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Geometric approach to statistical analysis
on the simplex

V. Pawlowsky-Glahn, J. J. Egozcue

Abstract. The geometric interpretation of the expected value and the variance in
real Euclidean space is used as a starting point to introduce metric counterparts
on an arbitrary finite dimensional Hilbert space. This approach allows us to
define general reasonable properties for estimators of parameters, like metric
unbiasedness and minimum metric variance, resulting in a useful tool to better
understand the logratio approach to the statistical analysis of compositional data,
who’s natural sample space is the simplex.

Key words: Aitchison geometry, compositional data, Euclidean space, finite
dimensional Hilbert space, metric center, metric variance.

1

Introduction

The logratio approach to the statistical analysis of compositional data proposed
by Aitchison (1982) has been the source of many discussions over the last de-
cades. This is due to the enormous importance compositional data have in
practice, as measurements in proportions of some whole, like percentages, ppm,
etc. are extremely common in applied sciences. This approach makes it possible
to perform classical statistical analysis on transformed data and to back transform
the results, which is a clear advantage due to the large amount of methods
available for multivariate normally distributed phenomena and the robustness of
those. But there has been a certain reluctance in using the new approach by
practitioners, which, besides the usual resistance to new theories, is due to the
lack of classical properties of backtransformed estimators and models, like
unbiasedness and minimum variance.
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In a recent paper, we have given a partial answer to these problems, based on
concepts of metric center and metric variance related to the geometric structure
of the simplex (Pawlowsky-Glahn and Egozcue, 2001). Here it is shown that the
concepts of metric center and metric variance make sense for random vectors
with sample space an arbitrary finite dimensional real Hilbert space. Using this
approach, it is easy to proof essential properties for statistical inference not only
on the simplex, which is the natural sample space for compositional data, but also
in other sample spaces. Obviously, the same reasoning can be applied to complex
spaces and there is no need to constrain it to elementary concepts and properties.
But precisely elementary concepts and properties are useful to convince of the
appropriateness and naturality of the definitions, showing that interpretation of
real phenomena are much easier if we work on an appropriate sample space using
the appropriate measures of central tendency and variability.

Throughout this work, we use the term finite dimensional real Hilbert space,
instead of Euclidean space, for spaces with the appropriate structure that are
different from m-dimensional real space R™. Although mathematically equiva-
lent, we think that speaking about an Euclidean space, whether we refer to R™, or
to its positive orthant R, or to the interval (0,1), or to the simplex Vf, can be
easily misleading in this presentation.

The rationale behind the definitions and properties is related to that of Fréchet
(1948) in his paper on random elements of arbitrary nature in a metric space. But
Fréchet was primarily concerned with general, non-numerical spaces, while our
interest lies in subsets of R™ with an appropriate structure. Given his approach,
Fréchet was naturally interested in probabilistic problems, whereas we emphasize
the estimation of parameters.

To illustrate our procedere, let us start recalling basic definitions and properties
related to random variables in real space: given a continuous random variable X,
the center or expected value is introduced as E[X] = f:r;o x dFx(x), where Fx(x)
stands for the distribution function of X, and the variance as Var[X] = E[(X—
E[X])?]. The geometric interpretation of these concepts is well known, and is often
given either as a motivation or as an illustration. Nevertheless, the center can be
defined as that value x4 which minimizes the expected squared Euclidean distance
E[d.(X, ¢)%], and the variance ¢* can be defined as the expected value of the
squared Euclidean distance around y, o> = E[d,(X, u)*]. Obviously, u = E[X] and
6% = Var[X]. To our understanding, this geometric approach gives its real
meaning to the center as a measure of central tendency and to the variance as a
measure of dispersion. Fréchet (1948) uses this philosophy to introduce the center
and variance of a random vector with support an arbitrary metric space which is
not necessarily a vector space. A similar reasoning lead Aitchison (2001) to justify
the closed geometric mean as the natural center of a random composition and,
later, Pawlowsky-Glahn and Egozcue (2001) to define the concept of metric vari-
ance for a random composition. Here, we extend this approach first to an arbitrary
finite dimensional real Hilbert space, then we give some simple examples to
illustrate its general interest, and finally we particularize on the simplex.

