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Abstract 

An important problem in the geosciences is the estimation or prediction of regionalized 
compositions. In fact, it is usual to deal with data such as percentages, concentrations, 
ppm,...., and use them to estimate values in other locations. Compositional data have been 
regarded as difficult to work with because of the so-called constant sum constraint. Following 
Aitchison (1986), any meaningful statement about a composition can be expressed in terms 
of logratios, but those transformations, and their backtransformations, are not always easy to 
deal with. The aim of this paper is to compare results obtained applying different 
methodologies developed in geostatistics, with samples of compositional data from a bauxite 
deposit in Halimba II (Hungary). Firstly, a classical geostatistics study is done using raw data; 
secondly applying two wellknown transformations in compositional data analysis: additive 
logratio (ALR) and centered logratio (CLR); thirdly, the Fast Fourier Transform (FFT) 
methodology to calculate the spatial variance-covariance matrix is used in cokriging. To be 
able to compare predictive values and kriging errors respective backtransforms are found. At 
last, results obtained with the different approaches are discussed and compared. 
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1. INTRODUCTION 
The most common goal in Geostatistics is to estimate the value of an unknown variable in a 
location using the information given by some samples in its surroundings. A new problem 
comes when compositional variables are studied, those variables are characterised by their 
constant sum; that is, variables summing up to one (proportions), summing up to 100 
(percentages) and so on. Their main features have been studied and described by many 
authors (Aitchison, Barceló, Egozcue, Pawlowsky and others) and have settled some specific 
methodologies to work with them. Those methodologies set up some transformation of data; 
the best-known ones are average logratio (ALR) and centered logratio (CLR). Recently, Yao 
and Journel have found some way to calculate covariances matrix with Fast Fourier Transform 
(FFT). So, it seems sensible to apply all those methods, as well as the classical one used by 
most geologists to the same data to assess their applicability and results. This is the goal of 
this paper: the use of all those four methods, finding out their difficulties and comparing their 
results with some well-known data. The database is a set of compositional data from a bauxite 
deposit named Halimba, which is the largest one in Europe continuously mined since 1950. 
The data were furnished by Gy. Bárdossy, Budapest. 

2. DATA SET 
The studied deposit is in Hungary (Europe) and it is limited by East 117.6 - 114.0; North 13.0 - 
8.8 geographic coordinates in a topographic map. The deposit covers an area of more than 8 
km2; Halimba II is the only sector in the deposit that is still under prospection. The database 
consists of 55 samples representing 55 boreholes, after getting off 3 incomplete samples. In 
these boreholes the thickness of bauxite varies from 0.8 to 36.1 m. Variables used are the 
following: X = Easting; Y = Northing; V1 = Concentration of Al2O3; V2 = Concentration of SiO2; 
V3 = Concentration of Fe2O3; V4 = Concentration of TiO2; V5 = Concentration of H2O; V6 = 
Concentration of CaO; V7 = Concentration of MgO; concentrations are in percent. The values 
of V1 to V7  represent weighted averages in each borehole taken from intervals of 0.5 to 1.0 m 
length. Full database and histograms of the variables can be found at our website; table 1 
shows the descriptive statistics of data set. 
 
     Table 1. Descriptive statistics of data set. 

 Range Minimum Maximum Average Standard  
deviation 

simmetry kurtosis 

V1 8.3 49.9 58.2 54.569 2.234 - 0.647 - 0.558 
V2 7.4 0.7 8.1 3.889 2.007 0.334 - 0.876 
V3 7.4 20.4 27.8 23.698 1.898 0.523 - 0.096 
V4 2.1 1.6 3.7 2.778 0.332 -0.683 2.773 
V5 2.3 11.3 13.6 12.371 0.499 0.477 0.128 
V6 2.7 0.1 2.8 0.536 0.545 2.232 5.543 
V7 1.8 0.1 1.9 0.267 0.327 3.133 11.688 

 

3. RAW DATA GEOSTATISTICAL ANALYSIS  
This is a traditional method to estimate any regionalised variable in geostatistics. It consists of 
building up variograms for each variable and cross-variograms when there are more than one 
of them. Once experimental (cross)variograms have been built they must be modeled. The 
corresponding theoretical ones are used in (co)kriging system to estimate the values on a 
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regular grid. Variograms for the seven variables have been calculated and modeled; a table 
with the full description of those models can be found in our website. Once all variograms were 
built, cokriging has been done using KB2D program from GSLIB (1998). 
 

