Compositional Data Analysis with R

Matevž Bren¹ and Vladimir Batagelj²

¹University of Maribor, Slovenia ²University of Ljubljana, Slovenia

CoDaWork Girona, October 15 - 17, 2003

Outline

1	R a free statistical language and environment
3	Aitchison's Household budget survey
5	The 'mixture' class in R
6	The 'mix' procedures in R
8	Compositional data sample space
28	Conclusions
30	Appendix

R a free statistical language and environment

R (http://www.r-project.org/) is a free language and environment for statistical computing and graphics. R is similar to the award-winning S system, which was developed at Bell Laboratories by John Chambers et al. It provides a wide variety of statistical and graphical techniques (linear and nonlinear modelling, statistical tests, time series analysis, classification, clustering...).

The term *environment* is intended to characterize it as a fully planned and coherent system, rather than an incremental accretion of very specific and inflexible tools, as is frequently the case with other data analysis software.

R is an integrated suite of software facilities for data manipulation, calculation and graphical display.

... R a free statistical language and environment It includes

- an effective data handling and storage facility,
- a suite of operators for calculations on arrays, in particular matrices,
- a large, coherent, integrated collection of intermediate tools for data analysis,
- graphical facilities for data analysis and display either on-screen or on hardcopy, and
- a well-developed, simple and effective programming language which includes conditionals, loops, user-defined recursive functions and input and output facilities.

The current version of the R library for compositional data analysis is available at http://vlado.fmf.uni-lj.si/pub/mixture/

Aitchison's Household budget survey

from the Aitchison's book The Statistical Analysis of Compositional Data:

Sample survey of single persons living alone in a rented accommodation, twenty men and twenty women were randomly selected and asked to record over a period of one month their expenditures on the following four mutually exclusive and exhaustive commodity groups.

- H housing, including fuel and light,
- \mathbf{F} foodstuffs, including alcohol and tobacco,
- **O** other goods, including clothing, footwear...,
- S services, including transport and vehicle.

We consider only the expenditure proportions, not the values – *composi-tional data*.

Aitchison's Household budget survey

	Н	F	0	S
M1	497	591	153	291
M2	839	942	302	365
M3	798	1308	668	584
M4	892	842	287	395
M5	1585	781	2476	1740
M6	755	764	428	438
M7	388	655	153	233
M8	617	879	757	719
M9	248	438	22	65
M10	1641	440	6471	2063
M11	1180	1243	768	813
M12	619	684	99	204
M13	253	422	15	48
M14	661	739	71	188
M15	1981	869	1489	1032
M16	1746	746	2662	1594
M17	1865	915	5184	1767
M18	238	522	29	75
M19	1199	1095	261	344
M20	1524	964	1739	1410

	Н	\mathbf{F}	0	S
W1	820	114	183	154
W2	184	74	6	20
W3	921	66	1686	455
W4	488	80	103	115
W5	721	83	176	104
W6	614	55	441	193
W7	801	56	357	214
W8	396	59	61	80
W9	864	65	1618	352
W10	845	64	1935	414
W11	404	97	33	47
W12	781	47	1906	452
W13	457	103	136	108
W14	1029	71	244	189
W15	1047	90	653	298
W16	552	91	185	158
W17	718	104	583	304
W18	495	114	65	74
W19	382	77	230	147
W20	1090	59	313	177