2

Notation and basic concepts

Given an m-dimensional real Hilbert space & (m-Hilbert space for short), with

internal operation @, external operation ®, and inner product (.,.), denote the

associated norm by || - || and the associated distance by d(.,.). We will use © and
© whenever needed for the corresponding operations on the inverses and denote
by e the neutral element with respect to the internal operation . This notation
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X d(X,¢§)

h(X) de(h(X), h(€))
Rm

Fig. 1. Schematic representation of the relationship of a random vector with sample space ¢
and a random vector with sample space R through an isometric transformation h

has been chosen in order to relate and, at the same time, distinguish, operations
in & from their counterparts in R™. For convenience, we will identify the scalar
field with (R, +,-). Recall that, in an m-Hilbert space, the distance is invariant
with respect to the internal operation, as well as to the external operation,

d(X@ 2,yPD Z) = d(X)Y); d(OC@X,OC ®Y) = |O€| : d(X’Y) s (1)

and that an m-Hilbert space is always isometric to a real Euclidean space, both
having the same dimension m. This property is essential for subsequent devel-

opments. Thus, if we denote by 4 such an isometry, A is an isomorphism such that
for any x,y € &,

(x,y) = (h(x),h(y))e;  d(x,y) = de(h(x), h(y)) ,

where (., .), stands for the Euclidean inner product and d.(.,.) for the Euclidean
distance in R™. A detailed account of these and related properties can be found in
(Berberian, 1961).

In the sequel, following a standard approach as i.e. in (Ash, 1972), we consider
random vectors X, defined as measurable functions from a probability space (L,
F, Pg) onto a sample space &. Here Q denotes an arbitrary set, # a o-field of
subsets of Q, and Pq a probability measure on . A consistent definition of a
random vector X requires a o-field of subsets of . An easy and natural way to
define it consists in taking h~!(#(R™)), being Z(R™) the class of Borel sets of R"
(see Fig. 1 for a schematic illustration). With this definition h(X) is a measurable
function (i.e., a random vector) that goes from (Q, %, Pg) to R™. X induces a
probability measure P on the o-field k™' (%#(R™)) of & and h(X) induces a
probability measure P, on the o-field Z(R™) of R™. Note that for any set
A € h ' (#(R™)) we have A = h™!(B), for some B € #(R™). Thus,

PlA] = Pl (B)] = P{w[X(w) € k™ (B)}] = P[{w|h(X(w)) € B)]
— p,[B] = P.Jh(4)] .

With these probability measures we can define expectation in both spaces,

xeé

E[X] = / xdP, E[h(X)] = / h(x)dP, |
h(

x)eR™



satisfying h(E[X]) = E.[#(X)]. From now on, we will use the symbol E[-] for both
expectations. This concept of expectation is extended to functions g of X € & and
ge of h(X) € R™ as usual, resulting in

Bg0) = [ gdp. EfghX) = [ sl

x€& h(x)eR™

In particular, let ¢ € & be a fixed element and consider the function d*(X, &),
where d(...,...) denotes the distance in & (Fig. 1). The expectation of such a
function is then

E[(X, £)] = / &(x, £)dP

x€&

= [ (k). )P~ B (X0, h(E)] 2)

h(x)ER™

Note that the latter expectation can also be defined using the corresponding
probability measure induced in R, . In fact, d*(X, ¢) is a univariate random
variable with sample space R, and its probability can be described by a uni-
variate distribution function.

Now, following the rationale described in the introduction, let us introduce
metric counterparts in & to usual measures of dispersion and central tendency in
real Euclidean space.

3
Metric center and metric variance

Definition 1 The dispersion or metric variance around ¢ € & is the expected
value of the squared distance between X and ¢: Mvar(X, ¢] = E[d?(X, ¢)], provided
that the last expectation exists.

