcal{S}^{\mathcal{D}}$							
normal i	normal in the simplex						

Simple idea: Model the distribution of coordinates!

$$h(\mathbf{X}) \sim N(\mu, \Sigma) \quad \Leftrightarrow \quad \mathbf{X} \sim N_{\mathcal{S}}(h^{-1}(\mu), \Sigma)$$

Central limit theorem: Independent \mathbf{X}_i with $\operatorname{Cen}[\mathbf{X}_i] = h^{-1}(\mu), \operatorname{Cov}[h(\mathbf{X}_i)] = \Sigma$,

$$\frac{1}{n} \odot \bigoplus_{i=1}^{n} \mathbf{X}_{i} \approx N_{\mathcal{S}}(h^{-1}(\mu), n^{-1}\Sigma)$$

for large n.

Aitchison (1982,1986), Mateu-Figueras (2003)

V. Pawlowsky-Glahn and J. J. Egozcue

Compositions	Simplicial geometry	Elementary statistics	Regression	Conclusion
Probability densities in	n S ^D			

normal on the simplex (logistic-normal)

 $\mathcal{S}^{\textit{D}} \subset \mathbb{R}^{\textit{D}},$ Lebesgue measure as reference

V. Pawlowsky-Glahn and J. J. Egozcue

・ロト ・ 理 ト ・ 理 ト ・ 理 ト

Compositions	Simplicial geometry	Elementary statistics	Regression	Conclusion			
Probability densities in \mathcal{S}^D							
normal on the simplex (logistic-normal)							

 S^{D} as Euclidean space, Aitchison measure as reference

V. Pawlowsky-Glahn and J. J. Egozcue

V. Pawlowsky-Glah and J. J. Egozcue

Compositions

Simplicial geometry

Elementary statistics

Regression

(日)

Conclusion

Probability densities in S^D

predictive regions for data and confidence regions for the mean (limits 90%, 95%, 99%)

data from Kilauea Iki lava lake, Hawaii, cited in Rollinson (1995)

V. Pawlowsky-Glahn and J. J. Egozcue

Compositions	Simplicial geometry	Elementary statistics	Regression ●○○○○○	Conclusion		
model						
regression model						

Data: for i = 1, 2, ..., ncompositional response, $\mathbf{x}_i \in S^D$, real covariates, $\mathbf{t}_i = [t_0, t_1, t_2, ..., t_r]$, $t_0 = 1$

Statement: find compositional coefficients $\beta_i \in S^D$, minimizing

$$SSE = \sum_{i=1}^n \|\hat{\mathbf{x}}(\mathbf{t}_i) \ominus \mathbf{x}_i\|_a^2,$$

 $\hat{\mathbf{x}}(\mathbf{t}) = \boldsymbol{\beta}_0 \oplus (t_1 \odot \boldsymbol{\beta}_1) \oplus \cdots \oplus (t_r \odot \boldsymbol{\beta}_r) = \bigoplus_{j=0}^r (t_j \odot \boldsymbol{\beta}_j),$

V. Pawlowsky-Glahn and J. J. Egozcue

・ロト ・ 母 ト ・ ヨ ト ・ ヨ ト ・ ヨ

Compositions	Simplicial geometry	Elementary statistics	Regression ○●○○○○	Conclusion
model				

model

regression model in coordinates

- Select a basis in S^D , e.g. using sbp;
- Represent responses in coordinates: $\mathbf{x}_i^* = h(\mathbf{x}_i) \in \mathbb{R}^{D-1}$;
- Solve D 1 ordinary regression problems in coordinates to obtain coordinates of coefficients;
- Back-transform results into S^D

For k = 1, 2, ..., D, find β^* minimizing

$$SSE_{k} = \sum_{i=1}^{n} |\hat{x}_{k}^{*}(\mathbf{t}_{i}) - x_{ik}^{*}|^{2}, \ k = 1, 2, ..., D - 1,$$
$$\hat{x}_{k}^{*}(\mathbf{t}) = \beta_{0k}^{*} + \beta_{1k}^{*} \ t_{1} + \dots + \beta_{rk}^{*} \ t_{r}$$

Back-transform: $\beta_j = h^{-1}(\beta_j^*)$

V. Pawlowsky-Glahn and J. J. Egozcue

Compositions	Simplicial geometry	Elementary statistics	Regression ○○●○○○	Conclusion

example: statement

Vulnerability of a dike:

- Safety level or design d (wave-height-design)
- External actions h (wave-height of a storm)
- Outputs after an action θ_k , $k = 0, 1, \dots, 4$
- Vulnerability description: $\mathbf{x}(d, h) = P[\theta_k | d, h]$

Available data (from Monte Carlo simulations):

$$\mathbf{x}(d_i, h_i) = \mathbf{P}[\theta_k | d_i, h_i], \ i = 1, 2, \dots, n$$

affected by errors, especially, for low probabilities.