The 'mixture' class in R

M1 497 591 153 291 M2 839 942 302 365 M3 798 1308 668 584 M4 892 842 287 395 M5 1585 781 2476 1740 M6 755 764 428 438 M7 388 655 153 233 M8 617 879 757 719 M9 248 438 22 65 M10 1641 440 64711 2063 M11 1180 1243 768 813 M12 619 684 99 204 M13 253 422 15 48 M14 661 739 71 188 M15 1981 869 1489 1032 M16 1746 746 2662 1594 M17 1865 915 5184 1767 M18 238 522 29 75 M19 1199 1095 261 344 M20 1524 964 1739 1410 W1 820 114 183 154 W2 184 74 6 20 W3 921 66 1686 455 W4 488 80 103 115 W5 721 83 176 104 W6 614 55 441 1935 W7 801 56 <th>Househol</th> <th>Ld budget</th> <th>-</th> <th>0</th> <th>C</th>	Househol	Ld budget	-	0	C
	M1 M2 M3 M4 M5 M6 M7 M8 M9 M10 M11 M12 M13 M14 M15 M16 M17 M18 M19 M20 W1 W2 W3 W4 W5 W6 W7 W8 W1 W2 W3 W4 W5 W6 W7 W8 W11 W12 W13 W14 W15 W16 W17 W18 W19 W17 W18 W19 W19	H 497 839 798 892 1585 755 388 617 248 1641 1180 619 253 661 1981 1746 12865 238 1199 1524 820 1849 921 488 721 614 801 396 8645 404 781 457 1029 1047 552 718 495 382	$\begin{array}{c} F\\ 591\\ 942\\ 1308\\ 842\\ 781\\ 764\\ 655\\ 879\\ 438\\ 440\\ 1243\\ 684\\ 422\\ 7369\\ 746\\ 82\\ 83\\ 55\\ 59\\ 64\\ 915\\ 2295\\ 964\\ 114\\ 74\\ 66\\ 80\\ 83\\ 55\\ 59\\ 65\\ 64\\ 97\\ 103\\ 90\\ 91\\ 104\\ 114\\ 77\end{array}$	302 668 287 2476 428 153 757 22 6471 768 99 15 71 1489 2662 5184 29 261 1739 183 6 1686 103 176 441 357 61 16185 33 1906 136 2444 653 185 583 65 230	365 584 395 1740 438 233 719 65 2063 813 204 488 10324 1594 1767 3440 1594 104 193 214 80 3524 417 472 108 1892 298 158304 741 1410 1594 104 1932 1594 104 1932 104 1932 104 1932 104 1932 10892 10802 108

The *input mixture data* consist of a *data matrix* preceded by a *title*. In R we represent them as a structure *m* (*m*\$tit, *m*\$mat, *m*\$sum, *m*\$sta) *m*\$sum is the *row sum* and *m*\$sta is a *status* with values:

- -2 matrix contains negative elements
- -1 zero sum row exists
 - 0 rows with different row sum(s)
 - mixture with constant row sum
 - 2 normalized mixture

The 'mix' procedures in R

We started to develope a library **MixeR** of functions in R to support the analysis of mixtures.

```
mix.Read(file, eps=1e-6)
```

```
Reads a mixture data from the file and returns it as a mixture structure. If |m\$sum - 1| < eps it sets m\$sta = 2.
```

```
mix.Check(m, eps=1e-6)
```

Determines the m and m and m and m are structure m.

```
mix.Normalize(m)
```

Normalizes a given mixture structure m if m\$ $sta \ge 0$.

```
mix.Random(nr, nc, s=1)
```

Generates a random mixture structure with nr rows, nc columns and row sum s.


```
... The 'mix' procedures in R
```

```
mix.Matrix(a, t)
```

Converts a matrix a with title t to a mixture structure.

```
mix.Ternary(m, lcex=1, add=FALSE, ord=1:3, ...)
```

Produces a ternary display of a given mixture structure m.

```
mix.Sub(m, k)
```

Returns a mixture structure obtained from m by extracting colomns from the list k.

```
mix.Quad2Net(fnet, m)
```

Transforms a 4 column mixture m quadrays into 3d XYZ coordinates and writes them as a **Pajek** file. **Pajek** is available at

http://vlado.fmf.uni-lj.si/pub/networks/pajek/

Compositional data sample space

Compositions (compounds, mixtures, alloy \ldots ,) can be represented with vectors of the portions of individual components. The portions are nonnegative and they have constant sum.

A suitable (one of) sample space for compositional data

$$\mathbf{w} = (w_1, \ldots, w_D), \quad w_k \ge 0, \, k = 1, \ldots, D,$$

 $w_1 + \dots + w_D = \text{const.}$

is the d - dimensional unit simplex $\left(d := D - 1 \right)$

 $S^d := \{ \mathbf{x} = (x_1, \dots, x_D); x_k > 0, k = 1, \dots, D \land x_1 + \dots + x_D = 1 \}$ Any vector of positive components $\mathbf{w} \in \mathbb{R}^D_+$ can be projected onto the

simplex by the *closure operation*

$$\mathcal{C}(\mathbf{w}) = \left(\frac{w_1}{\sum w_k}, \dots, \frac{w_D}{\sum w_k}\right) \in \mathcal{S}^d$$

8

Perturbations

The perturbation operation

 $\mathbf{x} \circ \mathbf{y} = \mathcal{C}(x_1 y_1, \ldots, x_D y_D)$ defined on $\mathcal{S}^d \times \mathcal{S}^d$

and the *scalar* (*power*) *multiplication*

$$\alpha \diamond \mathbf{x} = \mathcal{C}(x_1^{\alpha}, \ldots, x_D^{\alpha})$$
 defined on $\mathbb{R} \times \mathcal{S}^d$

induce a vector space structure in to the unit simplex.

 $\left(\mathcal{S}^{d},\circ,\diamond
ight)$ is a vector space.