Note that the metric variance is well defined, given that the squared distance is
a real function. Assuming the metric variance of X exists, we can introduce now
the metric center of its distribution as follows.

Definition 2 The metric center of the distribution of X is that element & € &
which minimizes Mvar[X, &]. It is called metric center of X and is denoted by
Mcen[X] for short.

Following our strategy to paraphrase standard statistical concepts, to call
metric variance the metric variance around Mcen[X] and metric standard devi-
ation its square root is only natural. We state this as a definition for easy of
reference.

Definition 3 The metric variance around the metric center Mcen[X] of the dis-
tribution of X is given by Mvar[X, Mcen[X]] = E[d*(X, Mcen[X])]. It is called
metric variance and is denoted by Mvar[X] for short. The square root of the
metric variance of a random composition is called metric standard deviation and
is denoted by Mstd[X].

Given the existence of an isometry h between the m-Hilbert space & and real
m-Euclidean space, it is clear that we can transfer directly properties derived from
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the geometric structure between them. To do so, the following two propositions
are essential.

Proposition 1: If h: & — R™ is an isometry, then Mcen[X| = h™!(E[h(X)]).

Proof: If h: & — R™ is an isometry, then it holds that

E[d*(X, &)] = E[d2(h(X), h(&))] (see Eq. (2)), and the vector that minimizes
E[d2(h(X),h(£))] is h(¢) = E[h(X)]. Consequently, the vector that minimizes
E[d*(X,¢&)] is & = h 1 (E[h(X))). O

Proposition 2: If h: & — R™ is an isometry and h(X) =Y € R™, then

Mvar[X]| = iVar[Y,-] .

Proof: Being h an isometry and taking into account Proposition 1,
Mvar{X] = E[d*(X, Mcen[X])] = E[d2(h(X), E[h(X)])]

holds. Writing #(X) = Y and using the definition of Euclidean distance the
equality is obtained. O

Note the assumption A is an isometry is actually too strong for Proposition 1 to
hold, although it simplifies the proof. In fact, if & is an isomorphism, Proposition
1 holds too. Nevertheless, the isometry assumption is necessary for Proposition 2
to hold.

Given the linearity of 4 and E[] in Propositions 1 and 2, classical properties of
center and variance in real Euclidean space related to linearity and translation
invariance, as well as unicity, are transfered to the metric center and metric
variance in &. In particular, denoting by X, Y, ... random vectors with sample
space & and assuming that the expectations involved exist, the following prop-
erties, which are stated without proof, hold:

Proposition 3: For allb € & and all « € R,

Mcen[(o ® X) @ b] = (2 ® Mcen[X]) &b .

Proposition 4: Mcen[X © Mcen[X]] = e.
Proposition 5: Mcen[X @ Y] = Mcen[X] @ Mcen|Y], and, in general,
Mcen[X; & X, @ - - - @ Xy] = Mcen[X;] & Mcen[X,] & - - - & Mcen[Xy] .

ForN simplicity, in what follows we will use the notation
P, X=X ®X; & & Xy.

Proposition 6: For all b € & and all « € R,

Mvar|(« ® X) @ b] = «*Mvar[X] .



Proposition 7: For allb € &

Mvar[X] = Mvar[X, b] — d*(Mcen[X],b) .

Remark 1 Setting in the last proposition b = e, the result is analogous to the
standard relationship for univariate real random variables, namely
Var[X] = B[X*] — (E[X])” = E[(X — 0)] — (E[X] - 0)°
= E[d;(X,0)] — d;(E[X],0) .
In what follows, it is understood that independence between random vectors

which sample space is & is defined in an analogous manner to the standard way
(Ash, 1972: p. 213).

