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Motivating Problem

* Various stream sites in Oregon were visited.

— Benthic invertebrates collected at each site and cross

categorized according to several traits (e.g. feeding
type, body shape,...)

— Environmental variables are also measured at each
site (e.g. precipitation, % woody material in substrate,

)

* Total number in each category is not interesting.
* Relative proportions are more informative.

* How can we determine if collected environmental
variables affect the relative proportions (which ones)?
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Discrete Compositions and Probability Models

* Compositional data are multivariate observations

Z=(Z,...,Z,) subject to the constraints that 2 Z =1 and
Z.2 0. (measures relative size of each category)

* Compositional data are usually modeled with the
Logistic-Normal distribution (Aitchison 1986).

— Scale and location parameters provide a large
amount of flexibility

— LN model defined for positive compositions only

* Problem: With discrete counts one has a non-trivial
probability of observing 0 individuals in a particular
category




Existing Compositional Data Models

* Billhiemer and Guttorp (2001) proposed using a |
multinomial state-space model for a single composition,

|Y,,....Y,) ~ Multinomial( N, Z,,,...,Z,, |
(Zil""’ZiD) = LN(ui’zi)’

where Y, is the number of individuals belonging to
categoryj=1,....Datsitei=1,...,S.

Limitations:
— Models proportions of a single categorical variable.
— Abstract interpretation of included covariate effects



Graphical Models

* Graph model theory (see Lauritzen 1996) has been used
for many years to

— model cell probabilities for high dimensional
contingency tables

— determine dependence relationships among
categorical and continuous variables

Limitation:
— Graphical models are designed for a single sample

(or site in the case of the Oregon stream data).
Compositional data may arise at many sites



New Improvements for Compositional Data Models

* The BG state-space model can be generalized by the
application of graphical model theory.

— Generalized models can be applied to cross-classified
compositions

— Simple interpretation of covariate effects as
dependence in probability

* Conversely, the class of graphical models can be
expanded to include models for multiple site sampling
schemes



Graphical Chain Models

* Mathematical graphs are used to illustrate complex
dependence relationships in a multivariate distribution

* A random vector is represented as a set of vertices, V.
Ex. V={a = Precipitation, § = Stream velocity,
y = Amount of large rock in substrate}

* Pairs of vertices are connected by directed or undirected
edges depending on the nature of each pair’s
association

Relationships are determined by a “causal” ordering
If a <[ incausal ordering, thena - 3

It =y ,thenfB —y




Example Chain Graph
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 Causal ordering (a,c )<fB =0 <y

* Chain components Sets of vertices whose elements are
connected by undirected edges only
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* Chain components Sets of vertices whose elements are
connected by undirected edges only



Example Chain Graph
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* Moral Graph (G™): Graph induced by making all edges
undirected and connecting parents of chain components

Basis for determining dependence relationships between
variables



Example Chain Graph

Concepts

* Moral Graph (G™): Graph induced by making all edges
undirected and connecting parents of chain components

Basis for determining dependence relationships between
variables



Example Chain Graph
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* Distribution models: Joint distribution modeled as a
product of conditional distributions.

Ex.la,B,0,y.e)=Ra)fe)AB,o0 |a,e)fx |
a,e ,B,0)



Markov Properties of Undirected Graphs

* Let P denote a probability
measure on the product space

X=X, x X; x X x X;,and
V={a=:8=y=5} a

* Markov properties (w.r.t. P).
— Pairwise Markovian
a Oy |V\{a,y}.

— Local Markovian ¢
g Uy |[(@, o)

— Global Markovian
(a ,)0y |0



Markov Properties and Factorization

* Markov relationships are related to the factorization of
the joint density

* Theorem (Hammersley-Clifford).
— G Is an undirected graph

— P has a positive and continuous density f with respect
to a product measure U .

All three Markov properties are equivalent if and only if f
factors as

f(X) = |_| hC(XC)

C complete

* A complete set is one where all vertices in the set are
connected to one another.



Factorization Example

fla.B.8.y)=fla1B.o.y) f(B16.y) f(o1y) fy)
= fla1B.3) f(B10) f(S1y) £y
:hla,ﬁ,é}(a’ﬁ’é) xh[d,y}(5’ y)



Discrete Regression (DR) Chain Model

Response variables (terminal chain component)

— Set A of discrete categorical variables

— Notation: y is a specific cell

Explanatory variables

—Setl" = I , O I . of categorical (I ) or
continuous (I ) variables

— Notation: x refers to a specific explanatory
observation

DR Joint distribution: f(x) p(yIx)

DR distribution is an example of a mixed variable
graphical model (Lauritzen and Wermuth, 1989)



Discrete Regression Model (Response)

Model for conditional response:

e

plylx)=exp o, (x)+

dc — xj/
don cor Y=

- QOO 5

don O, ré. j=2

« The function a , (x) is a normalizing constant w.r.t. ylx

 The parameters 8 , and w ., ; are interaction effects

that depend on y through the levels of the variables in d
only.