4. GEOSTATISTICAL ANALYSIS CONSIDERING VARIABLES AS 
COMPOSITIONS: ALR TRANSFORM 
Classical applications of geostatistics are related to mapping the spatial distribution of the 
variables under study. They give emphasis to characterize the variogram model and use the 
kriging (error) variance as a measure of estimation accuracy. Nowadays, some problems have 
been reported with compositional data. Those problems have been studied by many authors 
(references [1], [2], [3] and [8]). The main problem when handling compositional data is the so-
called constant sum (K) constraint. Usually K = 1 or K = 100, if data are percentages. So, if V1, 
..., VN are proportions of N elements, then V1 + · · ·  + VN = K, which means that variables are not 
independent. To deal with compositional data and avoid this constraint, Aitchison has 
proposed some transforms. We have used two of them: average logratio (ALR) and centered 
logratio (CLR). With those transformations variables become independent and then classical 
kriging can be performed. 
As it is said beforehand, V1, ...., VN must follow the constant sum constraint, but this quite 
never is true. Actually, we must define a new variable (called the residual) as VR = K − (V1 + · · ·  
+ VN). Then, the ALR variables Ui (i = 1,2,…, N) are defined as follows: 
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So now we are working with several Ui variables which do not follow the sum constraint; so 
they can be used as any other geostatistical data. We build and model their variograms (they 
can be found in our website). Once variogram was built, kriging has been done using KB2D 
program from GSLIB (1998). Kriging results must be backtranformed to have the estimation of 
Vi in the grid; in this case, the corresponding ALR-backtranform is: 
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5. GEOSTATISTICAL ANALYSIS CONSIDERING VARIABLES AS 
COMPOSITIONS: CLR TRANSFORM 
Once VR has been defined, we define a new variable as the geometrical mean of all of them: 
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Then, CLR transform consists in stating N+1 new variables as: 
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These N+1 variables are not constrained, so they can be modeled and estimated. Once 
variograms have been built (they can be found in our website) cokriging has been done using 
KB2D program from GSLIB (1998). Then, backtransforms must be done to recover original 
variables. CLR-backtranform is: 
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6. FAST FOURIER TRANSFORM METHOD TO CALCULATE THE 
COVARIANCE MATRIX 
On the other hand, to avoid the modeling of variograms and crossvariograms, which may be 
very subjective, Yao and Journel (1998) have developed the so-called FFT method, which can 
be applied, in principle, to any kind of data. With FFT you do not need the independence of the 
variables and it builds up the covariance matrix, which can be used directly to krige. This 
approach works as follows: 

a) Generate an experimental correlogram map on a regular grid. The grid typically has 
multiple nodes without estimates. The user has to specify the minimum number of data 
to be considered in the estimates at every node. This task is performed by program 
CORRMAP (see reference [6]). 

b) Program INTMAP fills in the blanks typically present in the grid generated in step 1 by 
using a smooth local interpolation. 

c) Program MULTSMTH corrects the smoothed grid to generate a third grid that is a 
tabulation of a positively semidefined correlogram. This condition is required to assure 
a unique solution for the kriging system of equations yielding a non-negative kriging 
variance. 

d) Convert the correlogram tabulation in step 3 to covariance tabulation by multiplying the 
correlogram grid by the sampling variance. 

e) As it was not possible to use KB2D to krige, because with this method we obtain the 
covariance matrix and not the variograms, we had to change it (see reference [5]). 

 

7. RESULTS AND DISCUSSION 
Table 2 shows descriptive statistics for the estimations. Variables shown are raw estimations 
(Vi), backtranformations of ALR estimations (BACK Ui), backtransformations of CLR 
estimations (BACK Wi) and estimations using FFT (FFT Vi). Table 3 shows descriptive 
statistics of their differences, that is the differences between raw estimations and each of the 
other estimations. Kriging errors can be found in website. 
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Figures comparing kriging results for the seven variables can be found in website; as an 
example you can see hereafter, in figure 1, results for variable V1. In this figure, (a) is refered 
to raw data, (b) to the backtransformation of ALR-variable, (c) to the backtransformation of 
CLR-variable and (d) to the FFT transformation method. 
Looking at the contour maps, no significant differences among the first three methods arise. 
However (d)-picture, the one belonging to FFT method, shows higher resolution. It seems that 
it is because this method is less subjective. 
 

8. CONCLUSIONS. 
Using the results of this study some conclusions can be built: 

1. Kriging results in Halimba II using the four methods are quite similar. 
2. As regarding to the kriging errors, comparison is not so easy because it is not true that 

the backtransform of ALR and CLR transformations belong to the same space as the 
data (this is why Martin et al. defined stress).  