Proposition 8: For X, Y independent,
Mvar[X @ Y] = Mvar[X] + Mvar[Y] ,

and, in general, for X;,X,, ..., Xy jointly independent,

Mvar {@X ] Z Mvar[X

A simple property, but of primary importance, is the Chebyshev inequality that
holds for the metric center and metric variance. It gives us a further inter-
pretation of the metric variance, or its squared root, as a dispersion measure
around the metric center, independently of the distribution of the random
vector.

Proposition 9: Chebyshev inequality. For any k > 0,

P[d(X, Mcen([X]) > kMstd[X]] < % .

Proof: The standard proof of the Chebyshev inequality follows. Define the set
A ={x e & :d(x,Mcen[X]) > kMstd[X]} .

Then,

Mvar[X] > E[d*(X, Mcen[X])|A] > k*Mvar[X] PX € 4] ,

from which the statement holds. O

Thus, the metric variance, defined as the expected value of the distance to
the metric center, allows us a geometric understanding of the measures of
central tendency and dispersion of a random vector in a given m-Hilbert
space.

Before we proceed, it is worthwhile to note that Rao (1982) introduced the
concept of quadratic entropy, which is equivalent to our metric variance, and that
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Cuadras et al. (1997) introduced equivalent concepts with the purpose of classi-
fication. The difference is that they do not insist explicitly in the distinction
between random vectors which sample space is not real Euclidean space, specially
when it comes to estimation problems. The importance of this distinction will be
seen in the next section.

4
Estimation

Consider a random vector X which sample space is &, and a random sample of
size N, X;, X3, ..., Xy. Assume that the probability measure of X, Py, depends on
an unknown parameter, or vector of parameters, 0 € ®, where ® stands for the
parameter space. ® is also assumed to have an my-dimensional real Hilbert
space structure. The purpose of this section is to define basic desirable prop-
erties of estimators 0 of 0. Since these definitions, being parallel to ordinary
ones, depend on the metric defined in ®, we introduce an ‘My’ preceeding the
concept in order to distinguish them; the subindex 0 is introduced to make clear
that the parameter space and the sample space are not necessarily the same.
Therefore, whenever we refer to the metric in the sample space &, we will use the
notation ‘M,’. Although tedious, we insist in this notation to state clearly that
the essential idea of metric properties is to consider them in the appropriate
space. We also point out that we are going to use Mceny[0(Xy, ..., Xy)], where 0
is a function of the random sample. This metric center implicitly requires the
definition of expectation and the corresponding probability measure. If P is the
probability measure induced by X in &, the joint probability measure of the
random sample is obtained as the direct product of P as many times as N. The
expectation is then taken as an integral of 0 with respect to this probability
measure. Note that the subscript in Mceny[0] is related to ©, the sample space of
the function 0, and not to the definition of the probability measure.

At this point, the way of reasoning may differ from standard approaches be-
cause the my-Hilbert space structure of ® is normally not assumed to be different
from R™, being ® C R™. Whenever © can be identified with R* for some integer
k, the following approach coincides with the standard approach. But, if ® is not a
linear subspace of R™, then the present approach claims for a new my-Hilbert
space structure in ® and the equivalence no longer holds.

Definition 4 0 is an My-centered or My-unbiased estimator of 0 if, and only if, the
metric center of 0, with respect to the metric defined in the parameter space O, is
the unknown parameter 0: Mceny[0] = 0.

Using Proposition 4 we obtain the equivalent property:

Proposition 10: Mceng[0] = 0 is equivalent to Mceny[0 &9 07'] = ey, the neutral
element of the internal operation Gy on O.

Definition 5 Mceng [é Dy 0‘1] is called the My-bias of 0.
Using now Proposition 3 we obtain:

Proposition 11: Mceny[) &9 071] = Mceny[0] &9 0~ = Mceny[0] & 0.

In order to compare the My-bias from different estimators of the same pa-
rameter 0, the distance to ey can be used, as they belong to the same space. Thus,
the adequate measure to be used is



do(Mceny[0] &9 0, eg) = dy(Mceny[0],0)

where the equality is derived from Eq. (1).
The mean quadratic error is another important criterion in estimation of
standard parameters. The analogous in our case is the following.