V. Pawlowsky-Glahn and J. J. Egozcue

(日) (字) (日) (日) (日)

Compositions	Simplicial geometry	Elementary statistics	Regression ○○○●○○	Conclusion

example: data set

Number of data: n = 11Number of parts: D = 4Number of covariates: r = 2

d	h	theta0	thetal	theta2	theta3
!diseño	Hs(m)	servicio	daño moderado	daño consid	colapso
3.0	3.0	8.9206E-01	8.9206E-02	1.7841E-02	8.9206E-04
3.0	18.0	6.6529E-05	1.9959E-03	3.3265E-01	6.6529E-01
15.0	3.0	9.9889E-01	9.9889E-04	9.9889E-05	9.9889E-06
15.0	18.0	7.4074E-02	3.7037E-01	5.1852E-01	3.7037E-02
5.0	5.0	8.4602E-01	1.2690E-01	2.5381E-02	1.6920E-03
6.0	10.0	8.2645E-03	1.2397E-01	8.2645E-01	4.1322E-02
9.0	4.0	9.7551E-01	1.9510E-02	4.8776E-03	9.7551E-05
10.0	7.0	9.1058E-01	8.1952E-02	7.2846E-03	1.8212E-04
11.0	18.0	1.0988E-04	1.0988E-02	4.3951E-01	5.4939E-01
12.0	7.0	9.7838E-01	1.9568E-02	1.9568E-03	9.7838E-05
7.0	14.0	4.8757E-04	2.4378E-02	4.8757E-01	4.8757E-01

V. Pawlowsky-Glahn and J. J. Egozcue

Compositions	Simplicial geometry	Elementary statistics	Regression	Conclusion
			000000	

M. Jiménez study of the Bastarreche-dike (Cartagena-Spain):

V. Pawlowsky-Glahr and J. J. Egozcue

Compositions	Simplicial geometry	Elementary statistics	Regression	Conclusion
			000000	

M. Jiménez study of the Bastarreche-dike (Cartagena-Spain):

V. Pawlowsky-Glahn and J. J. Egozcue

Compositions	Simplicial geometry	Elementary statistics	Regression	Conclusion
			00000	

M. Jiménez study of the Bastarreche-dike (Cartagena-Spain):

V. Pawlowsky-Glahn and J. J. Egozcue

Compositions	Simplicial geometry	Elementary statistics	Regression	Conclusion
			00000	

M. Jiménez study of the Bastarreche-dike (Cartagena-Spain):

V. Pawlowsky-Glahn and J. J. Egozcue

Simplicial geometry

Elementary statistics

Regression

A D > A P > A D > A D >

Conclusion

example: linear model of vulnerability of a dike

Diseño 3.0

V. Pawlowsky-Glahn and J. J. Egozcue

Simplicial geometry

Elementary statistics

Regression

A D > A P > A D > A D >

Conclusion

example: linear model of vulnerability of a dike

Diseño 13.0

V. Pawlowsky-Glahn and J. J. Egozcue

Compositions	Simplicial geometry	Elementary statistics	Regression	Conclusion ●○
conclusi	on			

- Compositional data (CoDa) should be treated in the simplex with its specific geometry
- Ordinary multivariate statistics should not be directly applied to CoDa
- The simplex has its own Euclidean structure: cartesian coordinates are available
- Multivariate statistical models and methods work properly on coordinates of CoDa
- Problem (or advantage): interpretation of coordinates

CoDa analysis is easy!

Just transform CoDa into coordinates; analyze whatsoever; back-transform and interpret th

Compositions	Simplicial geometry	Elementary statistics	Regression	Conclusion ●○
conclusi	on			

- Compositional data (CoDa) should be treated in the simplex with its specific geometry
- Ordinary multivariate statistics should not be directly applied to CoDa
- The simplex has its own Euclidean structure: cartesian coordinates are available
- Multivariate statistical models and methods work properly on coordinates of CoDa
- Problem (or advantage): interpretation of coordinates

CoDa analysis is easy!

Just transform CoDa into coordinates;

analyze whatsoever;

back-transform and interpret the results!

Compositions	Simplicial geometry	Elementary statistics	Regression	Conclusion ○●
6 (1)				

further reading and activities

- Mathematical Geology Vol. 37 Nr. 7 (2005) special issue on compositional data analysis
- Compositional data analysis in the Geosciences: From theory to practice (October 2006) — special publication of the Geological Society (SPE 264)
- CoDaWork'08, Girona (Spain), May 2008 (http://ima.udg.es/Activitats/CoDaWork08/)

V. Pawlowsky-Glahn and J. J. Egozcue

・ロット (雪) (日) (日) (日)