The *neutral element* of this vector space is the *barycenter*

$$\mathbf{e}_D := \left(\frac{1}{D}, \cdots, \frac{1}{D}\right) = \mathcal{C}(1, \ldots, 1)$$

and the *inverse element* of a composition $\mathbf{x} \in S^d$ is

$$\mathbf{x}' := \mathcal{C}\left(\frac{1}{x_1}, \cdots, \frac{1}{x_D}\right) = -1 \diamond \mathbf{x}.$$

Subcomposition

If we are interested only in some of measured properties – only in some part of the composition

$$\mathbf{x} = (x_1, x_2, \dots, x_D)$$

we just skip the no more observed components and in order to keep the unit sum constraint we divide with the new sum:

For the $S \subset \{1, 2, \dots, D\}$ and s := |S| we get the mapping

$$\mathbf{x} \in \mathcal{S}^d \longrightarrow \mathbf{x}_S \in \mathcal{S}^s$$

defined with

$$\mathbf{x}_S := \frac{1}{\sum_{i \in S} x_i} \left(x_{i_1}, \cdots, x_{i_s} \right)$$

and we call \mathbf{x}_S the *subcomposition* of the composition \mathbf{x} .

Centered data set

The geometric mean of the set of compositions

$$X = \{\mathbf{x}_1, \ldots, \mathbf{x}_N\} \subset \mathcal{S}^d$$

is defined

$$G(X) := \mathcal{C}(g_1, \ldots, g_D)$$
 where $g_k := \left(\prod_{j=1}^N x_{jk}\right)^{1/N}$

is the geometric mean of the components $k = 1, \ldots, D$.

Geometric mean is the adequate measure of central tendency for compositional data:

• $G(\mathbf{y} \circ X) = \mathbf{y} \circ G(X)$ for all $\mathbf{y} \in \mathcal{S}^d$,

•
$$G(\lambda \diamond X) = \lambda \diamond G(X)$$
 for all $\lambda \in \mathbb{R}$.

... Centered data set

In case that the data set X is near to the corner – this happens when one of the components of the data set is near to 1 it is very difficult to establish if there are differences between the points.

If we perturb the data set \mathbf{X} by the $-1 \diamond G(\mathbf{X})$ the result data set is centered, i.e. the center of the set $-1 \diamond G(\mathbf{X}) \circ \mathbf{X}$ is the barycenter of the simplex

 $G(-1 \diamond G(\mathbf{X}) \circ \mathbf{X}) = \mathbf{e}.$

Now we can observe the real pattern of the data (in Aitchison's geometry!).

EXAMPLE: Household budget survey

> mix.Gmean(h4)

>mix.InvGmean(h4)

> pert(mix.Gmean(h4)\$mat,mix.InvGmean(h4)\$mat)

[1] 0.3333333 0.3333333 0.3333333

```
EXAMPLE: Household budget survey
```

>G <- mix.Matrix(rbind(mix.Unitn(3)\$mat, mix.Gmean(h4)\$mat,</pre>

```
>+ mix.InvGmean(h4)$mat, h4$mat), "Barycenter, Gmean, InvGmean
```

```
$tit
[1] "Barycenter, Gmean, InvGmean, HOF Data"
$sum
[1] 1
$sta
[1] 2
$mat
         Η
                  F
   0.3333333 0.33333333 0.33333333
   0.5656061 0.19099763 0.24339624
   0.1591056 0.47116349 0.36973090
M1 0.4004835 0.47622885 0.12328767
М2
   0.4027844 0.45223236 0.14498320
W19 0.5544267 0.11175617 0.33381713
W20 0.7455540 0.04035568 0.21409029
Śclass
[1] "mixture"
 >t <-c(rep(1,20),rep(2,20))
 >spol <- c("blue", "red")</pre>
 >liki <- c(22,2)
 >mix.Ternary(G,col=c("red","cyan","violet",spol[t]),
 >+ pch=c(13,11,11,liki[t]), cex=c(rep(2,3),rep(1,20)))
```


Conclusions

From the abstract we resume:

We need an R library for compositional data analysis comprehending compositional concepts jet not applied originally in R. Programming in R

- **operations on compositions** such as perturbation, power multiplication, subcomposition, distances ...
- various logratio transformations of compositions to transform compositions into real vectors that are amenable to standard multivariate statistical analysis,

compositional concepts such as complete subcompositional independence, the relation of compositions to bases, logcontrast models . . . and

graphical presentation of compositions in ternary diagrams and tetrahedrons

... Conclusions

will provide an GNU library for compositional data analysis.

And we conclude:

We have managed the first and the last item. The rest is our goal in future.