Definition 6 Mvary|0, 0] is called the My-quadratic error of 0.

This definition of My-quadratic error has similar properties to standard qua-
dratic error. Particularly, applying property 7, it is related with the My-bias and
the metric variance of the estimator in the same way the standard estimators are:
quadratic error equals squared bias plus variance of the estimator.

Proposition 12: Mvary[0), 0] = Mvar,[0] + d2(Mceny[0], 0).

After these definitions, general concepts on estimation of standard parameters
can be easily extended to metric counterparts (e.g. asymptotically unbiased es-
timators, consistency in mean quadratic error). In the present context we are
specially interested in the following definitions, related to the so called best linear
unbiased estimators (BLUE).

Definition 7 Given two estimators él and éz of 0 € O, él is said to be more M-
efficient than 0, with respect to the distance defined in © if, and only if,
Muvary[6;, 0] < Mvary[6,, 6].

Definition 8 Given a class @ C © of estimators of 0, 0 € © is said to be My-best
within the class © if, and only if, it is Mg-centered and Mvary[f] < Mvary [0] for
all 0; € O i.e. it is the most My-efficient among the My-centered estimators in ©.

Obviously, other standard characterizations of estimators, usual in the context
of random variables with support the real line, can be given, simply by substi-
tuting the Euclidean distance by the appropriate distance defined in the param-
eter space, and the expected value by the My-center, but it goes beyond the
purpose of this paper. Therefore, let us proceed to define an My-best linear
estimator of a parameter 6 within the class of linear estimators of 6, where linear
is understood in the following sense:

Definition 9 Given a function g(-) from & onto 0,

N
9:@%@% n)

is said to be an My-linear g-function of the sample X;,X,, ..., Xy. Whenever g(-)
is suitable for estimation of 0, then 0 is said to be an My-linear g-estimator of 6.

Now, for g(-) a function from & onto O, the following propositions can be set
forth.

Proposition 13: If, for any n =1,...,N, Mceng[g(X,)] = 0, then

(s

is an My-linear and My-unbiased g-estimator of 0.

391



392

Proof: 0 is an My-linear function by definition. Taking metric centers in the
definition of the g-estimator and using Propositions 5 and 3, the fact that
Mceny|[g(X,)] = 0, and standard properties of vector spaces, the statement holds.
Note that, as usual, independence of the sample is not a requirement for the

proof. O

Proposition 14: Given a function g : & — O such that Mceny[g(X,)] = 0,

is the My-best g-estimator of 0 within the class of My-linear My-unbiased g-
estimators of 0. Moreover,

Mvarg[0] = MvargT[g(X)] .

Proof: Consider a general My-linear My-unbiased g-estimator of 0
. N
0= @ oy Qg g

If 0 is My-unbiased, then, using again Proposmons 5 and 3 as well as stan-
dard operations in a vector space, we obtain Z 1 % = 1. To see that it is
My-best we have to see that the metric variance reaches a minimum when

o, = 1/N. Given that by definition of random sample we have Mvary[g(X,)] =
Mvary[g(X)] and independence of the sample, the metric variance of 0 can be
expressed, using Propositions 8 and 6, as

Muvary[0] = Mvar[g(X)] (Z oci) ,

which is minimum when, for n =1,...,N, «, = 1/N. Therefore, for minimum
metric variance 0 = 0 and Mvary [0] Mvarg [g(X)]/N. O

In Proposition 14 the My-linear, My-unbiased, My-best g-estimator has been
identified, but the function g : & — © was beforehand given. A natural extension
may be to make g free within a given class of functions. Although a detailed
discussion of such a case is out of the scope of this presentation, the proof of
Proposition 14 points out that minimization of Mvary[0] can be decomposed into
two steps: search for the best g : & — © and optimization for the «,’s; and, then,
the optimum value of o, is still 1/N.