3. FFT method seems to be the best one, because it is less subjective, more precise and, 
furthermore, it is the easiest method to use. However, this method does not take into 
account if data are compositional or not. 
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Table 2. Descriptive statistics of kriging estimations. 
 

Variable N Average Median Std. Dev. Minimum Maximum 
V1 845 54.62 55.20 2.16 49.90 58.20 

BACK U1 845 54.68 55.19 2.14 49.78 58.10 

BACK W1 845 54.66 55.18 2.14 49.88 58.17 

FFT V1 578 54.62 55.30 2.24 49.90 58.20 

V2 845 3.929 3.800 2.000 0.700 8.100 

BACK U2 845 3.898 3.626 2.007 0.700 8.150 

BACK W2 845 3.899 3.623 2.006 0.700 8.150 

FFT V2 578 3.924 3.602 2.011 0.700 8.100 

V3 845 23.70 23.45 1.72 20.40 27.80 

BACK U3 845 23.72 23.41 1.72 20.32 27.75 

BACK W3 845 23.73 23.51 1.72 20.46 27.89 

FFT V3 578 23.61 23.30 1.83 20.40 27.80 

V4 845 2.777 2.800 0.348 1.600 3.700 

BACK U4 845 2.779 2.814 0.348 1.600 3.710 

BACK W4 845 2.779 2.813 0.346 1.600 3.680 

FFT V4 578 2.783 2.801 0.341 1.600 3.700 

V5 845 12.34 12.30 0.45 11.30 13.60 

BACK U5 845 12.35 12.34 0.47 11.01 13.76 

BACK W5 845 12.35 12.26 0.45 11.38 13.62 

FFT V5 578 12.37 12.30 0.50 11.30 13.60 

V6 845 0.504 0.300 0.465 0.100 2.800 

BACK U6 845 0.490 0.301 0.453 0.090 2.810 

BACK W6 845 0.490 0.301 0.453 0.100 2.810 

FFT V6 578 0.503 0.300 0.489 0.100 2.800 

V7 845 0.247 0.100 0.264 0.100 1.900 

BACK U7 845 0.234 0.105 0.247 0.090 1.900 

BACK W7 845 0.234 0.101 0.247 0.100 1.900 

FFT V7 578 0.249 0.100 0.293 0.100 1.900 

 
  Table 3. Descriptive statistics of errors. 

 N Average Median Std. Dev. Minimum Maximum 
V1 - BACK U1 845 -0.0621 -0.0088 0.2640 -2.6162 0.6762 

V1 - BACK W1 845 -0.0429 0.0009 0.2104 -1.7219 0.3092 

V1 - FFT V1 560 0.0189 0.0000 0.6570 -3.1083 6.7002 

V2 - BACK U2 845 0.0310 -0.0001 0.2165 -1.2449 2.0673 

V2 - BACK W2 845 0.0301 -0.0011 0.1993 -1.1678 1.7569 

V2 - FFT V2 560 0.0026 0.0000 0.4389 -3.9004 2.8890 

V3 - BACK U3 845 -0.0148 -0.0121 0.1170 -0.9911 0.4930 

V3 - BACK W3 845 -0.0299 -0.0262 0.1234 -1.1340 0.7786 

V3 - FFT V3 560 0.0174 0.0000 0.6029 -3.5003 6.5000 

V4 - BACK U4 845 -0.0018 0.0023 0.0268 -0.2413 0.2638 

V4 - BACK W4 845 -0.0017 0.0005 0.0260 -0.1852 0.2491 

V4 - FFT V4 560 0.0047 0.0000 0.0667 -0.6930 0.4000 

V5 - BACK U5 845 -0.0044 0.0034 0.1598 -1.0208 1.2711 

V5 - BACK W6 845 -0.0072 -0.0039 0.0685 -0.6018 0.2735 

V5 - FFT V6 560 -0.0116 0.0000 0.1633 -1.0505 1.0498 

V6 - BACK U6 845 0.0138 -0.0001 0.0633 -0.0745 0.6584 

V6 - BACK W6 845 0.0142 0.0000 0.0681 -0.0285 0.7951 

V6 - FFT V6 560 -0.0054 0.0000 0.1530 -1.2472 1.2500 

V7 - BACK U7 845 0.0133 0.0001 0.0673 -0.0251 0.6202 

V7 - BACK W7 845 0.0135 0.0001 0.0666 -0.0057 0.5916 

V7 - FFT V7 560 -0.0040 0.0000 0.1144 -1.0331 0.9000 
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Figure 1. Contour maps of variable V1. 
(a) 
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