* Certain interaction parameters are set to zero for
identifiability of the model (analogous to interaction
terms in ANOVA models)



Discrete Regression Model (Predictors)

* Model for explanatory variables (CG distribution):

flx)= expégfc DPL

1 L
_5 g %wcu Futy L
cUl p HLYUl ¢ [

- Again, interactions depend on x; through the levels of

the variables in the set ¢ only, and identifiability
constraints are imposed.



Markov Properties of Graphical Chain Models

* Frydenburg (1990) extended Hammersley-Clifford
theorem for application to chain models

Markov properties are based on moral graphs
constructed from “past” and “present” chain
components (relative to the set of vertices in
qguestion).

For a distribution P with positive and continuous
density f, P is Markovian if and only if f factors as

£(x) =7 [ e ()

TUr CUC,

where C, represents a class of complete sets in
(G, )" for all chain components.



Markov Properties of the DR Model

Proposition. A DR distribution is Markovian with respect
to a chain graph G, with terminal chain component A and

initial component I , if and only if

= B .= 0unless dis complete and ¢ O pa(d ) for every
0 Ind,

= (O unless d is complete and {y } U ¢ O pa(0 )

u
W decy j

for every 0 ind,

"A.=n_, =y, =0unless the sets
corresponding to the subscripts are complete in G,



Markov Properties of the DR Distribution

Sketch of Proof:

* LW prove conditions concerningthe A ,n ,and Y
parameters for the CG distribution, therefore, we only
need look at the B and w interactions.

* Ifthe B and w parameters are 0 for the specified sets
then it is easy to see that the density factorizes on

(Gcl(T ))m

* A modified version of the proof of the Hammersley-
Clifford Theorem shows that if p(y|x) separates into
complete factors, then, the corresponding  and w
vectors for non-complete sets must be 0.



Random Effects for DR Models

* Sampling of individuals occurs at many different random
sites, i = 1,...,S, where covariates are measured only
once per site

 Hierarchical model:
ﬁ

P(yl'lxi):exp aA(XIS i)+ g =2 Xy
Ao\ cOor Y=
QOO ¥.3
d o Cq 7@0 J=2
0 If d isnotcompletein G
8 ~
A .MVN(O,Td ) if d iscompletein G

* Markov properties still hold over the integrated likelihood
In some cases.



Graphical Models for Discrete Compositions

* For aset A of categorical responses
— Let D be the number of cross-classified cells
— Y, = Number of observations in cell j=1,...,D at site
i=1,...,S

» Likelihood
Y

il,...

JY.o) | Xr =xp ~ Multinomial(N; p.,,....p.),
where p, is given by the DR random effects model

* Covariate distribution
X ~CGA ,n,yp)



Parameter Estimation

* A Gibbs sampling approach is used for parameter
estimation

* Hierarchical centering

— Produces Gibbs samplers which converge to the
posterior distributions faster

— Most parameters have standard full conditionals if
given conditional conjugate distributions.

* Independent priors imply that covariate and response
models can be analyzed with separate MCMC
procedures.



Stream Invertebrate Functional Groups

* 94 stream sites in Oregon were visited in an EPA
REMAP study

* Response composition: Stream invertebrates were
collected at each site and placed into 1 of 6 categories
of functional feeding type

Collector-gatherer
Collector-filterer

Scraper

Engulfing predator

Shredder

Other (mostly, benthic herbivores)

o ko=



Stream Covariates

Environmental covariates: values were measured at

each site for the following covariates

1. % Substrate composed of woody material
2. Alkalinity

3. Watershed area

4. Minimum basin elevation

5. Mean basin precipitation

6. % Barren land in watershed

/. Number of stream road crossings



Stream Invertebrate Model

* Composition Graphical Model:
7
logp, =a,(x,)+B,,+ ¥B, [ x,-X, |5, +¢,
y=l1

g ~ MVN(0,T,"|
and
X}IIIIMVN( , ;1)

* Prior distributions
B, (x,) ~iidN(0.9; )5, =0 7
T, ~ Wish(6,R)

W ~ Wish(7,R)



Stream Invertebrate Functional Groups

Posterior suggested chain graph
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parameters and off-diagonal elements of ¢ ..



Comments and Conclusions

* Using Discrete Response model with random effects, the
BG model can be generalized

— Relationships evaluated though a graphical model

— Multiway compositions can be analyzed with specified
dependence structure between cells

— MVN random effects imply that the cell probabilities
have a constrained LN distribution

* DR models also extend the capabilities of graphical
models

— Data can be analyzed from many multiple sites
— Qver dispersion in cell counts can be added



Future Work

* Model determination under a Bayesian framework

— Models involve regression coefficients as well as
many random effects

* Prediction of spatially correlated compositions over a
continuous domain

— Desirable to have a closed form predictor such as a
Kriging type predictor
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