Proposmon 15: Given a function g : & — © such that Mceng[g(X,)] = 0,
0= @(N ®0 §(Xn)) satisfies the weak law of large numbers given by

plan(d.0) = *ED <



for any ¢ > 0. Consequently, 0 converges in probability to Mceny[g(X)] for
N — ooc.

Proof: This standard result is obtained by applying the Chebyshev inequality
stated in Proposition 9 to the random function 6, which metric center and metric
variance are, respectively, 0 and Mvary[g(X)]/N. Setting 1/h* = ¢, the desired
result is obtained. O

Propositions 13-15 clearly establish that 0 = @Ll (+ ®p g(Xy)) is an
Mp-linear My-unbiased g-estimator of 0, which is My-best with respect to the
corresponding distance defined in the parameter space ©.

Example 1: Univariate random variables with sample space the real line.

For univariate random variables with sample space R = & (i.e. support the real
line), it is straightforward to obtain all the standard results. In fact, R is a real 1-
Hilbert space with the usual operations: addition for the internal or Abelian group
operation and product for the external operation. The inner product is the usual
one (i.e. the product), and the distance is the Euclidean distance. The metric
center is then nothing else but the usual expected value, and the best, linear,
unbiased estimator associated to the Euclidean distance is the average or arith-
metic mean of the sample.

Example 2: Univariate random variables with sample space the positive real line.
A particularly interesting case is that of an univariate random variable X,
which sample space (i.e. support) is the positive real line Ry = &. This sample
space is a 1-Hilbert space with the following operations and definitions. Let

x,y € Ry and o € R; then we have

. Internal, Abelian group operation: x §, y = x - y.

. External operation: & ®, x = x*.

. Inner product: (x,y), =Inx-Iny.

. Distance: d,(x,y) = |Inx —Iny|.

. Norm: ||x||, = [Inx]|.

. Isometry h: R, — R such that h(x) = Inx, with inverse h~!(y) = exp(y).

AU W N~

The metric center in R, with this structure is given in Proposition 1 as
7 = Mcen; [X] = exp(E[InX]) .

y is again a value in R, and, therefore, the sample space of y is R,, which 1-
Hilbert space structure has been previously defined. Given a random sample
Xi,...,Xn, to estimate y we can take in Definition 9 the function g = id, the
identity in R". Then, for any n, Mcen, [g(X,)] = Mcen. [X] = y, and Propositions
13 and 14 state that ) = anlX,l/ ¥'is the M -best id-estimator of y within the
class of M, -linear, M, -unbiased id-estimators of y. Note that the estimator
obtained is the geometric mean of the sample and the estimated parameter is
y = exp(E[In X]), also known as the theoretical geometric mean of a random
variable. These facts recall us the standard treatment of lognormal variates and
state that, in terms of the geometric structure of R., the natural measure of
central tendency is the theoretical geometric mean and the best estimator is the
geometric mean of the sample.

Note that this reasoning can be applied to any measure of difference, which
sample space is by definition R, . As a result, we obtain an estimator for the
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metric variance which is different from the one obtained by the method of mo-
ments in real Euclidean space.

Example 3: Univariate random variable with sample space I = (0, 1).

Let X be an univariate random variable which sample space is I = (0, 1). This
sample space is a 1-Hilbert space with the following operations and definitions.
Let x,y € I and o € R, then we have:

1. Internal, Abelian group operation:
Xy
eSS

2. External operation:

XPry=

o

x
PO e
3. Inner product:
X J
=1 -1 .
<x,)’>1 nl—x nl—y
4. Distance:
x(1-y)
dl(xvy) = |In
y(1—x)
5. Norm
x
— | ‘
Il = [in—=

6. Isometry (logit transformation):

exply)
1+exp(y)

h: I — R such that h(x) = ln1 ix’ with inverse h™'(y)

According to Proposition 1, the metric center in I is given by

exp(E[ln(X/(1 — X))])
1 + exp(E[ln(X/(1 — X))]) ’

7 = Mcen[X] =

and v is again a value in I. Thus, the parameter space of y is I, which
1-Hilbert space structure has been just defined. Given a random sample
Xi,...,Xn, to estimate y we can take in Definition 9 the function g = id, the
identity in I. Then, for any n, Mcen;[g(X,)] = Mcen;[X] = y, and Propositions
13 and 14 state that

I, x/~
1, (1= x)"™ + T, /N

’)/}:

is the M;-best id-estimator of y within the class of M;-linear, M;-unbiased id-
estimators of 7.



5

Estimation on the simplex

Recall that x = (x, ... ,xd)/ is by definition a d-part composition if, and only if,
all its components are strictly positive real numbers and their sum is a constant c.
The constant ¢ is 1 if measurements are made in parts per unit, or 100 if mea-

surements are made in percent. The sample space of d-part compositional data
with constant sum c¢ is thus the simplex

d
yf: x:(xl,...,xd)/\x,'>0,i:1,...,d;2xi:c ,

i=1

where the prime stands for transpose. Although mathematically less comfortable,
we keep the constant ¢ in the definition and in the notation, to avoid confusion
arising from the fact that in geology it is more common to use ¢ = 100 than ¢ = 1.
But, to simplify the mathematical developments, we include the constant in the
closure operation as stated below.

Basic operations on the simplex have been introduced by Aitchison
(1986). They are the perturbation operation, defined for any two vectors
x,y € % as

xoy:(g(xlyl,...,xdyd)’ , (3)

and the power transformation, defined for a vector x € & f and a scalar « € R as

o LAY
aox=%(x],...,x5) , (4)
where the % denotes the closure operation defined for a vector z = (zi,...,24)
as
(41
21 Z1+2y++2g
CZ)
V4 Z1+2z++zy
Cz)=%| . | = .
cz4
Zd z1+2p++2z4

Perturbation and power transformation induce a vector space structure in the
simplex. Then, to obtain a (d — 1)-Hilbert space structure on %%, the following
inner product and associated norm and distance can be used (Aitchison, 2001;
Pawlowsky-Glahn and Egozcue, 2001):

1 Xi. Vi
y)y =43

i<j X Y
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To refer to the properties of (%%, 0,0) as a (d — 1)-Hilbert space, we shall talk
globally about the Aitchison geometry on the simplex, and in particular about the
Aitchison distance, norm and inner product.

%% is a (d — 1)-Hilbert space and thus there exists an isometry between %%
and R9~! which could be used to analize results from previous sections in the
particular case of random compositions. Nevertheless, to simplify presentation,
we will use the clr transformation defined by Aitchison (1986), which is an is-
ometry between the simplex with the Aitchison geometry and the (d — 1)-hy-
perplane going through the origin and parallel to the simplex in R? and equipped
with the usual Euclidean geometry in R~ projected from the real Euclidean
space R?. Recall that the clr transformation is defined as

X x X
clr(x) = (ln—l,ln—z, .. ,ln—d) ,
gx)" g g(x)

i 1/d
where g(x) = (H xi> , the geometric mean of x. The inverse is obtained by

i=1
taking first exponentials and then applying the closure operation, which cancels
out multiplicative constants.

With these elements at hand we can proceed to analyze the metric variance

and metric center of the distribution of a random vector X with sample space .

Proposition 16: The metric center Mcen,[X| of X is the center or closed geometric
mean of X,

Mcen,[X] = %(exp{E[In(X,)]},...,exp{E[In(X4)]})" .

This result is actually the original definition of center of a random composition
given by Aitchison (1997). It is obtained by applying Proposition 1 with the clr
transformation.

Proposition 17: The metric variance can be expressed as,

Muvar,[X] = % > Var [ln %} - zd; Var [ln gic—;()}

i<j 7 i=

The first equality states that the metric variance with respect to the Aitchison
distance is identical to the total variance defined by Aitchison (1997). It is
derived directly from the definition of metric variance and of the Aitchison
distance. The second equality is obtained using Proposition 2 and the clr
transformation.

Note that Proposition 16 implies that, writing Mcen,[X] = 7, for i,j =1,...,d,

X. .
E[In—’} = ln& .
Xj 7j

As a result of these statements, we can say that the closed geometric mean of
random compositions minimizes the metric variance on the simplex with respect
to the Aitchison distance. We can also say that the total variance defined by
Aitchison (1997) is an appropriate measure of compositional variability within



the simplex, as it coincides with the expected value of the squared Aitchison
distance to the metric center of the distribution.

Looking at other properties of random compositions derived from proposi-
tions stated in Sect. 3, we see that perturbation of a random composition affects
the metric center in that it leads to a perturbed metric center (Proposition 3),
whereas it has no effect on the metric variance (Proposition 6). As a consequence,
we can center the random composition by perturbing it with the inverse of the
metric center (proposition 4), thus giving theoretical support to the approach
presented in (Buccianti et al., 1999; Martin-Fernandez et al., 1999; Eynatten et al.,
2001). Furthermore, the metric center is linear with respect to perturbation
(Proposition 5), whereas this property holds for the metric variance only in case
of independence of the random compositions involved (Proposition 8).

Proposition 7 applied to random compositions on the simplex tells us, that the
metric variance can be expressed as the metric variance around an arbitrary point
b in the simplex minus the squared Aitchison distance between the metric center
and the same point. Substituting b by the baricenter or neutral element of per-
turbation, e, gives the following result:

Mvar,[X] = E[d%(X, e)] — d2(Mcen,[X],e) ,

suggesting an analogy to central and non-central moments in real space.

Another interesting feature is related to the power transformation. The power
transformation of a random composition multiplies the metric center (Proposi-
tion 3) and its square multiplies the metric variance (Proposition 6). Thus, we
can introduce an equivalent concept to standardized random vectors by using
perturbation with the inverse of the metric center and power transformation with
the inverse of the metric standard deviation to obtain random compositions
centered at the baricenter e and with unit variance:

1

U= Mstd,[X]

o (X o (Mcen,[X]) ")

Finally, the Chebyshev inequality stated in Proposition 9 gives us a way to obtain
regions within the simplex where we have a probability smaller or equal to 1/k?
that the random composition is at a distance from the metric center larger then k
times the metric standard deviation.

Concerning the estimation of the center, we can say that, taking in Proposi-
tion 14 the identity function g(X,) = id(X,) = X,, we obtain that

_ N /1
X, = —oX
= O yox)

is the M,-best id-estimator of Mcen,[X] within the class of M,-linear M,-unbiased
id-estimators of Mcen,[X]. Moreover,

Muvar,[X]

Mvar,[X,] = N

These are only the basic properties of the metric center, but it is clear that the
same rationale would lead us to transfer whatsoever properties based on Eu-
clidean reasoning from real space into the simplex. This approach assures us that
we will obtain properties of optimality in the simplex, completely equivalent to
those in real space.
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Conclusions

The existence of an appropriate m-Hilbert space structure in the simplex suggests a
different approach to the statistical analysis of compositional data based on geo-
metric reasoning. Based on this approach, which is completely parallel to the usual
one in Euclidean space, it is straightforward to define reasonable properties for
estimators of compositional parameters. It assures us that we will obtain properties
of optimality, completely equivalent to those in real space, in the simplex. In par-
ticular, the closed geometric mean is a linear, unbiased estimator that minimizes the
metric variance with respect to the Aitchison geometry on the simplex.

But even more important is, that the same methodology allows us to study
properties of probability measures on any sample space with an appropriate finite
dimensional real Hilbert space structure, thus opening up a geometric approach
to the study of statistical properties in general. Furthermore, it has been shown
that this approach is also valid for estimators of unknown parameters of a
probability measure and/or characteristics of a random vector, like the metric
center. As a consequence, care has to be applied in analyzing the structure of the
parameter space to assure the appropriateness of applied methods.
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